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Abstract

The principle theme of this thesis is the enumeration of directed lattice
paths. An ancillary theme is the development of a notion of pavings due to
Viennot. We then utilize pavings in the solution of path problems.

Pavings

We build on Viennot’s conception of ‘pavings’ on a path graph, along with as-
sociated ‘paving polynomials’; and Viennot’s bijection between these pavings
and cycles on the digraphs associated with Ballot and Motzkin paths.

• We show that a very natural generalization extends Viennot’s pavings
and cycle bijection to d-up and Lukasiewicz paths; but not to Jump-
step paths.

• We further generalize the mapping between cycles and pavings to en-
able the calculation of Jump-step paving polynomials.

• We define a new kind of path graph paving called a ‘Laurent paving’,
which has some complexity/combinatorial advances over the original
pavings; and prove the combinatorial relationship between the two.

• We use the combinatorics of pavings and Laurent pavings to find
closed-form expressions for paving polynomials and Laurent paving
polynomials associated with weighted Ballot, Motzkin and other more
general paths.

Paths

• We derive the generating function for n-banded directed ballot paths
in the half plane explicitly for all n, thus showing that it is always
a quadratic function. In the case of bi-banded directed ballot paths
in the half plane, we also find the weight function explicitly, and in

i



ii ABSTRACT

so doing proved a new combinatorial interpretation of the Narayana
numbers.

• We give a new combinatorial derivation of the known single variable
constant coefficient recurrence relations on path weight polynomials.
This defines a new combinatorial derivation of generating functions for
directed paths in a strip in terms of pavings.

• We define a new form of ‘Constant Term’ method applicable to weighted
Ballot-like and Motzkin-like paths with finite numbers of decorations.
We use the method to solve an open enumeration problem from the
1970’s and generalizations thereof.
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Notation

N = the set of natural numbers {1, 2, 3, . . .}

Z = the set of integers {. . .− 2,−1, 0, 1, 2, . . .}

Z≥0 = the set of non-negative integers {0, 1, 2, 3, . . .}

dxe = the least integer which is greater than or equal to x

byc = the greater integer which is less than or equal to y

The binomial coefficient
(
a
b

)
:=

{
a!

(a−b)!b! 0 ≤ b ≤ a and a, b ∈ Z
0 otherwise

xix
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Path definitions

Following are the basic definitions which pertain to paths. These are fairly
standard graph theoretical terminology. At the beginning of Chapter 4 an-
other collation of definitions is given providing the foundational terminology
required for pavings, in the sense required for this thesis. In addition to these
two general collections, individual definitions are provided throughout the
text as needed.

A graph is a pair G = (V,E), where V is a countable set of elements
termed vertices, and E is a set of pairs of vertices, called edges. An edge
{u, v} may be abbreviated either uv or vu. A pair of vertices are termed
adjacent if they are part of the same edge. A graph may be visualized as a
collection of dots representing vertices, and lines connecting the dots, which
represent edges.

A directed graph, or digraph, is a pair G = (V,A) where V is a
countable set of elements termed vertices, and A is a set of ordered pairs
of vertices, called arcs. The arc (u, v) is abbreviated uv. If the arc uv is
present we say that u is adjacent to v. If both arcs uv and vu are present
then we say that u is adjacent with v; [62]. A digraph may be visually
represented in the same way as a graph, but with the addition of arrows on
the lines indicating the direction of the arcs.

A walk on a (di)graph is a sequence of vertices and edges/arcs

w = v0e1v1e2v2...envn, (1)

where we require that the edge/arc ej comprises the vertices vj−1 and vj , in
that order for a digraph. We often abbreviate by listing the edges only as:

w = e1e2...en; (2)

or the vertices only as
w = v0v1v2...vn. (3)

xxi
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The length of a walk is the number of edges traversed, counting multiple
visits multiple times. Thus

l(w) ≡ l(v0e1v1e2v2...envn) ≡ l(e1e2...en) = n. (4)

We visually indicate a walk on a (di)graph by thickening or colouring the
lines representing the edges/arcs included in the walk.

A path is a special case of a walk, where all vertices are distinct. A
path graph is a graph with vertices labeled 0, 1, 2, ..., n and edges of the
form {i, i+ 1} for 0 ≤ i ≤ n− 1.

A cycle is a walk v0v1v2...vn−1vn such that v0 = vn and v0v1v2...vn−1

is a path. The cycle graph, Cn, is a graph with vertices 0, 1, 2, ..., n. It
contains n edges, n− 1 of which are of the form {i, i+ 1} for 0 ≤ i ≤ n− 1,
in addition to the edge {n, 0}.

A lattice is a regular array of points contained in Zn, for some n. Our
use of the term ‘lattice’ corresponds to what is also sometimes called a point
lattice in the wider literature. We also use the term ‘lattice’ to refer to a
‘lattice digraph’, to be formally defined below, which is a digraph with a
lattice as its underlying vertex set.

The one-dimensional lattices used most commonly throughout this work
this work are the set Z, which we term the (number) line; the set Z≥0,
which we term the half (number) line and {0, 1, 2, ..., L}, which we term
a (number) line segment. We also use {[0], [1], ..., [L− 1]}, where each [i]
is the equivalence class of i modulo L. We call this set a (number) circle
of circumference c.

The two dimensional lattices used most commonly throughout this work
are Z2, which we term the plane; Z×Z≥0, which we term the half plane and
Z×{0, 1, 2, ..., L}, which we term a strip in the half plane. We also use Z×
{[0], [1], ..., [L−1]}, which we term a (number) cylinder of circumference
L.

A lattice may be considered a special case of a digraph by regarding the
points as vertices and defining an appropriate set of arcs. The arcs we shall
define may each be visualized as straight line segments connecting pairs of
vertices, with an arrow to indicate the direction. Each arc e = uv is a vector
anchored at the point u.

We define an arc e = uv to be of the form w provided

v − u = w. (5)

An allowed step set of a lattice L ⊆ Zn is a set, S, of vectors

S = {w1, w2, · · · } ⊆ {v − u|u, v ∈ L}. (6)
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We define a lattice digraph LS to be a digraph with vertex set L
and arc set A, where A is the set of all possible arcs uv of the form w for
w ∈ S, with the vertices u, v in L and S being some allowed step set on
L. The object we are terming a ‘lattice digraph’ is commonly known as
simply a ‘lattice’, and we also use this short terminology when the step set
is understood from the context.

Examples of lattice digraphs are the ‘square lattice’ and ‘rotated square
lattice’.

The square lattice is the lattice Z2 with allowed step set

{N,E} (7)

where

N = (1, 0) ... a North Step (8)
E = (0, 1) ... an East Step (9)

The (45 degrees) rotated square lattice is the lattice Z2 with allowed
step set

{U,D} (10)

where

U = (1, 1) ... an Up Step (11)
D = (1,−1) ... a Down Step (12)

A binomial box is a rectangular portion of either the square lattice or
the rotated square lattice, which inherits the relevant step set. The size of
the box is determined by the number of steps from boundary to boundary.
In the square lattice, an m × n binomial box requires m steps of type E
to pass from the leftmost to rightmost boundary, and n steps of type N to
pass from the lower to the upper boundary. In the rotated square lattice,
an m × n binomial box requires m steps of type D to pass from the upper
left to lower right boundary, and n steps of type U to pass from the lower
left to upper right boundary.

A lattice digraph is Ballot-like if it has allowed step set {U,D} with U
and D defined as in Equations (11) and (12). A path is Ballot-like if it is
defined on a Ballot-like lattice. A lattice digraph is Motzkin-like if it has
allowed step set

{U,A,D} (13)
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where U and D are defined as in Equations (11) and (12) and

A = (1, 0) ... an Across Step. (14)

A path is Motzkin-like if it is defined on a Motzkin-like digraph.
A vertex v = (t, y) has height y. In a walk w = v0e1v1e2...envn, the

height of vertex v0 is termed the initial height of the walk; and the height
of vertex vn is termed the final height of the walk.

