Homework should be handed in by Monday 30 August. For students in the 3000/4000 level you must complete 20 points woth of questions. For those at the 6000 level, you must hand in 25 points worth of questions.

- 1. (5 points) Prove that a monoidal category is symmetric if and only if it is both braided and coboundary (using the same commutator for both structures).
- 2. (4 points) Let V be an object of $\tilde{\mathcal{D}}_1$ and $v \in V$ a vector such that $ev = 0$ and $hv = mv$.
	- (a) Consider the subspace $U = \text{span}\{v, fv, f^2v, ...\}$. Show that there is a $k \geq 0$ such that $f^k v \neq 0$ and $f^{k+1}v = 0.$
	- (b) Show that the set $\{v, fv, f^2v, \ldots, f^kv\}$ is linearly independent and thus a basis of U. Hint: consider the h eigenvalues.
	- (c) Show that $k = m$ and thus dim $U = m + 1$. Hint: consider $ef^{k+1}v$, compute it in two different ways.
	- (d) Show $U \cong V(m)$.
- 3. (4 points) Let V be an object of $\tilde{\mathcal{D}}_1$ and $u, v \in V$ linearly independent, such that $eu = ev = 0$, $hu = mu$ and $hv = nv$.
	- (a) Suppose $m \ge n$ and $m 2a = n$. Prove that $f^a u$ and v are linearly independent.
	- (b) Show that $\{f^a u, f^b v\}_{0 \leq a \leq m}$ is linearly independent. *Hint: remember, vectors in different h*eigenspaces are linearly independent. You will also need to generalise the above slightly.
	- (c) Deduce that $\text{span}\{f^a u, f^b v\}_{a,b\geq 0} \cong V(m) \oplus V(n)$.
- 4. (10 points) Let us consider the categories $\mathcal{D}_1, \mathcal{D}_q$ that were introduced in class. Let $V(n)$ be the $n+1$ dimensional objects used to define the cateory in each case.
	- (a) Show that $V(n)$ is the span of $f^k(x^n)$ for $k \geq 0$ and use this to deduce that $V(n)$ cannot be expressed as the direct sum of other objects, i.e. $V(n)$ is indecomposable.
	- (b) Explicitly determine the tensor product rule in each case. That is, given that $V(m) \otimes V(n) =$ $\bigoplus_{k\geq 0} V(k)^{\oplus a_k}$, determine the integers a_k .
	- (c) Do the same for \mathcal{D}_0 .
- 5. (2 points) Find all the one dimensional objects in $\tilde{\mathcal{D}}_q$. For each one dimensional object S, give an explicit description of the operators e, f and K on $S \otimes V_q(m)$.
- 6. (5 points) Let $V = V_q(1)$. Compute explicitly the homomoprhisms Hom($V \otimes V$, $V \otimes V$). Which ones are isomoprhisms?
- 7. (3 points) Are the categories \mathcal{D}_1 , \mathcal{D}_q , and \mathcal{D}_0 equivalent? What about as monoidal categories? As braided monoidal categories? No proofs necessary, a good discussion suffices.
- 8. (2 points) Show that the cactus group C_3 is isomorphic to the infinite dihedral group, i.e. the group with presentation $D_{\infty} = \langle r, s \mid s^2 = 1, srs = r^{-1} \rangle$.
- 9. (6 points) This question will guide you through a proof showing the monoidal category \mathcal{D}_0 cannot be made into a braided monoidal category. The proof is due to A. Savage. The strategy is to show that any natural isomophism $c : \otimes \Rightarrow \otimes \circ$ flip cannot possibly satisfy the hexagon axiom.
	- (a) Show that $c_{B(1),B(1)}$ must the identity map. Thus what is the map $(id_{B(1)} \otimes c_{B(1),B(1)}) \circ (c_{B(1),B(1)} \otimes c_{B(1),B(1)})$ $id_{B(1)})$?
	- (b) Now calculate $c_{B(2),B(1)}(fb_2 \otimes b_1)$.
	- (c) Use this to calculate $c_{B(1)\otimes B(1),B(1)}(b_1\otimes fb_1\otimes b_1)$. Hint: you will need to use naturality here using a map $B(2) \rightarrow B(1) \otimes B(1)$.

ANU: Crystals Problem set 2

- (d) Deduce that c cannot be a braiding.
- 10. (5 points) (for any 50% of this) This is a question to guide you through the computation of group cohomology for those that are interested. We will concentrate on the case when our group is $G = \mathbb{Z}/2$. For any group G and a G-module A (i.e. an abelian group with a G-action, or equivalently a $\mathbb{Z}G$ -module) we first define $C^n(G, A)$ to be the set of functions $G^{\times n} \longrightarrow A$. We define maps

$$
C^{0}(G,A) \xrightarrow{d^{0}} C^{1}(G,A) \xrightarrow{d^{2}} \cdots \xrightarrow{d^{n-1}} C^{n}(G,A) \xrightarrow{d^{n}} C^{n+1}(G,A) \xrightarrow{d^{n+1}} \cdots
$$

$$
d^{n}(f)(g_{0},g_{1},\ldots,g_{n}) := g_{0} \cdot f(g_{1},\ldots,g_{n}) + \sum_{i=1}^{n} (-1)^{i} f(g_{0},\ldots,g_{i-2},g_{i-1}g_{i},g_{i+1},\ldots,g_{n}) + (-1)^{n+1} f(g_{0},\ldots,g_{n-1})
$$

Note we are using $+$ for the group operation in A.

- (a) Check that $d^n \circ d^{n-1} = 0$, i.e that $\text{im } d^{n-1} \subseteq \text{ker } d^n$. We define the n^{th} cohomology group of G with coefficients in A as the abelian group $H^n(G, A) := \ker d^n / \text{im } d^{n-1}$.
- (b) Give a simple interpretation of $H^0(G, A)$ (set $C^{-1}(G, A) = 0$ and $d^{-1} = 0$ by convention).
- (c) Suppose that G acts trivially on A. What is $H^1(G, A)$? Hint: the image of d^0 is trivial.
- (d) Recall your condition for the associator on $\mathbf{Vect}_k(G)$ to be given by a function $\omega \in C^3(G, k^{\times})$. What is this condition in the language above? (*Warning: above you are using additive notation for* A, but if $A = k^{\times}$ then it makes more sense to use multiplicative notation.)
- (e) Now consider the case when $G = \mathbb{Z}/2$ and $A = k^{\times}$. Show that the kernel of d^{1} has two elements (or does it? What role does the characteristic play?). This should give you $H^1(\mathbb{Z}/2, k^{\times})$. Does this mesh with your answer to b?
- (f) Now try calculating $H^2(\mathbb{Z}/2, k^{\times})$. Hint: it is quite a small group. Does your answer depend on the characteristic?
- (g) If you want a long slog of a calculation, try $H^3(\mathbb{Z}/2, k^{\times})$. Hint: it should also be quite small.
- (h) Pick two different elements of ker d^3 that are cohomologous (i.e. the same mod im d^2). These should give two monoidal stuctures on \mathbf{sVect}_k . Find a monoidal functor giving an equivalence between them.
- (i) If you want even more calculations to do, you could figure out how the calculations change when you let $\mathbb{Z}/2$ act non trivially on k^{\times} by $\lambda \mapsto \lambda^{-1}$.