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submatrix whose completion cannot have a big enough determinant, so that
we end up with a list of elements of Mn(l) with determinant > d.

There are only finitely many such matrices, since all new entries will have
magnitude strictly less than n by Theorem 4.4, However finitely many can
still be a very large number, so we also apply an ordering on our candidates,
so that the computer does not generate M-matrices which are equivalent to
those already generated, but which are higher up in the ordering.

Step 2) We discard each matrix whose determinant is not a perfect square
(since det M = det RRT = det Rdet R == det Rdet R = (det R)%).

11.3. Step 1 in detail

Our working solution is based upon the method described in [CKM].

We will need their
THEOREM 11.1. (2) Let

M(D,) = (§T ﬁ)

be an m x m symmetric, positive-definite matriz where D, is an r X v matriz

with r < m < n; B = (by) is an r x (m — r) matriz; A = (ai;) is an
(=7} x (m — 1) matriz; satisfying ay = n, lagil > 1, |bi;] > 1, fori# 4.

b, g Dy g
< * — T — T
0 <d* =det (g*T 1) I;Jnea.é( {det (gT 1)} ;

where G = {g = {g1. g9, ... ,gr)T:Igi] >1L,i=12,...,r}

(ii) Let

Then
det M{D;) < (n~1)™ " H{n — 1) det D, + (m — r)d*]

and equality is attained when

Dr g* g* . g*
g’ n 1 1
MDy=|¢T 1 n - 1
gr 1 1 n

PROOF: See [MK]

Choose the target d. It should be bigger than any known lower bound, and
less than or equal to the known upper bound. Obviously, the bigger d is,
the smaller the search space.
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We build up our candidate M-matrix out of a nested sequence of square
submatrices:

mi1 T Mg Mg
Moy Mgz Moz M4
M3y Taz M3y T34
g1 T4z THay Ty

Myay Maz o3 ¢,

T m.
21 2 Mgy M3z 33

mi1 iz T3
milr Mo
(mll)? )

We use Theorem 11.1 in the following manner.

Suppose we have D._1. We create D, by placing D;,_; in the top left hand
corner and filling in the remaining entries so that D; is symmetric.

We then put our D, in the top left hand corner of an (r+1) x (r +1) matrix,
put a ‘17 in the bottom right hand corner, calling the leftover column vector

g, as in:
D. g
g7 1

Now we vary over all possible vectors g¢’s, and select the one for which
this matrix has maximum determinant. Call that vector g* and denote the
maximum determinant J*.

Calculate the number test = (n — 1) "~ 1(n — 1) det D, + (n — r)d*].
If tesi < d, we discard this D,.

If test > d, we keep this D,.
If test = d, we include the n % n matrix

DT g* g* . g*
g*T n 1 e 1
MD) =g 1 = 1
g7 1 1 n

in our set of possible M-matrices.

We repeat this procedure for every possible completion D, of our D,_;. We
then iterate this whole process through r = 1,2,3,... ,n.

So far, so good. This method alone, however produces a swath of duplicate
solutions, in the following sense.
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Consider the maftrix

n 1 1 -3 1
1 n 1 1 1
1 1 n 1 1
-3 1 1 n 1
1 11 1 - n

Exchanging column 4 with column 3 gives

n 1 =3 1 1
I n 1 1 1
1 1 1 =n 1
-3 1 n 1 1
11 1 1 - n
Then exchanging row 4 with row 3 gives
n 1 =3 1 1
1 »n 1 1 1
-3 1 n 1 1
1 1 1 =n 1
1 11 1 - n

Hence the first and last of these matrices are equivalent. To avoid duplicating
work we want to generate as few of the members of a given equivalence class
as possible, preferably only one. So we have another Equivalence/Ordering
Problem.

11.4. The Ordering

We want to define an equivalence on M-matrices. Since M-matrices are
symmetric, we need operations which preserves symmetry. We define a class
of operations which achieve this aim by simultaneously permuting rows and
columns.

DEFINITION 16. SymSwap;; is the operation acting on a matrix which has
the combined effect of

¢ exchanging row 1 with row j, and
e exchanging column ¢ with column j,

where 4,7 € {1,2,... ,n} and n is the order of the matrix.

Then we can permute the entries of a symmetric matrix in such a way as
to move an entry anywhere in the matrix to any other desired position, by
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moving the given entry into the correct row and column using a choice of
SymSwaps.

DeFNITION 17. A € MW is equivalent to B € M) provided that A can
be obtained from B by performing a finite number of SymSwaps.

The paper [CKM] describes the following partial ordering.

Note(1) Throughout this description T will refer to ‘the maximal element’
of varions submatrices. In fact such a maximal element is not necessarily
unique, which is why we only have a partial ordering. At such points an
arbitrary choice is being made. However for clarity I will not refer to the
non-uniqueness explicitly in what follows. Note(2}) When I refer to putting
elements in a given position, I always mean Dy performing a finite number
of SymSwaps.

To generate a maximal representative matrix of a given matrix, with respect
to the partial ordering, proceed as follows. Put the maximal off-diagonal
clement of the matrix in the (1,2) position. (A maximal element is an
entry with largest absolute value.) This fixes rows 1 and 2, and they may
henceforth only be permuted amongst each other. Likewise for columns 1
and 2.

n-2

Now put the maximal off-diagonal element of the shaded two by two stb-
matrix in the (3,4} position. That fixes rows 3 and 4, so that they may
henceforth only be permusted amongst each other. Likewise for columns 3
and 4.

]
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Continue in this way to the last available pair of rows/columns. Now
consider the 2 x 2 block consisting of elements in the (1,3), {1.4), (2,3),
(2,4) positions. By permuting rows/columns 142 within themselves and
rows/columns 3&4 within themselves, put the maximal element of that 2x2
block in the (2.3} position.

Next consider the 2x2 block consisting of elements in the (5,7), (5.8), (6.7),
(6,8) positions. By permuting rows/columns 5&6 within themselves and
rows/columns 7&8 within themselves, put the maximal element of that 2x2
block in the (6,7) position.

Continue in this way to the last available d-tuple of rows/columns.