A binomial path is a path in the square lattice. A binomial path of
length t always falls within a binomial box of size m × (t − m), for some
m ≥ 0. A Ballot path is a Ballot-like path in the half plane with initial
height 0. A rigged Ballot path is a Ballot-like path in the half plane with
initial height ≥ 0. A Dyck path is a Ballot-like path in the half plane with
initial and final heights both 0. A Motzkin path is a Motzkin-like path in
the half plane with initial and final heights both 0.

Ballot paths get their name from the Ballot problem, which asks for
the number of ways in which votes may be cast in an election between two
candidates A and B such that candidate A is always tied with or ahead of
candidate B in a cumulative count of the votes. Solving the Ballot problem
is equivalent to counting Ballot paths, since a vote for A may be equated
with an Up Step, and a vote for B with a Down Step. Then the requirement
that A is always ahead of or tied with B is equivalent to the restriction
that the path is confined to the upper half plane. The origin of the name
‘rigged Ballot path’ also follows from this interpretation, since paths start-
ing at some positive height correspond to an election in which candidate
A has already been accorded some positive number of votes prior to the
commencement of voting.

We also need the concept of a weighting. A weight function is a
function which maps a set of combinatorial objects into a field. The field is
usually C or R; or an extension of C or R. Examples of combinatorial objects
to which we assign weights are: vertices, edges, arcs, walks and paths. We
denote a weight function with the letter w so that, for example, w(v), w(e),
w(a), w(w) and w(p) are the weights of a vertex v, edge e, arc a, walk w
and path p respectively.

A weighted (di)graph is a (di)graph with weights assigned to its ver-
tices and edges/arcs. An unweighted (di)graph is a (di)graph without
weights assigned to its vertices or edges/arcs. Our convention with regard to
both weighted and unweighted digraphs is that any vertex or edge without a
weight explicitly assigned to it may for convenience be regarded as weighted,
with weight ‘1’. Thus we may refer to all the arcs of an unweighted digraph
as having the ‘same weight’, that weight being 1.
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A uniformly weighted digraph or background weighted digraph
is a digraph for which both of the following conditions hold:
(i) All vertices of the digraph carry the same weight, and
(ii) All arcs of the same form in the digraph carry the same weight.
Note 1: Recall from the definition above that arcs of the same form are
translates of each other. Thus, for example, in the rotated square lattice
defined above, all Up Steps are of the same form and would thus carry the
same weight in a uniformly weighted digraph.
Note 2: The class of uniformly weighted digraphs includes the class of un-
weighted digraphs.

A decorated digraph is a digraph with weighted arcs and unweighted
vertices, for which arc weights vary across arcs of the same form. A deco-
ration is a weight assigned to an arc which differs from the weights assigned
to other arcs of the same form. An undecorated digraph is a uniformly
weighted digraph.

Weight functions of composite objects are defined in terms of the weights
of the component parts.

In particular, let G be a weighted graph or digraph. Then the weight
of a path on G is defined as the product of the weights of the vertices and
the weights of the edges/arcs in the path, i.e.

w(p) =
∏
v,e∈p

w(v)w(e). (15)

for p the path on G, each v a vertex and each e an edge (or an arc if G
is a digraph). When vertices are unweighted, i.e. implicitly taken to have
weight 1, Equation 15 simplifies to

w(p) =
∏
e∈p

w(e). (16)

A (path) weight polynomial is a polynomial in the weight variables
which is the sum of the weights of all paths on a lattice, L, of length n, and
subject to some specifications such as initial and final height.

Pn(weight variables) =
∑

{p|p∈Pn}

w(p), (17)

where Pn is the specified set of paths of length n on the lattice L. In the
case of unweighted paths we may still use the term ‘polynomial’ although
the polynomials are reduced to integer constants in this situation.
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A counting sequence of (path) weight polynomials is a sequence
{Pn}n∈N≥0

of (path) weight polynomials indexed by the lengths of the paths.
For unweighted paths, where {Pn}n∈N≥0

is a sequence of integers, we may
still use the term ‘counting sequence of (path) weight polynomials’ but more
often simply refer to the (path) counting sequence.

The enumeration problem, for a given class of paths, is to find an ex-
pression for the nth weight polynomial. The coefficients of this multivariate
polynomial count the number of paths carrying each possible combination
of weights. For unweighted paths in a given class, the weight polynomial
reduces to a pure number which enumerates paths in the class.
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“Begin at the beginning,” the King said gravely, “and go on till
you come to the end: then stop.”

Lewis Carroll, ‘Alice’s Adventures in Wonderland’
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Part I

Paths

3





Chapter 1

Introduction

This thesis has as its main focus the enumeration of directed lattice paths,
with the development of a theory of pavings as a supporting auxilliary theme.

1.1 Why count lattice paths?

Lattice path enumeration problems are mathematically interesting because

• We can draw pictures; and apply geometric intuition – for a pair of
paradigmatic historical examples see the discussion of the Reflection
Principle and Many-weighted Paths, beginning on pages 12 and 28
respectively; for a recent example, the power of paving representations
of recurrences throughout the whole of Part II relies upon being able
to see the whole recurrence as a picture, then break and recombine it
at an arbitrary point.

• Their solution often involves bringing together techniques from distinct
areas of mathematics: combinatorics, algebra, analysis, computation.
For example the ‘Constant Term’ method we develop in Chapter 10
closely entwines analysis and combinatorics in its derivation.

• The problems are easy to state, and some very simple to solve, yet
seemingly slight variations can turn easy problems into much harder
problems. For instance the DiMarzio-Rubin problem [37] which has
been open since 1971 and which we solve in Chapter 10 is just a per-
turbation by addition of two decorations to the classic and much easier
Ballot Path in a Strip problem which is discussed in Chapter 2.

These problems are physically interesting because

5
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• In Chemistry, lattice paths model long-chain polymers in solution,
[100]. For example, in investigation of steric stablization and sensitized
flocculation paths are used represent polymers respectively holding
apart and drawing together larger colloidal particles, [27]. Collapse
transitions for polymers in dilute solutions are modeled, for example
in [22], [23], [59], [83], [79], [97], [6]. Two-coloured lattice paths are
used to model copolymers, for instance in [67], [68], [82], [60], [111],
[110]. Adsorption of polymers on surfaces [38], [39] as well as pulling
polymers off surfaces is studied, for example in [75], [74], [84], [80].

• In Medicine, lattice paths model the behaviour of proteins [32], [64],
[114], [95], [86], [42], [94], [92], [28], [81], [111].

• In Statistical Mechanics, lattice paths arise in a plethora of models
[100], [5], [108], [93]. Lattice paths relate to alternating sign matrices
which are also of importance in Statistical Mechanics [13], [26].

• Path enumerations also unexpectedly solve the stationary state of a
stochastic traffic model [41], [19], [9], [8], [36], [35], [18].

Because lattice path enumeration draws upon such a broad range of ar-
eas and techniques, solutions to the problems can have additional benefits.
These include

• Advances in other aspects of Combinatorics, via

– bijections to other combinatorial objects [99], [105], [29], [72],
[73], [51], [48], [13], [31], [30], [46]

– the development of new combinatorial objects as auxiliary tools
[103], [24]

• Advances in computational algorithms to deal with exponential growth
problems [76], [34], [61], [85], [78], [115], [21]

• Advances in techniques to manipulate

– matrices, especially for finding high powers thereof, [98] (See
Chapter 4 Section 4.7.), [46], [25], [45]

– partial difference equations with boundary conditions; [77], [17]

since both are used extensively in lattice path enumeration.
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• Furthermore, [3] lists examples of applications of lattice paths to:
probability theory, statistics, analysis of algorithms such as ‘merge-
sort’ and ‘shellsort’, formal semantics, automata, continued fractions,
birth-and-death processes as well as queueing theory.

1.2 Which paths?

The most tractable of the lattice path enumeration problems are those of
directed paths [112], [110], which are the focus of this thesis. Directed paths
are those for which most exact enumeration results have been obtained,
and upon which our broadest range of techniques may be brought to bear.
They stand in contrast to SAWs (Self Avoiding Walks), about which exact
results are rare [102], [53], [54], [55] and which are commonly approached
via analysis of series [112], [52], [56], [21], [6] obtained through computer
enumeration. Under certain conditions, directed problems provide insight
into the more difficult SAWs [101], which is an additional motivation to the
study of the former.

