Problem set 4

Homework should be handed in by Monday 4 October. For students in the 3000/4000 level you must complete 20 points woth of questions. For those at the 6000 level, you must hand in 25 points worth of questions.

- 1. (3 points) Prove the following: If Φ is a root system and $W = W(\Phi)$ is group generated by s_{α} for $\alpha \in \Phi$ then W is a finite reflection group and moreover every finite reflection group arises in this way. *Hint: this shouldn't be hard, you have proved all the ingredients already, you just need to reinterpret and synthesise.*
- 2. (3 points) If $\Delta \subset \Pi \subset \Phi$ are simple and positive systems respectively in a root system Φ , show that $w\Delta \subset w\Pi$ are also simple and positive systems for any $w \in W(\Phi)$.
- 3. (5 points) Let Φ be a root system and $H \subset V$ a hyperplane such that $H \cap \Phi = \emptyset$. Choose a vector $\lambda \in V$ such that $H = \ker(-, \lambda)$ (i.e. a side of H that we call the positive direction). Let $\Pi = \{\alpha \in \Phi \mid (\alpha, \lambda) > 0\}$. Show that Π is a positive system and that all positive systems arise in this way.
- 4. (6 points) Find a root system in \mathbb{R}^{n-1} such that the corresponding reflection group is S_n . Find a positive and simple system. This is called the type A_{n-1} root system.
- 5. (10 points) Find root systems for the hyperoctahedral group and it's index two subgroup discussed in the last problem set. These are called the type B_n and D_n root systems respectively.
 - (a) A root system is called *crystallographic* if $2(\alpha, \beta)/(\alpha, \alpha)$ is an integer for every pair of roots $\alpha, \beta \in \Phi$. Can you adjust your root systems so they are crystallographic?
 - (b) Find simple and positive systems.
- 6. (5 points) Can you find a crystallographic root system for the order 2n dihedral group?
- 7. (2 points) Let $\alpha, \beta \in \Phi$ be two roots. Since the reflection group W associated to Φ is finite, the order of $s_{\alpha}s_{\beta}$ is finite. I.e. there is an integer $m(\alpha, \beta)$ such that $(s_{\alpha}s_{\beta})^{m(\alpha,\beta)} = 1$. Characterise the number $m(\alpha, \beta)$ in terms of the geometry of $\alpha, \beta \in \Phi$.
- 8. (5 points) Let $\ell(w)$ and n(w) be the statistics defined in class (length and number of "flips").
 - (a) Show that det $w = (-1)^{\ell(w)} = (-1)^{n(w)}$
 - (b) For the root system type A_{n-1} root system, take as simple system Δ such that the corresponding simple reflections are the transpositions (i, i + 1). Show that $\ell(w) = n(w) = \#\{(i, j) \mid i < j \text{ and } w(i) > w(j)\}$.
- 9. (5 points) Write a computer program that takes as input a Coxeter graph and outputs whether it is positive definite, positive semidefinite or neither.
- 10. (4 points) Show presidely which of the Coxeter graphs of type $I_2(m)$ can be extended to a positive semidefinite graph (without using the classification results).
- 11. (6 points) Let $V = \mathbb{R}^n$ with the standard inner product. Consider the set Φ of vectors in \mathbb{Z}^n that have length 2 or $2\sqrt{2}$.
 - (a) Determine Φ explicitly.
 - (b) Show that Φ is a root system and find a simple system.
 - (c) Determine the Coxeter graph
 - (d) Is Φ crystallographic?
- 12. (4 points) Let $W \subset GL(V)$ be an irreducible (and essential) reflection group. Show that V is an irreducible representation of W. Hint: consider a direct sum decomposition, where do the root vectors lie?