Note: We never actually order the matrices. What we do is to throw out
(or never generate in the first place) any submatrices which would lead to
an M which is submaximal in the partial ordering.

11.5. Mysterious Missing M-Matrices

We have implemented the procedure of [CKM], so far only allowing for
modifications of E! in the first two rows (and columns). Curiously, in the
17 x 17 and 21 x 21 cases, we have been able to find M-matrices which match
all of the criteria that the authors of [CKM] specify, but which are not in
their putative complete list.



11.5. MYSTERIOUS MISSING M-MATRICES 111

Here are their criteria as stated for the 21 x 21 case:

(i) M= (mij) Py = 21,mij =1 mod 4?3' ?l-' j’b,j = 1,2,...,2}
{ii) M is symmetric, positive definite

(iii) det M > 20'8.(116)°

(iv) det M is the square of an integer

Here are our extra 21 x 21 matrices (both with determinant 20'8.116%):

91 5 -3 -3 -3 -3 -3 1 i

5 91 1 1 1 1 1 1 1

3 1 921 1 1 1 1 1 1

3 1 1 21 1 1 1 1 1

3 1 1 1 21 1 1 1 1

(136)  Magps=}-3 1 1 1 1 21 1 1 1
-3 1 1 1 1 1 21 1 1

1 1 1 1 1+ 1 1 2 1

1 1 1 1 1t 1 1 1 91

and
21 -7 -3 -3 1 1
-7 21 1 1 1 1
-3 1 21 1 1 1
(137) Ma102 = ~3 1 1 21 1 1
, 1 1 1 1 21 1
1 1 i 1 1 21

And here are our extra 17x17 matrices (both with determinant 164.80%):

17 5 5 -3 -3 1 1

5 17 1 1 1 1 1

5 1 17 1 1 1 1

3 1 1 17T 1 1 1

(138) Mizpgo=1l_3 1 1 1 17 1 1
11 i

11 17

1 11 1 1 1 .. 17
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and

(139)
17 1 1 -3 -3 -3 -3 -3 -3 1 1
1 17 -3 1 1 1 1 1 1 1 1
1 -3 17 1 1 1 1 1 1 1 1
-3 1 1 17 1 1 1 1 1 1 1
-3 1 1 1 17 1 1 1 1 1 1
-3 1 1 1 1 17 1 1 1 1 1

Mizo3e=|-3 1 1 1 1 1 17 1 1 1 1
-3 1 1 1 1 1 1 17 1 1 1
-3 1 1 1 1 1 1 1 17 1 1
1 1 1 1 1 1 1 1 1 17 1
1 1 1 1 1 1 1 1 1t 1 - 17

So far we’ve only implemented the ordering described above up to modi-
Scations in the first two rows, since more than this gives a combinatorial
explosion in number of cases. We hope to make some improvement in the
ordering scheme described to handle this.

We note that we have tried to decompose Mi7.z 2 under the assumption that
Miza2 = RRT = RTR, and, providing that our program is correct, this
decomposition is not possible. It might however be the case that Mi725 =
RRT for some R, and that R? R equals some other M-matrix with the same
eigenvalues. We have checked and ruled this out for one possible pairing of
M-matrices (the first step of this check is described in detail in Section 12.4
of the next chapter). Since we cannot find all M-matrices for sure, we cannot
rule out for certain Mi7s 2 decomposing yet.

We further note that in all known cases of maximal decompositions, M =
RRT = RTR.



CHAPTER 12

The Grammian Method: The Decomposition
Algorithm

12.1. Finding Constraints on R

We extract from our M-matrices constraints on the possible matching R-
matrices, and then conduct a tree search of possible decompositions M =
RRT for Re R.

We make the key observation:

THEOREM 12.1. Let A and B be invertible square matrices. Then the eigen-
values for the muiriz AB are the same as those for the matriz BA.

Proor: Suppose ABv = Av. Then

BA(A™ ) = A"TABA(A™ ) = A7 ABv = A7 hw = MA o). [

Qo for twe matrices 4 and B in our candidate set which have the same
eigenvalues, if is at least possible that

A=RRT and B=RTR

for some R € R. We need to test for this possibility. In the case that there
is only one M-matrix for a given set of eigenvectors, we know that if it does
decompose, we can use a similarity transform to show that we can find an
R such that

(140) M = RRT = RTR.

This means that we are able to produce a natural pairing of an M-matrix
A with either another M-matrix B with the same eigenvalues, or else with
itself as its own transpose, in such a way as to be able to extract much more
information than we could get by using A alone. Assume

(141) A = (a;;) = RRT and B = (by) = R'R.

(with A possibly equal to B). We are able to extract from our pair of
M-matrices some linear constraints, some quadratic constraints and some

113
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determinant constraints. We begin with an obvious linear constraint. Let

r
I

(142) R= :2 =(c1 e ... cy)
In

Then

(143} !&;j = ri.rj and bz'j = czci[

This means that we are able to produce restrictions on what the sums of
blocks of unknown r;’s must be.

For example if the upper left hand corner of A looks like:

17 -3 1
-3 17 -3
(144) 1 -3 17
and we have already built
= (L - = LL —— = - LLL, 1,111,
Tz = (—5 T 1§ Ty T T, 1,1,1, Ty 111=1v1)1

then our new row rs is broken naturally into blocks as indicated by semi-
colons.
rs= {a; b ¢ de fig hiji klm; no,p,q).

Defining D =d+e, F = f+g, H = h+i+j, K = k+l+m, N = n+o+p+q,
and since from the fragment of the matrix A shown above we must have
ri.r3 = 1 and r3.r3 = —3, we obtain the following set of simultaneous linear
Diophantine equations.

1 = a -b —c +D -F -H +K +N,
-3 = —a -b +¢ -D —F +H -K 4N

Applying the inequalities gives a list of possible new r3’s to try.

To derive our other constraints, write

(145)

(1 y7 r_ (1 xT _fn aT _(n bT
R_(X RI)'JR _<y RrT aA’““' a Ai 7B““ b Bl
where x, y, a and b are (n — 1) x 1 column vectors and &' , A" and B’ are

(n — 1) x (n — 1) square matrices.
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Multiplying out A = RRT and B = RT R gives
Ao n xT +yTRT
x+R'y xxT +RRT
B n y' +xTR
“\y+R"x ywT+RTR
Equating entries in the top right hand corners gives
(146) a’ = xT+yTRT,
(147) bl = y'+x"R.