Furthermore, [3] lists examples of applications of lattice paths to: proba-
bility theory, statistics, the study of permutations, the study of other lattice
objects such as lattice animals, analysis of algorithms such as ‘mergesort’
and ‘shellsort’, formal semantics, automata, continued fractions, birth-and-
death processes and queueing theory.

In general, lattice paths are characterized by

• The underlying lattice, and dimension thereof

• The allowed step set (which determines amongst other things whether
paths are directed)

• Rules governing the interaction of paths with boundaries, with other
paths (in the case of multiple paths), or with themselves (in the case
of SAWs)

• Weights assigned to paths, either as decorations (which depend on
position of edges and vertices) or as functions of the shape of the path

Given a space of paths defined by the above considerations, we enumerate
them according to

• Length

• Starting position
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• Ending position

The most widely useful and well-studied class of directed lattice paths are
Ballot-like lattice paths (of which Dyck paths are a special case), closely fol-
lowed by Motzkin-like lattice paths. Both are defined on a two-dimensional
lattice. The former, Ballot-like lattice paths, owe their inclusive range of
applicability to their identification with various classes of binary sequences,
via the Ballot-like step set comprising just the two possibilities of U , for
‘Up’, and D, for Down. Hence Ballot-like lattice paths have potential appli-
cation in contexts where there is some sequence of 0/1, Yes/No, True/False,
On/Off, P/qP choices. The Motzkin-like step set adds the natural third
possibility of a neutral step, A, for ‘Across’.

Much of this thesis is devoted to enumerating Ballot-like and Motzkin-
like paths in the plane, half plane and strip, according to various weighting
schemes, with a finite or infinite number of weights. We consider both the
situation of weights determined by position (of edges in the path) and also
by shape (the number of turns made by a path). Interestingly, in Chapter 3,
we find a bijection between two such differently assigned weightings.

At this point one may generalize in any of at least three ways, to

1. Many paths (where one counts configurations of paths), for example
[16], [70], [10], [33] [71], [57], [58], [72], [73].

2. Many dimensions, for example [40], [49], [90].

3. Increased allowed step set, for example [19], [3], [96] – (sequence
numbers A091156, A001003, A011117, AO59231, A010683, A071945,
A071946, A059435, A071943, ... and many others), [11], [4], [65], [66].

We focus on the third possibility, that of increasing the allowed step
set. We also make some exploration of the second, increasing the number
of dimensions, in Chapter 7. We note that this focus on increased step set
does not preclude applicability of the results to Items 1 and 2, as the three
generalizations are linked.

• Many paths ←→ Many dimensions

Figure 1.1 shows a single path in three dimensions bijecting to a pair
of paths in two dimensions. This illustrates the general point that a
single path in n+1 dimensions bijects with n paths in two dimensions,
given appropriate boundary conditions on the single paths. It is worth
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Figure 1.1: A single path in n + 1 dimensions bijects with n paths in two
dimensions.

noting as an aside that Figure 1.1 shows multiple (in this case two)
non-intersecting paths. For these paths which are not allowed to touch
each other, the enumeration problem is satisfactorily solved in terms
of two-dimensional single path results by the famous Gessel-Viennot
determinant formula [50], [48]. The difficult many-path problems are
those where paths are allowed to touch (osculating paths), or share
edges (n-friendly paths). The easy many path enumeration is where
paths can cross arbitrarily, and is given by the product of the single
path results, since in this case paths ‘don’t see each other’, and we
may combine the independent results.

• Many dimensions ←→ Increased step set

The in-principle connection between many dimensional problems and
two dimensional problems with an increased step set relies on the
famous observation that the product of any finite number of countable
sets is countable. In other words, given a 2 or 3 or 4 or n dimensional
lattice, we can find a listing of the vertices of the lattice that lie on a
straight (number) line in bijection with the natural numbers. Hence
allowing steps up or down of varying distance mimics walking in many
dimensions. See Figure 1.2 for a basic example. Figure 1.2 illustrates
both the utility and the drawback of conceiving of paths in many
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bijection

Figure 1.2: A walk on a small piece of cubic lattice corresponds to a walk
in two dimensions with varying sized steps allowed.

dimensions as paths in two dimensions with many allowable steps.
The utility is that the resulting two-dimensional path is easy to draw
and is amenable to the techniques established for paths in the plane.
The drawback is that the resulting mixed step set problems (which will
differ depending on the choice of labeling) look formidable. Whether
this bijection is useful as a practical tool for calculations is explored
further in Chapter 7.

An immediately employable bonus of focusing on increased step sets is
the bijection between ‘Jump Any-step Paths’ and ‘Partially Directed Paths’,
an instance of which is illustrated in Figure 1.3. The partially directed
path shown in the left hand side of the Figure has steps in both directions
on the North-South axis, but only Easterly steps on the East-West axis.
The path to which it bijects contains steps up, down and across which
span varying heights. As we will see in Section 5.9, paths whose steps may
jump up or down by any distance are particularly amenable to calculate
with. Consequently, partially directed path enumerations are also within
our practical capabilities.

As with Motzkin and Ballot like paths, we consider the various increased
step set paths subject to a variety of weightings.
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Bijection

Figure 1.3: A ‘Partially Directed path’ bijects with a ‘Jump-Any path’.

The next two sections describe methods. Generic approaches to path
enumeration problems are reviewed in Section 1.3, with examples all drawn
from the class of unweighted Ballot-like paths. Then a ‘many-weighted’
Ballot-like enumeration by combinatorial means is reviewed in Section 1.4.

1.3 A Cook’s tour of existing approaches

Lattice path enumeration problems are typically approached from one of
three main directions. These may be broadly classified as

1. Combinatorial

2. Transfer Matrix / Difference Equations

3. Generating Functions

‘Combinatorial’ is a name to collect together a variety of approaches
which have in common a direct utilization of the geometry of the problem.
Combinatorial solutions are often ‘one off’ insights into the structure of
a particular geometry. These solutions may be particularly satisfying as
they allow one to ‘see in a picture’ why an answer is correct. Bijections,
involutions and inclusion/exclusion are the stock-in-trade of combinatorial
methods.

Transfer matrices provide a systematic way to express the enumeration
problem in terms of matrix equations. Obtaining closed form solutions for
the weight polynomials depends on finding practical ways to evaluate high
powers of matrices whose form is fixed (for instance, for Ballot-like paths
the form will always be tridiagonal) but whose order may not be.

Difference equations provide a systematic way of expressing the weight
polynomial as the solution of a recurrence. Solving the enumeration prob-
lem this way requires solving a partial difference equation with boundary
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conditions. The recurrences arising in this approach are closely related to
recurrences on the entries of the eigenvectors of the transfer matrix; hence
the intimate connection between transfer matrix and difference equation
formulations.

Generating functions are, in Wilf’s picturesque phrase, ‘a clothesline to
hang a sequence on’ [113]. Using generating functions to solve the enumer-
ation problem requires

• first, find the generating function, and

• secondly, extract the coefficients.

The first task may be accomplished by using combinatorial methods or
transfer matrices. Then there are several ways both classical and new (see
Chapters 1 and 10) of extracting the coefficients.

Generating functions are also of interest in their own right. Though
asymptotics is not the subject of this work, we comment that generating
functions are particularly useful in investigating the ‘large n’ behaviour of
the weight polynomial sequence. Even without explicitly extracting the
weight polynomials, an analysis of the closest singularity to the origin of
the generating function gives asymptotic information about the coefficient
sequence. Thus a natural extension of the work in this thesis would be do
asymptotics on some of the generating functions we find.

In this section we apply an instance of each of the three approaches to
the problem of enumerating unweighted Ballot paths. This classic problem
was solved in the 19th century and is usually attributed to André [2], but
there is some question about this [91]. The purpose of its re-working here is
to give a concrete example of each generic type of approach.

1.3.1 Combinatorial

The method used in the late 1800’s to solve the Ballot problem is called
the André Principle or Reflection Principle when referred to in the
combinatorics literature. A similar and possibly more general idea arose
independently in the physics literature [43], [88] in a slightly different for-
mulation, where it is known as the Method of Images. The two ideas are
the same as applied to directed lattice paths, and we use the various names
interchangeably.

In this subsection we describe the solution to the Ballot problem using
the Reflection Principle, and show how this principle is a particular case of
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an involution, which latter is a ubiquitously useful structure in the solution
of combinatorial problems.

The Reflection Principle, or Method of Images, for Ballot paths requires
the solution to the binomial path problem first. This counting problem is
easy once one has may a bijection between binomial paths and binomial
words, the latter being finite sequences of letters drawn from an alphabet
of two letters. See Figure 1.4. Depicted is a binomial box, which we recall
is a sub-digraph of the square lattice consisting of all vertices of the form
(i, j) where x ≤ i ≤ x + m and y ≤ j ≤ y + n; along with the connecting
arcs induced by these vertices.

Figure 1.4: Binomial paths biject to binomial words.

We observe that a path from the lower left hand corner to the upper right
hand corner of an m × n binomial box must consist of m steps East and n
steps North; a total of m+n steps. Hence the corresponding binomial word
consists of m + n letters, of which m of them are the letter E and the rest
are the letter N . There are

(
m+n
m

)
ways to arrange m copies of E in m+ n

possible places, thus there are
(
m+n
m

)
binomial words of length m+n. Since

any binomial word corresponds to a valid binomial path and vice versa, we
have classic result

Lemma 1. The number of binomial paths with initial vertex (x, y) and final
vertex (x+m, y + n) is equal to

Bin(m,n) =
(
m+ n

m

)
. (1.1)
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We now use binomial paths to count Ballot paths.
The idea is to first count a set which is too big: Ballot paths plus some

extra, ‘bad paths’. Then we count the ‘bad paths’. By subtracting the
number of ‘bad paths’ away from the first number we obtained, we are left
with the correct number of Ballot paths.

1. Consider Figure 1.5. It shows a binomial box of size (t+y)/2×(t−y)/2
which has been rotated 45 degrees clockwise about the origin. Any
path which is incident with the line y = −1 is not a Ballot path and is
termed a bad path. The rest of the paths within the box constitute
the set of Ballot paths ending at vertex (t, y).

2. Figure 1.6 shows the bad path after reflection, where that portion of
it after it hits the line y = −1 has been reflected in the line y = −1.

3. After reflection, all bad paths end up in their own binomial box, indi-
cated in Figure 1.7. Furthermore, all binomial paths in the new box
shown are reflections of bad paths. Hence there is a bijection between
bad paths and paths in the binomial box of size (t + y + 2)/2 × (t −
y − 2)/2.

Figure 1.5: All Ballot paths that end at vertex (t, y) occur within the un-
shaded part of the binomial box.
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Figure 1.6: Those paths which intersect the line y = −1 have the portion
after their first intersection reflected in the line y = −1.

Figure 1.7: The reflected paths occupy their own binomial box.
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Putting figures 1.5–1.7 together with Lemma 1 gives classic theorem
counting Ballot paths:

Theorem 2. The number of Ballot paths of length t ending at height y is

Bt,y =
(

t

(t+ y)/2

)
−
(

t

(t+ y + 2)/2

)
. (1.2)

The Reflection Principle is a particular instance of a ‘Sign Reversing
Involution’.

Definition 1. An Involution, ν, is a mapping ν : Ω 7→ Ω such that

ν2 = I. (1.3)

In other words, an involution is a function which is its own inverse. The
fixed point set, F ⊆ Ω, of an involution is the set of all p ∈ Ω such that

ν(p) = p. (1.4)

A sign reversing involution, ν : Ω 7→ Ω, is an involution such that there
exists a partitioning of Ω into a positive set, Ω+, and a negative set Ω−
such that

Ω := Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅ (1.5)

and so that the fixed point set of the involution lies entirely within Ω+, i.e.

p ∈ Ω− ⇒ ν(p) ∈ Ω+, and (1.6)
p ∈ Ω+ ⇒ either ν(p) ∈ Ω− or ν(p) = p. (1.7)

Sign-reversing involutions are a classic way to count any set for which
we can construct a sign-reversing involution for which the desired set is the
fixed point set [47].

Lemma 3 (Involution Principle). Let mapping ν: Ω 7→ Ω be a sign-reversing
involution with notation as in Definition 1. Then the size of the fixed point
set is

|F| = |Ω+| − |Ω−|. (1.8)

Figure 1.8 illustrates the Involution Principle of Lemma 3 applied to the
Reflection Principle.
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Figure 1.8: The Method of Images is an involution for which Ω+ is the set of
all paths in the original binomial box illustrated in Figure 1.5,
and Ω− is the set of paths in the lower binomial box shown in
Figure 1.7.
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1.3.2 Transfer Matrices / Difference Equations

Transfer matrices and partial difference equations both allow systematic
expressions of the Ballot enumeration problem. We present first a transfer
matrix method and show it’s relation to an ordinary difference equation.
We then describe the partial difference equation formalism and show the
relationship between this expression and the ordinary difference equations
that arise in the transfer matrix method.

Transfer Matrices

We begin by defining state vectors and transfer matrices.

Definition 2. A state vector is a vector, B(t) = (B(t)
0 , B

(t)
1 , B

(t)
2 , ...)T ,

which records the state of a system at ‘time’ t. For lattice paths in a (t, y)
coordinate system, the yth entry of the tth state vector specifies the number
of paths (or weight polynomial) at height y and horizontal coordinate t.

Definition 3. A transfer matrix is a matrix, T = (Tij), which, when
multiplied by the tth state vector, gives the (t+ 1)th state vector; i.e.

B(t+1) = TB(t). (1.9)

The (i, j)th entry of the matrix (for indices i, j = 0, 1, 2, ...) gives the number
of ways of passing from height i to height j in a single step. In terms of
weights,

Tij = w(arc from vertex (t, i) to vertex (t+ 1, j)), (1.10)

and Tij = 0 when there is no arc from vertex (t, i) to vertex (t+ 1, j).

Iterating the definition of a transfer matrix gives classic result

Lemma 4. The state vector for Ballot paths is given by matrix equation

B(t) = T tB(0), (1.11)

with initial state vector B(0) = (1, 0, 0, ...)T and tridiagonal transfer matrix:

(1.12)
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Thus the problem of counting Ballot paths becomes one of evaluating
high powers of a matrix. For a matrix of fixed finite order, this is a standard
problem in linear algebra and, for a diagonalizable matrix, is achieved by
diagonalizing T , so that we would have

T t = PDtP−1, (1.13)

for some diagonal matrix of eigenvalues D and column matrix of eigenvectors
P .

But for Ballot paths, which occupy the entire upper half plane, the
transfer matrix is infinite and the commonly used diagonalization procedure
does not terminate. We have two alternatives. They are

1. (a) Work directly with the infinite matrix.

(b) Use a recurrence to calculate infinite eigenvectors.

(c) The final step of multiplying out expression (1.13), which for
finite matrices would be a sum over entries of P , Dt and P−1,
becomes an integral.

2. (a) Truncate T to a finite matrix TL, which counts Ballot paths in a
strip of height L.

(b) Use a recurrence to calculate eigenvectors.

(c) Either

i. Evaluate the sum implicit in Equation (1.13) as a function
of L and then take a limit as L→∞, or

ii. Evaluate the sum implicit in Equation (1.13) subject to the
assumption that L > t, so that paths never get long enough
to be affected by the upper wall of the strip.

We illustrate Option 2.

Lemma 5. The transfer matrix for Ballot paths in a strip of height L is

TL =

0 1 2 3 L−1 L

0

1

2

3

L−1

L



0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

. . .
. . . . . . . . .

. . . 0 1
1 0


.