Multiplying on the right hand side of these equations by x and y respectively
gives

a’x = xTx+y"R"x
T
= (’I’L - 1) -E"yTRr x,
and

b’y = y'y+x"Ry

= (a-1)+ (yTR’Tx)T.

Then noticing that y7 R/ Tx is just a number, and is thus equal to its trans-
pose, we get

(148) alx =bly

Now equating entries in the bottom right hand corners we have
(149) A" = xxT+RRT
(150 B = yw+R'R
Then multiplying (149) by x on the right and x7 on the left, and using (147)
and (148) gives
xTA% = (n=172+ (x"R) (R"x)
= (n~1"+ (" -y")(b-y)
= n(n-1)+bb-2b7y

= n{n-1)+blb-2aTx.
Similarly we can produce
(151) y'B'y =n(n~1) +aTa - 2bTy.
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We have found the quadratic constraints

(152) xT A'x + 2a7x — b7b — n(n—1) = g,w
F

Y By +27y - a"b - n{n — 1) =

We are not yet finished with (149) and ( 150). We can also use them to get
the determinantal constraints

(153) det(4’ — xx") = (det R')? = det(B' - yyT)]|

Note that since R’ is unknown, the constraint here is perfect squareness, not
equality with some known square.

Here is a summary of all the constraints we have gleaned:

12.2. Summary of Constraints on R

(154) aij = riry and b;; = ¢j.¢;

(155) alx = bly

(156} det(4" - xxT) = det(B' ~ yy?')
(157) xTA'%x+2a"x —bTb—n(n-1) = g
{158) y'B'y +2bTy — aTa - n{n—1} = 0
(159) det(4' — xxT) = a perfect square

(160) det(B' — yy7) = a perfect square



12.3. SEARCHING FOR R 117

12.3. Searching for R

Overview:

At each stage we use those equations which involve x (resp. y) to generate a
list of possible x’s {resp. y's). We then check against the constraints which
couple the two to generate a list of possible pairs (x,¥).

We take the first pair, put it in our R-matrix, and generate the new sub-
problem, We repeat this process until we have either constructed the whole
R-matrix, or until one of our constraints has no solution. At such a point
we backtrack to our last arbitrary choice of (x,y), and continue from there.

We search the entire tree of possibilities in this manner, to either produce a
list of solutions or a proof that none exist. In most instances in the literature,
this method is only being used as a proof of non-existence.

We have made the empirical observation, based on trials so far, that when a
solution {(i.e. an R-matrix such that A == RRT and 8= RTR) does not exist
the program usually hits a wall within the first few levels, and so finishes
very quickly. So far the exceptions seem fo be when we've tried it on an
n = 3 (mod 4) case, when it has often got very deep into the structure
before backtracking. This deserves further investigation.

If we have produced a plurality of solutions, we check to see if these are
unique up to equivalence. It would be nice to have fast algorithmn to do this,
hut at the moment we just try permutations of rows and columns to see if
we can transform members of the list into each other.

More detail:

The first step is distinct from all the others in that we don’t have any
previous rows/columns of R to use, so we can’t use constraints (154). So
we always begin with the quadratic constraints (157) and (158). Also, the
entry in the top left hand corner of R hasn’t been defined yet. Without loss
of generality we choose it to be ‘1.1,

Here is the first step of a particular example carried out by hand, with com-
ments upon technical difficulties and opportunities segued in at the end:

'Since R is always multiplied by RY it’s overall sign is irrelevant, bence we can choose
it to be anything we want. We can use this freedom to fix the entry in the (1,1) position
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12.4. The Quadratic Constraints: an Example

17 ~3 -3 -3 -3 -3-3-3-31...1
=317 1 1 1 1 1 1 111
=31 17 1 1 1 1 1 1 1.1 17 3 5 —3-3 1 1
31 1171 101 1 111 5171 1 1 1 o 1
=31 1 1171 1 1 111 5 1171 1 1 1
=31 1 1 1 717 1 1 1 i1 -3 1117 1 1 . 1
A= 31 1 1 1t 117 1 1 11 B = =311 1 17 1 - 1
=31 1 11 1 117 111 111 1 117 1
-3 1 1 1 1 1 1 1 1711 N
111 1 1 1 1 1171 1 11 1 1 &t 17
111111 111 i----l.’fj
T T
A - 17 a’ B 17 b,
a A b B
Apply first (157) and (158)
xTA'x +2a"x — n(n - 1) yTB'y +2b7y — n(n — 1)
-b’b =90 —~aTa =0
b'b = 80 ala =80
xT A% + 2a7x = 352 yI'B'y + b7y = 352
Now write:
32*4(81+"'+83)+116 b=4(el+eg}“4(83+94)+1]5
AI=1]5115+161 BI=115115+161

Substitute and tidy up (noting that x71,4 = 1% = (21 + -+ + 21), com-
pleting the square, and using the facts e;*-rx = z; and xTx = 16) to get

97+ 8{wy + -+ + z5) = (xT 13 + 1)2

= (y15 + 1)2

97 + 8(~y1 — y2 + s —wﬂ

We need to find candidate x’s and y’s which satisfy these equations. I will
just do the calculation for the y’s.

Each y; may take the value 1 or —1. So we have the following table of
possibilities:

T Yot ys Ty [ 9T+ 8(-y1 — yo + 3 + pa)

—4 65
-2 81 = 92
0 97
2 113

4 129
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Since in this case 81 is the only square, we only need to look for the y;’s
corresponding to —y; —y2 + y3 +ys = —2.

Since g1 and yo naturally group together, and y3 and y4 naturally group
together, there are essentially only two possibilities, where we follow the
convention that where we have an arbitrary choice we place 1’s to the left
and —’s to the right:

Y1 U2
T 1
1

Y3 Y4
1 =

|

We require that
(y" 116+ 1)> =97 + 8(—y1 — yo + y3 + y4)
=81
so that
yilig+1=49
which implies that

r_ {-10
y 116_‘{ 8

so that we now have possible y7 vectors:

i1 -
1T —

We then go back and do the same thing for the x’s. So then we can make a
list of all possible pairings of x-vectors and y-vectors that satisfy

det(A' — xx7) = (det R')? = det(B' — yy?).