(1.14)
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Powers of TL are expressible in the form

T tL = QTDtQ (1.15)

where D is a diagonal matrix with diagonal entries of the form

ρ+ ρ−1 (1.16)

such that ρ ∈ R with

R = {e
iπ
L+2 , e

i2π
L+2 , ..., e

i(L+1)π
L+2 } (1.17)

and Q is an orthogonal matrix with column vectors

B(ρ) = (B0(ρ), B1(ρ), ..., BL(ρ))T , (1.18)

indexed by ρ. The entries of the vectors take the form

By(ρ) = α(ρy − ρ−y), (1.19)

where α ∈ C is a normalization constant such that

α2 =
−1

2(L+ 2)
. (1.20)

Comments on Proof. The proof is straightforward calculation. It relies on
the observation that the entries of an eigenvector B = (B0, ..., BL) of TL
satisfy constant coefficient recurrence relation

By−1 +By+1 = µBy (1.21)

where µ is an eigenvalue; and with boundary conditions

B1 = µB0 (1.22)
BL+1 = 0. (1.23)

We note that recurrence relation (1.21) is a rearrangement of the standard
three-term recurrence for Chebyshev’s ‘S(n, x)’ Polynomials [96][1]

By+1(µ) = µBy(µ)−By−1(µ) (1.24)

We also note that the parametrization of the eigenvalues of TL in the form

µ = ρ+ ρ−1 (1.25)
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occurs naturally when solving the recurrence relation. Finally, we note that
R is the set of solutions to:

BL+1(µ(ρ)) = 0, (1.26)

where µ(ρ) is given by Equation (1.25) and BL+1(µ) is the (L+ 1)th Cheby-
shev polynomial. It is the simple form of the parametrized polynomial which
allows explicit determination of its roots.

Corollary 6. The number of Ballot paths of length t ending at height y and
confined to a strip of height L is given by the sum

Bt,y(L) =
−1

2(L+ 2)

∑
ρ∈R

(ρ+ ρ−1)t(ρ− ρ−1)(ρy+1 − ρ−(y+1)), (1.27)

where R = {e
iπ
L+2 , e

i2π
L+2 , ..., e

i(L+1)π
L+2 }. Evaluating this sum for general L gives

Bt,y(L) =
∞∑

j=−∞

((
t

t+y+(2L+4)j
2

)
−
(

t
t+y+2+(2L+4)j

2

))
. (1.28)

Comments on Proof. Equation (1.27) follows directly from Equation (1.15).
Evaluating Equation (1.27) to get Equation (1.28) is a long and straightfor-
ward but tedius calculation that relies both on the fact that we know the
members of R explicitly and that these are evenly distributed around the
unit circle so that we may employ geometric series.

In the half plane, Corollary 6 immediately specializes to

Corollary 7. The number of Ballot paths of length t ending at height y is

Bt,y =
(

t
t+y
2

)
−
(

t
t+y+2

2

)
. (1.29)

Difference Equations

Another way to pose the Ballot enumeration problem is directly in terms of
partial difference equations. Let Bt,y be the number of Ballot paths with
length t that end at height y. Then

Bt,y = Bt−1,y−1 +Bt−1,y+1 (1.30)
Bt,0 = Bt−1,1 (1.31)
B0,y = δ0,y. (1.32)
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where (1.30) applies for y, t ≥ 1 , (1.31) applies for t ≥ 1 and δ0,y is the delta
function whose value is 1 when its arguments coincide, and 0 otherwise.

A three step method to solve partial difference equation (1.30) with
boundary conditions was developed by Brak et al [20] in 1998

The first two steps are standard. The third step is something new, and
was the genesis of the theory presented in Chapter 10.

Step One: Ansatz
B(t, y) = µtρy (1.33)

substituted into bulk equation (1.30) gives

µ = ρ+ ρ−1 (1.34)

and symmetry µ(ρ) = µ(−p) implies bulk equation (1.30) is also satisfied by

Bt,y = µt(Cρy +Dρ−y) (1.35)

for unknown constants C and D.
Step Two: Solve for D in terms of C using boundary equation (1.31)

and substitute back into trial solution (1.35) to get

Bt,y = µtC(ρy − ρ−y−2). (1.36)

Step Three: Choose for C the expression obtained by taking the
bracketed component of Equation (1.36), replacing ρ with ρ−1 and replacing
y with the initial height of the path - for Ballot paths this is zero. Then
take half the constant term of the resulting expression as a Laurent series
expanded in ρ about 0, to obtain the number of Ballot paths. We get

Bt,y =
1
2
[
µt(1− ρ2)(ρy − ρ−y−2)

]
(1.37)

Rearranging Equation (1.37) and recalling Equation (1.34) we have result
due to Brak, Essam and Owczarek [20]

Lemma 8. The solution to partial difference equation (1.30) with boundary
Equations (1.31) and (1.32) is

Bt,y =
−1
2

CT
[
(ρ+ ρ−1)t(ρ− ρ−1)(ρy+1 − ρ−(y+1))

]
, (1.38)

where
CT[· · · a−1ρ

−1 + a0 + a1ρ+ · · · ] = a0 (1.39)

and the argument of the constant term is a Laurent Series in ρ expanded
about 0.

Proof. The proof is in the pudding. Direct substitution shows the right hand
side of Equation (1.38) to satisfy Equations (1.30) – (1.32).
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1.3.3 Generating functions

Definition 4. The (ordinary) generating function for the sequence
{ct}t≥0 is the series

G(x) = c0 + c1x+ c2x
2 + ... (1.40)

Finding the generating function

Two common approaches to finding generating functions are

1. When the desired sequence is given by powers of a transfer matrix T ,
the generating function

G(x)y′,y = I + (T )y′,yx+ (T 2)y′,yx2 + ... (1.41)

is a geometric series, which may be written concisely as

G(x)y′,y = (I − xT )−1
∣∣
y′,y

. (1.42)

The matrix (I − xT )−1 is called the resolvent of T . Sometimes, we
are able to use what we know about T to find an explicit expression
for the resolvent of T , hence the generating function. We will pursue
this approach in detail in the latter part of this thesis for a variety of
classes of weighted paths.

2. (a) Use combinatorics to find a functional relationship on G

(b) Solve the relationship to obtain a formula for G(x)

We choose to pursue the second approach in this section. We specialize
to the famous case of Dyck paths, which we recall are Ballot paths which
end as well as begin at height 0.

Let {ct}t≥0 be the counting sequence for Dyck paths, and let G(x) be its
ordinary generating function. The first few terms in the series are

G(x) = 1 + x2 + 2x4 + 5x6 + ..., (1.43)

as illustrated by Figure 1.9. We find a functional relation on G by looking
at how to build Dyck paths out of concatenations of smaller Dyck paths.
Consider Figure 1.10.

Since each Dyck path of length t ≥ 2 must contain at least one ‘up’
step and at least one ‘down’ step, we may decompose it as in Figure 1.10.
Summing over all possible such decompositions, we obtain, for t ≥ 2,

ct = c0ct−2 + c2ct−4 + ...+ ct−2c0. (1.44)
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Figure 1.9: The first few Dyck paths.

Figure 1.10: Any Dyck path of length n ≥ 2 must take the form illustrated,
where each semicircle represents an arbitrary Dyck path in its
own right, which may be the zero path.



1.3. A COOK’S TOUR OF EXISTING APPROACHES 25

We want to construct a function which has coefficients of this form. Since

G(x) = c0 + c2x
2 + c4x

4 + ..., (1.45)

squaring G gives

G(x)2 = c0c0 + (c0c2 + c2c0)x2 + (c0c4 + c2c2 + c4c0)x4 + ... (1.46)

Now we just need to get the lengths right. Multiply by x2 to take into
account the two extra edges in each path. Then add 1 to put the zero path
back in at the start. We have

1+x2G(x)2 = 1+c0c0x2+(c0c2+c2c0)x4+(c0c4+c2c2+c4c0)x6+ ... (1.47)

In light of relation (1.44), this is precisely G(x). We have shown the first
half of famous result:

Lemma 9. Let G(x) =
∑

t≥0 ctx
t be the ordinary generating function for

the counting sequence for Dyck paths. Then G(x) satisfies the functional
relation

1 + x2G(x)2 = G(x) (1.48)

Furthermore,

G(x) =
1−
√

1− 4x2

2x2
. (1.49)

Proof. We need only show that Equation (1.49) holds. As Equation (1.48)
is quadratic in G there are two possible solutions. Expanding the first few
terms of each as follows:

1−
√

1− 4x2

2x2
= 1 + x2 + 2x4 + 5x6 + ... (1.50)

1 +
√

1− 4x2

2x2
=

1
x2
− 1− x2 − 2x4 − 5x6 + ... (1.51)

shows that the minus sign is the correct choice.

Extracting the coefficients

Given a generating function, G(x), there are five traditional ways to extract
the coefficients.

1. ‘Guess’: expand (by computer or by hand) the first few terms and
then
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(a) look up a table of sequences such as [96], or
(b) look for patterns directly: see [87] and references therein, then

‘Check’: use induction to check the answer.

(For an engaging general discussion of Ansatzen see [116], [117].)

2. Lagrange Inversion – only applicable when the Generating Function
may be expressed in a form suitable for using the well-known Lagrange
Inversion Theorem:

Theorem 10 (Lagrange Inversion). Let f(u) and φ(u) be formal
power series in u, with φ(0) = 1. Then there is a unique formal
power series u = u(t) that satisfies

u = tφ(u). (1.52)

Furthermore,

[tn]{(f(u(t)))} =
1
n

[un−1]{f ′(u)φ(u)n}. (1.53)

3. ‘Geometric Series’ expansion - only works if G(x) happens to be a
rational function.

4. ‘Taylor Series’ expansion - write G(x) = c0 + c1x+ c2x
2 + ... as:

G(x) = G(a) +
G′(a)

1!
(x− a) +

G′′(a)
2!

(x− a)2 + ... (1.54)

When expansion about a = 0 is allowable the Taylor expansion method
succeeds if a general expression can be found for the tth derivative. For
expansions about a 6= 0 there is an additional sum to be performed to
collect coefficients of like powers of x.

5. ‘Cauchy integral’: Observe that

ct = the −1th coefficient of
[
c0 + c1x+ c2x

2 + ...+ ctx
t + ...

xt+1

]
(1.55)

= Resx=0

[
G(x)
xt+1

]
(1.56)

Provided we can find a small closed contour γ about the origin which
excludes other poles of G(x)/xt+1, Equation (1.56) becomes

ct =
1

2πi

∮
γ

G(x)
xt+1

dx. (1.57)
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For the Dyck path generating function given by Lemma 9, only the first,
second and fifth methods look tractable. It is rare that G(x) turns out to
be an explicitly rational generating function, and Taylor Series expansions
are usually prohibitive.

The fourth ‘Cauchy’ method has been successfully used on the Dyck
path generating function and other lattice path generating functions, with
some effort and ingenuity employed in evaluating the integrals. It turns out
that evaluating the necessary integrals is equivalent to carrying out the CT
method developed in Chapter 10. The CT method, which had its genesis
in the Cauchy integral approach, has been systematized for Ballot-like and
Motzkin-like lattice paths. For this case of unweighted Dyck paths, it is by
far easiest to use either the first or second method.

We close this section with an application of the second method, as re-
viewed in [12], to this famous sequence. Re-expressing the generating func-
tion (1.45) so that the coefficient of tn is the number of paths of length 2n,
we have modified functional equation

H(t) = 1 + tH2. (1.58)

Then a further transformation

H = u+ 1 (1.59)

gives new functional equation

u = t(1 + u)2, (1.60)

which we see is in the correct form for the application of the Lagrange
Inversion Theorem, with

φ(u) = (1 + u)2. (1.61)

We choose f to be the identity function:

f(u) = u and f ′(u) = 1; (1.62)

so that

[tn]u =
1
n

[un−1](1 + u)2n (1.63)

=
1
n

[un−1]
2n∑
i=0

(
2n
i

)
ui (1.64)

=
1
n

(
2n
n− 1

)
(1.65)

=
1

n+ 1

(
2n
n

)
. (1.66)
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Thus we have classic result

Lemma 11. The counting sequence {c2n}n≥0 for Dyck paths of length 2n is
given by

c2n =
1

n+ 1

(
2n
n

)
. (1.67)

The sequence { 1
n+1

(
2n
n

)
}n≥0 = 1, 1, 2, 5, 14, 42, 132, 429, ... is the renowned

Catalan numbers.

1.4 Many-weighted Paths: a combinatorial answer

The more comprehensive theorem may be easier to prove, the
more general problem may be easier to solve.

George Polya, ‘How to Solve It’ [89]

This section is a rediscovery of a method and result of Flajolet [44]. The
main result may come as a surprise, in the light of the rest of the thesis, much
of which is devoted to finding novel means to calculate weight polynomials
for Dyck paths subject to weightings involving a small number of weights.
Here we explicitly write down the weight polynomial for Dyck paths subject
to a maximal number of independent weights. The method is purely combi-
natorial, and applies equally well whether the paths are confined to a strip
or not.

We first describe a general weighting, then give the enumeration. The
form of the theorem makes it clear why this general answer does not make
subsequent investigations into specific weightings redundant. We follow the
proof of the theorem with a brief discussion of the relationship between the
form of this general answer and the forms of answers to be expected to
questions pertaining to more specific weightings.

Definition 5. A general downstep weighting for Dyck paths is a weight-
ing for which all ‘down’ edges have a distinct weight assigned, and all ‘up’
edges are weighted ‘1’.

Definition 6. A general weighting for Dyck paths is a weighting for
which all edges, both ‘down’ and ‘up’, have distinct weights assigned.

For the purposes of the enumeration problem on Dyck paths, it is suffi-
cient to consider a general downstep weighting. Since for Dyck paths what
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goes up must come down, so that ‘up’ and ‘down’ steps are paired off with
each other, the result for the general weighting immediately follows.

The following theorem is a result of Flajolet [44] which he relates to
expansions of continued fractions.

Theorem 12. Let W2n be the set of Dyck paths of length 2n with general
downstep weighting:

w(edge from height ‘y’ to height ‘y + 1’) = 1, (1.68)
w(edge from height ‘y’ to height ‘y − 1’) = κy; (1.69)

in either a strip of height L or in the half plane. Then the weight polynomial
for W2n is given by

W2n(κ1, κ2, ...;L) =
min{n−1,L−1}∑

l=0

sl, (1.70)

where sl is the weight polynomial for that subset of paths in W2n which reach
but do not exceed height l + 1. The half plane result is obtained by setting
L =∞. The sl’s are given by

s0 = κn1 , (1.71)

and

sl =
j0−1∑
j1=l

j1−1∑
j2=l−1

. . .

jl−1−1∑
jl=1

l−1∏
k=0

(
jk − jk+2 − 1
jk − jk+1

)
κj0−j11 κj1−j22 . . . κ

jl−jl+1

l+1 ,

(1.72)
for l ≥ 1; with

j0 := n, (1.73)
jl+1 := 0. (1.74)

Before proving the theorem we give an example showing the construction
behind the proof.

Example 1. We systematically list all general downstep weighted Dyck paths
of length 2n = 8.
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Figure 1.11: There is one path of height 1.

Figure 1.12: There are seven paths of height 2.
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Figure 1.13: There are five paths of height 3.
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Figure 1.14: There is one path of height 4
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We will utilize the following classical lemma in the proof of Theorem 12.

Lemma 13. There are exactly(
n+ i− 1
i− 1

)
(1.75)

ways to place n indistinguishable objects in i distinct sets.

Proof of Theorem 12. We explicitly illustrate the first few inductive steps of
this proof, as the notation is more transparent that way. First observe that

s0(n− j1) = κn−j11 , (1.76)

for
0 ≤ j1 ≤ n− 1 (1.77)

since there is only one path in W2(n−j1) which reaches but does not exceed
height 1: a zig-zag which returns to the surface n− j1 times.

Paths which reach but do not exceed height 2 may be constructed from
paths which reach but do not exceed height 1. By Lemma 13, there are(

n− j2 − 1
n− j1 − 1

)
(1.78)

ways to insert j1 − j2 peaks, shared amongst n− j1 spaces. Noting that we
require j1 ≥ 1 for a positive number of peaks, we have

s1(n− j2) =
n−1∑
j1=1

(
n− j2 − 1
n− j1 − 1

)
κn−j11 κj1−j22 , (1.79)

for
0 ≤ j2 ≤ j1 − 1. (1.80)

Paths which reach but do not exceed height 3 may be constructed from
paths which reach but do not exceed height 2. By Lemma 13, there are(

j1 − j3 − 1
j1 − j2 − 1

)
(1.81)

ways to insert j2− j3 peaks, shared amongst j1− j2 spaces. Noting that we
require j2 ≥ 1 hence j3 ≥ 2 for a positive number of peaks, we have

s2(n− j3) =
n−1∑
j1=2

j1−1∑
j2=1

(
n− j2 − 1
n− j1 − 1

)(
j1 − j3 − 1
j1 − j2 − 1

)
κn−j11 κj1−j22 κj2−j33 , (1.82)

for
0 ≤ j3 ≤ j2 − 1. (1.83)

Induction on the height completes the proof.
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Comments on Theorem 12

1. The expression for sl contains no minus signs. We have an explicit
solution for the weight polynomial which does not require any cancel-
lation.