Y1 yzl’ys Ya W5 ¥e Y7 o ¥s Yo Yo Y11 Wiz Yiz Y4 Wiz Wie

1 -
1 1 1 1 1 - - -
1 - I 1 1 - -
1 1 1 1

11 1
1 1 1
1 1 1 1 1 -

bt
= ]
=

Using each of these pairs in turn we can begin our tree search.

12.5. Comments

In subsequent steps there are also the linear constraints (155). The program
in its current incarnation first finds solutions for the quadratic equations
{157) and (158), and then checks themn against the linear equations. The
method of ‘solving’ the quadratics is simply to enumerate possibilities and
exclude those which don’t work.

Alternatively (after the first row and column are built), we could try solving
the linear equations first and checking against the quadratic.
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At the moment we don’t really know which order is better per se., since we
don’t know how sharply our various constraints prune the possibilities back.
We also don’t know how much overlap there is between exclusions due to
the various constraints. It is not clear how we could do this theoretically at
this point. For this reason it is our intention to rewrite the code in C and
run some diagnostics, to see where it spends most of its time.

One reason why it might be very much more sensible to solve for linear
constraints first, and then just check against the quadratic 2, is that more is
known about solving linear systems of Diophantine equations than is known
about solving quadratic Diophantine equations in many variables.

Much work has been done in recent years on solving linear systerns of Dio-
phantine equations (subject to inequalities). References are [A]l, [AC],
citeGLS and [Sc]. We hope to utilize these techniques in a new version
of our algorithm.

We comment that [CKM] use the quadratic technique outlined above to
prove that certain matrices do not decompose, but that they say very little
about how they do produce a decomposition when one exists.

Furthermore, we note that in order to create an efficient decornposition
algorithm, we need to solve our old familiar problem of ordering /equivalence,
in the context of R-matrices, so that when we're decomposing we don’t
produce swathes of duplicates of the one R-matrix. Whilst it is easy to define
a total ordering, any such we can think of is very difficult to Implement. By
contrast a partial ordering is harder to define sensibly, and is less efficient in
the sense that it allows duplication, but may be much easier to implement
efficiently. Once again, we have a trade-off. Our current program does
implement a partial ordering based on the lexicographical ordering to cut
some duplication, but there is much room for improvement. Our hope is to
greatly improve this, perhaps by incorporating some of the ideas of Brendan
McKay, [M, M1, M2, BKMS].

20Of course it would be nice to have some sleek technique for soiving (where ‘solving’
means coming up with a prescription to list all solutions) both directly. My expectation
is that that would be very difficult, and maybe not faster than just checking.



CHAPTER 13

Concluding Remarks

13.1. Conclusion

There is much work to be done on the Hadamard maximal determinant prob-
lem, and related problems. The four general bounds found by Hadamard,
Barba, Wojtas and Ehlich [H, Ba, Wo, E1, E2, EZ] provide a frame-
work from within to consider the state of knowledge. The infinite families
provided by researchers such as Sylvester, Paley and Brouwer [S, Pa, B
demonstrate that at least in these cases there is a structure to be uncov-
ered. We want to know, are these known families slender threads of order
that run through a terrain of constrained randomness, or is there a general
predictable pattern to be revealed?

With respect to the Hadamard Conjecture (by Paley [Pa]) that there exists
a Hadamard matrix of order n for all n divisible by four, it is very striking
that the number of inequivalent Hadamard matrices appears to increase very
rapidly [S12] with n, and yet so far no one has been able to prove that we
can always find even ore Hadamard matrix.

I note that all proofs of maximal determinants that I am aware of are con-
structive, in the sense that they involve providing a recipe for exhibiting a
maximal matrix. There are no proofs of the form, ‘There exists a ...". Is this
a necessary outcome of the nature of the problem?

The very bad exponential growth of the problem presents difficulties in
getting data experimentally, and the mod four dependence of the results
compounds this issue by separasing results in comparable cases by a large
computational leap. Also, the higher the order the more widely spaced the
known values become,

The Hadamard maximal determinant problem belongs to the class of prob-
lems which are easy to state and hard(?) to solve. The vast majority of the
known results have been based on either intricate {as in the Brouwer con-
struction) or else computationally arduous (as in the Grammian method}
uses of elementary techniques primarily of abstract and linear algebra. And
there’s no evidence that the fruits of these techniques have been exhausted.
I'am sure that more particular values of g(n) can be found and proven with
existing techniques. It is also quite likely that further constructions for spe-
cial families of solutions may be found with some ingenuity. What is not

121
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clear o me is what a general solution of the problem would or could look
like.

Following is a list of ideas for further research, most of them aimed at
generating more data.

13.2. Ideas for further research

i. Rewrite the ‘Grammian Method’ programs in a compiled language
such as ‘C’, reordering the application of the constraints in such a way
as to prune the search tree more severely. Within the Decomposition
program, utilize the ideas of researchers such as Karen Aardal et al.
[A], into efficient solving of linear systems of Diophantine equations.
With respect to the equivalence issues that arise in both the Decompeo-
sition and the M-matrix program, consider implementing the ideas of
Brendan McKay [M]. Also consider combining the two programs into
one for further gains in efficiency. Another possibility would be to take

; advantage of parallelizing the algorithms, so that they might be run
on several machines at once, thus making better use of computer re-
i sources. My expectation is that these methods should be able to prove

the maximal value for n = 15, verify the results for n = 17 and 21,
the published results for which in [MK] and [CKM] we found to be
incomplete, find the maximal value for n = 19, confirm or disconfirm
our guessed value for n = 29, and possibly make even further inroads
into unknown territory.

ii. Investigate by means of random /semi-random computer searches, the
entire spectrum of determinants available to an n X n matrix with
+1 entries. Investigate both with respect to which numbers are al-
lowed, and how frequently they occur. The former investigation may
be more computationally accessible, since its memory requirements,
though still substantial, are likely to be less than the latter. With
respect to the latter, graph the determinants against their frequency,
and see whether the histograms thus produced can be well approxi-
mated by curves predicted by random matrix theory. If so, try to see
whether the deviation from the curve can be predicted by any num-
ber theoretic properties of the values of n for which the histogram is
noticeably above or below the predicted curve. Might the Hadamard
hound, n*/?, have particularly nice divisibility properties, for instance,
which ensure that it occurs even when determinants close to it do not?
Alternatively, if random matrix theory does not predict the shape of
our histograms, try to explain why not, and possibly use curve-fitting
techniques to try to find out what the dominating distribution is.

iii. Further investigate the spectrum of available determinants, possibly in
the context of binary matrices of order m by regarding the determi-
nant as a kind of generalized (in the sense that negatives are allowed)



iv.