2. The solution in this form is bad for performing asymptotic expan-
sions. A generating function approach would be more useful for this
purpose. Generating functions for these paths have been previously
independently constructed using the ‘layer at a time’ idea in [27] .

3. The quote from Polya at the beginning of this chapter applies, but
it does not buy us as much as it usually would. This is because the
number of sums in the solution depends on L, even when we specialize
to a simpler weighting by setting κi = 1 for some i. Thus, Theorem 12
is computationally efficient when the number of weights is close to
L, and (extremely!) inefficient for sparsely weighted or unweighted
paths in a wide strip. By contrast, the Method of Images is (very!)
computationally efficient in the half plane when the number of weights
is zero.

Thus, Theorem 12 provides us with an upper bound on the compu-
tational complexity of the enumeration problem for Dyck paths sub-
ject to any weighting. We can do ‘no weights’ efficiently and we can
do ‘many weights’ efficiently. The sequel is concerned with tackling
weighted cases that lie inbetween.

1.5 Why Pavings?

The two weighting extremes for decorated paths: unweighted and ‘many-
weighted’, as considered in the previous two sections, are the easier part of
the spectrum. The more difficult problems lie in the gap inbetween: the
case of a finite number of decorations.

It is firstly towards bridging this gap that the auxiliary theme of Pavings
is introduced in Part II. These are ‘Pavings’ in the sense defined by Viennot
[104], [103], and they play a critical role in both the derivation of and the
practical application of the ‘Constant Term’ method of Chapter 10, which
we use to generalize and solve a long-standing open decorated Ballot-like
path enumeration problem.

Viennot’s original pavings provide a way of combinatorially manipulating
three term non constant coefficient recurrences, the solutions to which are
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classic and more general classes of orthogonal polynomials. Thus we are
able to obtain closed-form expressions which were previously inaccessible
for many orthogonal polynomials.

The other area of focus of this thesis, in additional to the enumeration of
weighted Ballot and Motzkin like paths, is the enumeration of weighted paths
with extended step sets, such as d-up and Jump Step paths. Investigating
Viennot’s pavings, we find a natural extension of the definition which relates
pavings to 2-up, 3-up and general d-up step sets for lattice paths. We obtain
pavings which satisfy higher order non constant coefficient recurrences which
we are then able to manipulate combinatorially.

The same natural extension does not apply to Jump Step paths. In the
latter portion of Chapters 5 and 6 we find a new way to generalize so that
we may define pavings which are useful for Jump Step paths as well.

In Chapter 9 we see how generating functions for paths are given in
terms of pavings, across all the classes of pavings we have defined.

In understanding the observed efficacy of applying pavings to paths, we
note that

1. Paths satisfy partial difference equations, whereas

2. Pavings satisfy ordinary difference equations.

Since partial difference equations with boundary conditions are much harder
to solve than ordinary difference equations, the ability to express a path
problem in terms of pavings is an advantage.

1.6 Overview of Thesis

The thesis is divided into three parts:

1. Paths – Introduces path enumeration problems and gives some pure
combinatorial results;

2. Pavings – Develops the theory of pavings;

3. More Paths – Gives path results dependent on pavings.

In more detail:

• Part I

– Chapter 1, the introduction, sets the scene by reviewing

∗ Classic path problems
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∗ Generic approaches to path enumeration with solutions to
classic problems
∗ What’s not known, and where difficulties lie

– Chapter 2 deals with unweighted paths in the plane, in the half
plane, in a strip and on a cylinder. The purpose of the chapter
is to show the connections between these boundary conditions
and the extensions to the basic Method of Images that apply in
the strip and cylinder cases. Some cylinder results therein may
not have been explicitly stated before, though they are probably
implicit in the existing literature.

– Chapter 3 solves a half plane path enumeration problem in which
there are infinitely many weights taking two possible values in
alternation. The solution is by means of a bijection between the
bibanded problem and a new combinatorial encoding of another
problem, ‘corner counting’, the answer to which is already known
in the literature. The bibanded result proves a new combinatorial
interpretation of the Narayana numbers.
We also find the generating function for banded paths in the half
plane with any finite number of repeating bands, thus proving
that it is always quadratic.

• Part II

– Chapters 4–6 relate pavings in the sense of Viennot [104], [103]
to cycles on various digraph. We

∗ Review the known Motzkin digraph – monomer/dimer paving
relationship
∗ Show that the above relationship extends in a natural way

to digraphs supporting d-up and Lukasiewicz paths, but not
to other paths such as Jump-step.
∗ Derive a different kind of extension of the path digraph to

paving relationship, which is applicable to Jump Step paths.
∗ Calculate many paving polynomials

– Chapter 7 lays foundations for further work extending the two
dimensional paving results to higher dimensions, as well as giving
an indication of the difficulties thereof. We also give a concrete
example of a phenomena which may be useful in any number of
dimensions, whereby two distinct families of pavings with distinct
recurrences generate the same data. By this we mean that both



1.6. OVERVIEW OF THESIS 37

sets generate the same desired set of data, as well as some extra
information on which they disagree. We show a combinatorial
relationship between the two sets of pavings.

– Chapter 8 develops another new kind of paving, a ‘Laurent paving’
which is related to the original Viennot pavings by a combina-
torial change of variables, and an involution. The corresponding
‘Laurent paving polynomials’ are essential in Part III.

• Part III

– Chapter 9 describes two ways in which path length generating
functions may be obtained combinatorially in terms of pavings.
They are

∗ Using a combinatorial interpretation of determinants as sums
over cycles – this section is review
∗ Using a single variable constant coefficient recurrence on the

path weight polynomials to derive the generating function.
It is well known that the generating function may be found
from the recurrence algebraically, and vice versa. Here we
need the recurrence first, which we find by expressing the
recurrence coefficients in terms of weighted binomial paths.
We then use an original bijection between binomial paths and
pavings to obtain the coefficients combinatorially. Previous
combinatorial derivations have gone via the intermediate step
of combinatorial objects known as ‘Heaps’.

– Chapter 10 derives a new form of ‘Constant Term’ method for
solving lattice path enumeration problems. We use the method
to solve an open problem from the 1970’s, and generalizations
thereof.
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Chapter 2

Images for unweighted Strip
paths

Paths confined to a strip in the plane may be counted by a modified version
of the Method of Images which we introduced in Section 1.3.1. We deal
with general Ballot-like paths in a strip, with arbitrary starting and ending
heights. We begin with the classic result:

Theorem 14. The number of Ballot-like paths of length t in a strip of height
L, where the paths begin at height y′ and end at height y, for 0 ≤ y′, y ≤ L
is

Wt =
∑
j

(
W+
t (j)−W−t (j)

)
(2.1)

where −t−y−y
′−2

2L+4 ≤ j ≤ t−y+y′
2L+4 and

W+
t (j) =

(
t

(t+ y − y′)/2 + (L+ 2)j

)
, (2.2)

W−t (j) =
(

t

(t+ y + y′ + 2)/2 + (L+ 2)j

)
. (2.3)

We employ the convention
(
a
b

)
:= 0 whenever the condition 0 ≤ b ≤ a fails.

Proof. The proof is by Inclusion/Exclusion, and generalizes the Involution
presented in Section 1.3.1. The argument is illustrated in Figures 2.1–2.5.