Vi.

vil,

Vil
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integer partition with at most m parts, derived from the cofactor ex-
pansion. The allowable entries in the partition come from allowable
determinants of binary matrices of lower orders. Such an approach
was used by Craigen in [Cr] to show that certain determinantal values
close to the maximal value were not obtainable in a binary matrix of
order 7. Also, read up on the early work of Sylvester [S], who seems
to have also used integer partitions. Further in this regard, calculate
minors of known maximal matrices to at least four orders down from
the matrix size, to check whether any recurrences with modulo four
dependency may be observed.

Consider arbitrary square {0, 1} matrices as incidence matrices of a
directed graph? Does a high determinant correspond to any impor-
tant property of graphs, and can graph theory tell us anything about
graphs/matrices with high determinant?

Consider a hill-climbing or random search for large determinants that
works by, instead of modifying entries in some =1 matrix, starting
with a known orthogonal or close to orthogonal matrix with low de-
terminant and arbitrary entries (for instance a multiple of the identity
matrix of some given size) and then giving it random rotational kicks
about the axes, and after each kick approximating each real entry with
the closest of —1,0 or 1 simply by taking the sign of that entry. Also
calculate what rotations, broken up into rotations about the axes in
some order, are required to produce known maximal matrices from
some natural starting point, and see if any pattern can be observed.

Look up the proof of Theorem 4.9, which states that under certain
conditions the matrix nf -+ J, where [ is the n x n identity matrix
and J is the n x n matrix of all 1’s, decomposes in the form AAT
for A a matrix with rational entries. See whether we can modify it
for matrices of the form (n — 1)I + J, especially when n = 1 modulo
4, and whether the method of proof could give any insight if further
restrictions were placed on the rational entries of A, for instance that
they must be between —1 and 1 in magnitnde.

Consider ‘M-matrices’ of the form AX AT and AT X A, for some fixed
X in the middle. This was suggested to my collaborator Will by Dr
Brendan McKay. It corresponds to maximizing the volume of a paral-
lelepiped in B™ under a different (inner product) norm to the standard
Euclidean one.

Investigate what happens when you apply the Brouwer construction
starting with a matrix which is not quite Hadamard. See if a small
change in the input produces a small or a large change in the useful-
ness of the output. This might be of use in the n = 1 (mod 4) cases
for which »n is not a sum of two consecutive squares. Also, try to un-
derstand more deeply the motivation for the use of finite fields in the
original Brouwer construction, and whether the algorithm might be
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modified to deal with cases in which n is the sum of two squares, but
such that the smaller one does not arise from taking a power of an odd

prime.
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APPENDIX A

Properties of Matrices & Determinants

1.1. Properties of the Determinant Function

Here is a selection of properties of the determinant function. Particularly
useful in many of our calculations is the Rank-One Update theorem, which
means that given the determinant of some arbitrary n x n matrix A, we can
calculate the determinant of A + B, where B is some other n x n matrix of
rank equal to one. Most of this material comes from [Mey].

DEFINITION 18. Let A = (a;;) be an arbitrary n X n matrix. Then the
determinant of A is defined to be

n

det A = Z e{o) H Gig(i)s
TES, i=1

where 5, is the set of all permutation of n elements.

LemMa Al. (From [Mey, p 494] or [Mel.) The determinant of a square
matriz is the product of it’s eigenvalues; i.e. for A = (a;;) an n X n matriz
with eigenvalues A, .., Ay,

T n

Z az; = Z Aj
i=1 =1

Proor: Let det{A — AI) = 0 be the characteristic equation of A, with roots
(eigenvalues) A1, .., A,. The result is obtained easily enough by comparing
the results of two different ways of calculating the coefficients of A%~ 1:

Consider A — Al. Calculating the determinant using the definition involves
taking products of n elements in such a way that you never take more than
one element from any given row or column.

To get A"! you need to take n — 1 entries on the diagonal, but then having
taken n — 1 of them you have to take the n'® one as well since that’s the
only valid possibility left to make up the product.

Hence we're looking for the coefficient of A™~! in

('5"11 — A}(GQQ - )\)(ann - }\),
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which is

(161) iaﬁ.
i=1

Alternatively we know that
det(A — AI) = (A — A)( A = A)o.(An — A,

so that the coefficient of A?~1 is

(162) i A
i=1

Equating (161) and (162) gives the result. U

LEMMA A.2. (From [Mey, p 494]) The trace of a square matriz is the sum
of it’s eigenvalues.

THEOREM A.3. [Rank-One Update Theorem] (From Mey, p 475].) If A is
an 1 X n non-singular matriz, and ¢ and d are n X 1 column vectors, then

det(A + cd?) = (det A)(1 +d" A7 e).
THEOREM A.4. [Block Determinant Theorem](From Mey, p 473).) If A

and D are square matrices, then

det (g g) =det{A) det(D - CA'B) when A exists,

— det(D) det(4 — BD™'C) when D1 exists,.
1.2. Properties of Matrices

The following is a collection of mostly well-known definitions and facts about
matrices. Many are sourced from ‘Eric Weisstein’s World of Mathemadlics
[We].

DEFINITION 19. An n % n matrix H with £1 entries, such that

(163) HH" =nI,

is called a Hadamard matrix.

Note that this definition implies that the rows of H are orthogonal. We could
as easily have used the columns, since (163) implies that %H T - H 1 so0
that

(164) HTH =nl,.

DEFINITION 20. (From [We].) A matrix, M, with complex entries is called
Hermitian provided that

(165) M= M,

where M1 is the complex conjugate transpose of M.
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LEMMA A.5. (From [We].) An integer or real matriz is Hermitian if and
only if it is symmetric.

DEFINITION 21. (From [We].) An n x n Hermitian matrix, M, is called
positive definite provided that

xTMx >0
forallx # 0 in R".

LEMMA A.6. (From {We].)

e Positive definiteness of a matriz M is equivalent to the requirement
that oll the eigenvalues of M are positive.

o Positive definiteness of a matriz M is equivalent to the requirement that
the determinants associated with all upper-left submalrices are positive.

o The determinant of a positive definite matriz is positive, bui the con-
verse does not necessarily hold.

We define our own terminology for the following matrix operation.

DEFINITION 22. A SymSwap is the operation of simultaneously permuting
a pair of rows and the corresponding pair of columns in some square matrix.
ie. Under SymSwap;;,

api ... 213 @15 .o 813
Git eer Qif e @i ... Ein Qg1 e By Qi e Qjn
-
Qi1 vee Byi s Ajs - &jn 871 v Q4§ -- Bif - Qin

Qpi oo Gnj Gnj -~ @ni



APPENDIX B

The Fischer-Lieb and other Inequalities

All theorems in this section were sourced from [Me].
THEOREM B.1. [Hadamard] If A is Hermitian positive semi-definite, then
(166) det A S a11422...0nn

PROOF: Suppose a;; = 0 for some 5. Then since all the principal minors
of a positive semi-definite matrix are themselves positive semi-definite (and
remembering that a Hermitian matrix is symmetric), we have for any j

Qi Q4

2
= Qi — Q04 = —at > 0
i Qjj R A Y

implies a;; = 0 for all j. Hence we have a whole row of zeros, and det 4 = 0.
So the inequality {166) is trivial.

So assume a;; > 0 for all 4. Define a new matrix ¢ = (¢55), where

aij
Cig = .
For x any vector, define a new vector y by
Yi = T/ 4.

Let the eigenvalues of C be Ay, Ag, ey Ay

Since 350, A = Y1 o = S8 Tae=e = 30, 1 = n, where T have used
Lemma A.1, we have that

13 Y
(167) (g;'\i) =1
We calculate that from A positive semi-definite we have, for all x,
0 < xTAx = yiCy

which implies C is also positive semi-definite. Hence A; 2 0 for all 2, so that

1 n n
1
(168) 0<detC =[x < (E > lei) —1
=

i=1
where the last inequality is obtained by using the fact that the geometric
mean is less than or equal to the arithmetic mean of a set of non-negative
real numbers, and the last equality follows from (167).
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Now since (' is obtained from A by multiplying each row i by m\/ia—j and each
column j by multiplying each column j by ﬁ,
det A

(169) det (' = ———r
(111822...0nn

Substituting (169) into {168) gives the desired inequality. U

We state Holder’s Inequality without proof:

THEOREM B.2 (Holder’s Inequality). If &, 8,...,v are real positive numbers
such that o+ B+ ... +v = 1, and (a;), (b;), ..., (Ij) are sets of n complex
numbers each, then

T Tt ﬁ n A
za%ﬁ 2l< [ Shat) [Sw) - (S
q=1 =1 gm=1
Taking @ = f=...= A= 1 and
a1 = I, b]_W{DQ, vy £1$$n>
a2 = Y1, 52:?}21 ey l2=y7h
Holder’s Inequality gives
COROLLARY B.J3.
7 s i1 1 T
(170) [ +y+.0m 2 H o+ 11vf +
i=1 i=1 j=1

for z;, y;,... real and positive.

THEOREM B.4. Let A and B be n x n Hermitian positive semi-definite ma-
trices. Then

(det(A + B))* > (det A)7 + (det B)*

PROOF: Assume without loss of generality that 4+ B is a diagonal matrix.
(Otherwise just diagonalize it, which leaves the determinant unchanged.)
Then

y
:ll»-

i
(det(A + B))n = H (as + by)

v
maé

1

al + H by Holder’s Inequality, Corollary B.3
1= i=1
(det A) + (det B) by Theorem B.1
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THEOREM B.5 (Fischer-Lieb). Let A be an n x n Hermitian positive semi-
definite matriz in the partitioned Jorm
_(Pln—kn-k Qn-kk)
atn) = (TGN (k. k)

Then

(171) det A < det Pdet S

Proor: Let D be the diagonal matrix with diy=. =dpppt =-1and
dnmk+1,nmk+l = .. =dpp = 1. Define B = DAD. Then

(4 )
is also Hermitian positive semi-definite with the same eigenvalues as A (and
hence the same determinant). We have

2(det P det S)w =(2" det P det §)3
=(det 2P det 25) %
=(det(A + B))»
>(det A)% + (det B)* by Theorem B.4
=2(det 4)%

and (171) follows. O



APPENDIX C

Designs

The purpose of these appendices on Designs and Geometry is twofold.
Firstly it is to provide a familiority with much of the language in terms
of which the problem of finding mazimal malrices is often described in the
literature. For instance the Brouwer’s paper [B], which is the topic of Chap-
ter 6, was written in terms of finding designs with given specifications, not
in terms of mazimizing o determinant. The second purpose is lo provide a
gateway to similar problems fo the one I have been tackling. One hopes that
by comparison new perspectives and approaches can be found which may be
of benefit in either or both directions.

For some people the principal focus of the maximal determinant problem
is not to find the number which is the maximal determinant of a {0,1}
or a {#£1} matrix of a given size — the important thing is to find the
corresponding matriz.

Amongst these are experimental scientists, for such matrices have applica-
tion in experimental design. For this reason matrices A € A, or B, are
often called designs. The useful matrix M = AA” (which I have termed the
Grammian, G(A)) is called the information matrix.

In the various applications there are several measures of optimality of the
design, including maximizing the determinant. A design with maximal de-
terminant is called D — opiimal.

In some sitnations the matrices used are not square. In this case for D-
optimal designs the design A is chosen such that the information matrix
AAT has maximal determinant. To distinguish between cases in which A is
or is not square, the situation in which it is square is called saturated.

One of the simplest interpretations of designs are as weighing designs. 1
provide a brief motivation for these; more details can be found in [MS].
Another type of design, also used experimentally but with an additional
interpretation in terms of finite geometries, is the block design. Block designs
constitute an example of a general combinatorial design, which latter is
defined by Wallis in [Wa] to be ‘a way of selecting subsets from a finite set
in such a way that some specified conditions are satisfied. ..[the conditions]
tend to involve incidence: set membership, set intersection, and so on.’
More information on block designs and many other kinds of design can be
found in [Wa].
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APPENDIX D

Weighing Designs

Suppose we want to weigh some very light objects, so light that the error we
make in each measurement is comparable to the weight of the objects. One
way to get around this problem is to weigh various combinations of objects
at once, and then calculate the weights of the individual objects.

Comnsider the following order seven binary matrix, which comes from taking
the eight by eight Hadamard matrix of the Sylvester construction, removing
the first row and column and exchanging 1's for —1's and 0%s for 1’s, as in
Chapter 3.

1010101
01 10011
1100110
0001111
101101090
0111100
1101001

It can be regarded as a recipe for weighing seven objects of unknown weights
a.b,c, .., g, as in the scheme:

a + ¢ + e + g = 1st weighing
b+ ¢ + f 4+ g = 2nd weighing

a + b + e + f = 3rd weighing
d + e + f + g = 4th weighing.

a + ¢ + d + f = 5th weighing
b+ ¢ + d + e = 6th weighing

a + b + d + ¢ = Tth weighing

Then since the matrix of coefficients (the design) has non-zero determinant,
we can solve for a,b,..,g. In this case if the original variance from weighing
R ) . . 2
the objects separately was o2, then the new, reduced variance is %‘% MS,

p 53

In general if there are n objects to be weighed in n weighings and a Hadamard

matrix of order n + 1 exists, then using this method reduces the variance
from o? to (ﬁiﬂ";)oz, IMS, p 53], which in some sense is best possible using

n—+

one weighing parn.
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If our scale has two weighing pans (so that we can form differences as well
as sums), then we can do even better.

For instance the order four Hadamard matrix which comes from the Sylvester
construction can be used directly to produce the weighing scheme

a + b + ¢ + d = 1st weighing
@ — b 4+ ¢ — d = 2nd weighing
a + b — ¢ — d = 3rd weighing’
a — b — ¢ + d = 4th weighing

for four objects of unknown weight a, b, ¢ and d.

In this case the variance is reduced from o? to ~‘f1—2, [(MS, p 53].

These techniques are of particular use to chemists weighing very light ele-
ments, but can also be used in a plethora of other measurement problems,

including those of carefully measuring lengths, voltages, resistances, concen-
trations of chemicals and frequency spectra.

This description has been taken almost entirely from [MS, p 52-53].



APPENDIX E

Block Designs

5.1, Motivation and Definitions

The theory of block designs was developed (largely by R.A. Fisher and F.
Yates in the early 1930’s) to deal with experimental situations in which there
are many variables interacting in unpredictable ways, and when there are
insufficient resources to take measurements over every possible combination
of inputs, so that it is desirable to select some combination of inputs to
measure, in such a way that there is no a priori bias in the design towards a
particular outcome. The theory was developed in the context of agricultural
experiments, and the terminology reflects the origins of the work. The
material in this section is taken from [Wa] and [Ch]. I originally also used
the reference [Ca], which is a web reference which has unfortunately been
taken down.

A BALANCED INCOMPLETE BLock DESIGN (BIBD) consists of

e A set X consisting of v varieties, where v > 2,
o A set Y consisting of b subsets of X, called blocks,

subject to the rules:

i. there are k varieties in each block, v > k >
ii. there are r blocks containing any given variety, r > {;
iii. there are X blocks containing any given pair of varieties, A > 0.

It may be denoted a (v, b,r, k, A) design.

A BIBD may be pictured, as in Fig 1 as b blocks of land, over each of which
the conditions are fairly even, in which are planted v varieties of grain.

“Balanced” refers to the constancy of & and A. It’s consequence is that
the probability of any two varieties being compared (i.e. being in the same
block) is the same for all pairs. “Incomplete” refers to the fact that not all
varieties appear in all blocks.

The parameters of a BIBD turn out not to be independent:
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Ya

FIGURE 1. A (7,7,3,3,1)-design with blocks y1,... ,y7 and
varieties xy,... ,T7.

THEOREM E.1. Given a (v,b,r, k, A)-design,
bk =ur
r{k—1) =Alv —1).

PrROOF: We count the set of pairs (z,y), where z is a variety and y is a block
containing z in two different ways. There are v possible values for z, and
since r each appears in r blocks, ur counts the number of these pairs. On
the other hand, there are b blocks and each contains & varieties, so bk also
counts the number of these pairs. Hence we have shown the first equation.

For the second equation, fix a particular variety, say p, and count the number
of pairs of varieties (p,y), where p and y appear in some block together and
if the pair occurs more than once it is multiply counted. There are v — 1
possible choices for each y and each pair will occur in A blocks together, so
there are A{v — 1) such pairs. On the other hand, p appears in r blocks and
can be paired with & — 1 other elements in such a block, so r(k — 1} also
counts such pairs. So we have shown the second equation. [l

The convention is to take the three independent variables of a BIBD to be
v,k and A

DEFINITION 23. An SBIBD, or symmetric balanced incomplete block design,
is a BIBD such that b = v (and hence k = r).

SBIBD’s are also called square or projective BIBD’s. The term “symmetric”
may be misteading in the matrix context, since the matrix interpretation of
BIBD’s comes from taking their incidence matrices, and the incidence matrix
of an SBIBD will not in general be symmetric.

SBIBD’s are typically denoted (v, k, A)-designs.
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DEFINITION 24. At—{v,b, 7, k, \)—design is a generalization of a (v, b, 7, k, A)-

design in which the rule: “each pair of varieties appear in exactly A blocks”
is replaced by the rule, “each ¢-tuple of varieties appear in exactly A blocks”.

Hence a BIBD may also be denoted a 2 — {v, b, 1, k, A)-design.

5.2, Incidence Matrices of Block Designs

Block designs can be expressed as matrices by taking their incidence ma-
trices. A (v,b,7k,A) design is identified with a v x b incidence matrix,
A = (a4;), of zeros and ones with rows labelled by the varieties and columns
by the blocks.

1, variety x; is incident with block y;,
Qi =
I 0, variety z; is not incident with block y;.

Example: The (7,7,3,3,1)-design above has incidence matrix:

Wi Y2 Y3 W4 Ys We U7

T 1 0 0 0 1 0 1
i) 11 0 0 6 1 0
(172) &3 g 1 1 0 0 0 1
T4 1 0 1 1 ¢ 0 0
Ty 0o 1 0 1 1 0 0
g o 0 1T 0 1 1 0
7 O 0 0 1 0 1 1

The incidence matrix of a (v,b, 7k, A)-design has the property that the
number of “1’s” per row is . The number of “1’s” per column is £. For any
pair of rows, the number of “1’s” in the same column is A.

We can express this in matrix notation:

THEOREM E.2. If A is the incidence matriz of a (v, b, 7, k, X)-design, then

(173) AJ =rJ,
(174) JA =kJ,
(175) AAT =(r — NI + AJ;

where I is the v x v identity matriz and J s the v x v matriz of all I's.

This form {175) is reminiscent of FY, in the chapter on the M-Method.
However in that case we were dealing with {1} matrices and here we have
{0, 1} matrices. It would be interesting to see if there is a connection though.
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5.3. A Connection with Hadamard Matrices

The existence of an SBIBD with certain parameters implies the existence of
a Hadamard matrix, and vice versa.

THECREM E.3. (From [Ch].) The exzistence of o (v, k, A)-design with pa-
rameters
(4m - 1,2m — 1,m — 1) or (4m — 1,2m, m)

is equivalent to the existence of a Hadamard matriz of order 4m.

We have two (reversible) constructions, taken from [Ch}, which take Hadamard
matrices of order 4m, and yield SBIBD’s of the parameters of Theorem E.3.

Let H be a Hadamard matrix of order 4m. Normalize the first row and
column to be all 1's, then remove them. We are left with an order 4m — 1
matrix, 7', say, such that

TT=JTT = —~Jand TTT =44 - J

e Define

U= %(T—l— 7).

Then UUT = mI + (m — 1)J and U is the incidence matrix of a
{4m —1,2m — 1,m — 1) SBIBD.
e Define

1
Then V is the incidence matrix of a (4m — 1,2m,m) SBIBD.



APPENDIX F

Designs as Geometry

We segue from applications to soil and wind into pure geometry.

In some sense the most elementary geometries are incidence geometries. The
study of such geometries consists of the neglect of properties such as angle,
length and in-between-ness, in favour of the consideration of incidence prop-
erties such as “this point lies on this line”, or, “this line passes through this
point”. To reflect the symmetry here, we will write “this point is incident
with this line”, or, “this line is incident with this point”.

Incidence geometry generalizes not only projective and affine geometry but
also the geometries induced on such spaces when some additional structure
(eg. a quadratic form) is given. They provide an appropriate framework for
studying not only the classical finite geometries but also matroids, coding
theory (in the sense of error-correcting codes rather than cryptography) and
designs.

We note that incidence geometry fits into two algebraic frameworks. Ome
is linear algebra, through the notion of division ring or through the use of
incidence or adjacency matrices; the other is group theory, presenting the
study of geometries as that of their automorphism groups.

I will give the barest definitional framework, from which may hopefully be
gleaned the strong relation with designs.

DEFINITION 25. An incidence structure is a triple (P, £,Z), consisting of a
set P of points (or varieties), a set L of lines (or blocks}, and a relation 7
of incidence between elements of P and elements of L.

DEFINITION 26. A configuration is an incidence structure (P, £,Z) satisfy-
ing the following axioms:

i. Any two distinct points are incident with at most one line.
ii. Any two distinct lines are incident with at most one point.

DEFINITION 27. An affine plane is an incidence structure (P, L,I), such
that P and L are non-empty sets, and satisfying the following axioms:

i. Any two distinct points are incident with a unique line.
ii. Given a point P and a line [ not incident with P, there is a unique line
m incident with P which has no point in common with {.
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iil. There exists a triangle, i.e. there exists three points which are not
incident with the same line.

An affine plane of n? points is said to have order n. It corresponds to a
symmetric {n? n, 1) BIBD.

T'wo lines in an affine plane are said to be parallel if they have no point in
common, i.e. if they do not intersect.

DEFINITION 28. A projective plane is an incidence structure (P,L,Z) such
that P and £ are non-empty sets, and satisfying the following axioms:

1. Any two distinet points are incident with a unique line.
ii. Any two distinct lines are incident with a unique point.
iii. There exists a quadrangle, i.e. there exists four points of which no
three of are incident with the same line.

A projective plane of n? +n+ 1 points is said to have order n. It corresponds
to a symmetric (n® +n 41,0+ 1, 1) BIBD.

Affine and projective planes are closely related to each other in that we
can always build one from the other by either adding (to go from affine to
projective) or deleting, a line. Affine and projective planes of order n always
exist for n = p", p prime. It is conjectured that these are the only possibie
projective planes. See [S12], [L] and [LTS].

To move from the language of designs to that of incidence geometries, call
varieties points and blocks lines. If we try this with the incidence matrix
(172) of the {7,8,1) SBIBD figured in the previous section, and try to draw
what we get, we find we have a picture of the smallest possible projective
plane, the Fano Plane.

T

Ty Ty

Tg

Ts
FIGURE 1. The Fano plane

Another notable equivalence between SBIBD's and projective planes is that
between the SBIBD with parameters (111,11,1) and a Finjte Projective
Plane of Order 10. The non-existence of both was proven by means of an
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exhaustive computer search, the magnitude of which was such to rival the
proof of the four-colour theorem. See [L'I'S] for the original article and [L]
for a general exposition of the problem and the method.

This appendix is a synthesis of material from [Bi], [Pas] and [We].