Begin, as usual for Inclusion/Exclusion, by over-counting. Ballot-like
paths which start at height y′, end at height y and have length t, when not
confined by an upper or lower wall, occupy a binomial box of size (t + y −

39
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y′)/2 × (t − y + y′)/2. We call this box the basic binomial box. Paths
within this box are termed basic paths. There are

# of basic paths =
(

t

(t+ y − y′)/2

)
(2.4)

paths in the basic binomial box, by Lemma 1.
As in the ordinary method of images, the basic binomial box includes

(potentially) paths which fall below the line y = 0. Such paths need to be
removed from the count. To do so, notice that they are in bijection with
paths occupying a binomial box of size (t+y+y′+2)/2×(t−y−y′−2)/2 (see
Figure 2.2). The bijection is the same mapping indicated in Section 1.3.1,
where the latter portion of any path hitting the line y = −1 is reflected in
that line (see Figure 2.1). The number of paths (again using Lemma 1) in
this new image box is

# of paths in first lower image box =
(from reflection in y = −1)

(
t

(t+ y + y′ + 2)/2

)
. (2.5)

A similar argument produces another image box above the basic binomial
box. These paths come from reflection in the line y = L + 1. They occupy
of box of size (t+ y+ y′ + 2− (L+ 2))/2× (t− y− y′ − 2 + (L+ 2))/2 thus
they number

# of paths in first upper image box =
(from reflection in y = L+ 1)

(
t

(t+ y + y′ + 2− (L+ 2))/2

)
.

(2.6)
But now, there may be some paths in the basic box which have been

subtracted twice, since they hit both upper and lower walls, so have images
in both the upper and lower image binomial boxes. Call such a path doubly
bad. (See Figure 2.3.) We need to compensate for the extra copy of the
doubly bad path. It needs to be determined which copy to cancel out.

Note, a doubly bad path must be incident both with the line y = −1
and y = −1+(L+2). Given this, there are three possibilities for its images.

1. The upper image of the doubly bad path hits the line y = −1+2(L+2)
but the lower image does not hit the line y = −1− (L+ 2).

2. The upper image of the doubly bad path does not hit the line y =
−1 + 2(L+ 2) but the lower image does hit the line y = −1− (L+ 2).
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3. The upper image hits y = −1 + 2(L + 2) and the lower image hits
y = −1− (L+ 2).

It is not possible for a doubly bad path that neither the upper image
hits y = −1 + 2(L+ 2) nor the lower image hits y = −1− (L+ 2).

• In the first case, the upper image is reflected again (see Figure 2.4)
and cancelled out.

• In the second case, the lower image is reflected again and cancelled
out.

• In the third case, the procedure is iterated. Both images are reflected
again, and we consider whether these images of images hit lines y =
−1 + 3(L + 2) and − 1 − 2(L + 2). Repeating this process, it must
eventually terminate with either an upper image reflected but not a
lower, or vice versa. Thus a correct count is maintained.

The iterated reflections produce a sequence of ‘positive’ and ‘negative’
binomial boxes. A box is termed positive if it is either the basic box or if
it comes from an even number of iterations of the reflection procedure. A
box is termed negative if it comes from an odd number of iterations of the
reflection procedure. Each positive box contains

W+
t (j) =

(
t

(t+ y − y′)/2 + (L+ 2)j

)
(2.7)

paths and each negative box contains

W−t (j) =
(

t

(t+ y + y′ + 2)/2 + (L+ 2)j

)
(2.8)

paths, where the positive and negative boxes are each indexed by j, with j
taking integer values in the range

−t− y − y′ − 2
2L+ 4

≤ j ≤ t− y + y′

2L+ 4
(2.9)

The images are bounded within the triangle defined by lines y = t,
y = −t and t = ‘path length’. (See Figure 2.5.) Summing over positive and
negative boxes gives the theorem.



42 CHAPTER 2. IMAGES FOR UNWEIGHTED STRIP PATHS

Figure 2.1: The binomial box for paths of length t = 18 starting at height
y′ = 1 and ending at height y = 3 in a strip of height L = 5,
showing a ‘bad path’ which is incident upon the line y = −1, as
well as its image.
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Figure 2.2: The binomial box and its first image for paths of length t = 18
starting at height y′ = 1 and ending at height y = 3 in a strip
of height L = 5.
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Figure 2.3: A ‘doubly bad’ path which exceeds its boundaries in both direc-
tions, thus producing a pair of images.
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Figure 2.4: The ‘doubly bad’ path produces two images, but the upper im-
age is reflected again, cancelling it out.
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Figure 2.5: The binomial box and all its images for paths of length t = 18
starting at height y′ = 1 and ending at height y = 3 in a strip
of height L = 5.
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2.1 Unweighted strip paths: another view

Equation 2.1 may be seen from two perspectives, corresponding to the left
hand side and right hand side of the following equality∑

j

W+
t (j)−

∑
j

W−t (j) =
∑
j

(
W+
t (j)−W−t (j)

)
. (2.10)

From the left hand point of view,

W+
t :=

∑
j

W+
t (j) and (2.11)

W−t :=
∑
j

W−t (j), (2.12)

the sums of the positive and negative images respectively, are considered as
objects in their own right. From the right hand point of view, the difference

W+
t (j)−W−t (j), (2.13)

for each j, is the core object.
In this section we investigate the left hand point of view, i.e. give a

combinatorial meaning to each of the sums (2.11) and (2.12). 1

We begin by looking at some specific cases.

• Dyck paths of length 2r in a strip of height L

L
(
W+

2r

)
r≥0

Form?
(
W−2r

)
r≥0

Form?

2 1, 2, 6, 20, 2r−1 + 4r−1 0, 1, 4, 16, 4r−1

72, 272, ... 64, 256, ...

3 1, 2, 6, 20, A095929 0, 1, 4, 15, A095930
70, 254, 948, ... 57, 220, 859, ...

4 1, 2, 6, 20, 70, A087433 0, 1, 4, 15, 56, –
252, 926, 3460, ... 211, 804, 3095, ...

1It would also be an interesting piece of further work to look at the right hand point
of view and give a combinatorial meaning to the difference (2.13).
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The codes A095929, A095930, A087433 are sequence numbers in the
Online Encyclopedia of Integer Sequences [96].

• Ballot-like paths of length 2r, with starting and ending heights respec-
tively y′ = 0, y = 2, in a strip of height L

L
(
W+

2r

)
r≥0

Form?
(
W−2r

)
r≥0

Form?

2 0, 1, 4, 16, 4r−1 0, 0, 2, 12, 4r−1 − 2r−1

64, 256, 1024, ... 56, 240, 992, ...

3 0, 1, 4, 15, 57, A095930 0, 0, 1, 7, 36, A095931
220, 859, 3381, ... 165, 715, 3004, ...

The codes A095930, A095931 are sequence numbers in [96].

2.1.1 Cylinder paths and cycle walks

We first comment that walks on a cycle graph biject to directed paths on
cylinders, as illustrated in Figure 2.6. Thus we refer to ‘cycle walks’ and
‘cylinder paths’ interchangeably.

Definition 7. Let Zt(k,m) refer interchangeably to

• the set of walks of length t on the cycle graph Cm, where the walks
start at vertex 0 and end at vertex k; and

• the set of paths of length t on the cylinder graph Z × Cm, where the
paths start at vertex (0, 0) and end at vertex (t, k).

Let
Zt(k,m) := |Zt(k,m)| (2.14)

be the number of such walks.

We next observe that we may obtain a formula for the number of cycle
walks on C2L+4 (equivalently cylinder paths on Z×C2L+4) by summing over
an appropriate set of paths in the half plane.
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Figure 2.6: Walks on a cycle graph biject to directed paths on a cylinder.

Lemma 15. Let Zt(k, 2L + 4) be the number of cycle/cylinder walks, as
defined in Definition 7, of length t on a cycle/cylinder of circumference
2L+ 4. Then

Zt(k, 2L+ 4) =
∑
j

(
t

(t+ k)/2 + (L+ 2)j

)
, (2.15)

where −t−k2L+4 ≤ j ≤
t−k

2L+4 .

Proof. Let C2L+4 be a cycle graph. Label the vertices 0, 1, 2, ..., 2L + 3
consecutively. Without loss of generality we may assume that the walk
starts at vertex 0 and ends at vertex k. We may ‘unwrap’ the graph C2L+4

and map it to the number line, where the ith vertex of C2L+4 is identified
with all of the vertices congruent to i modulo 2L+ 4. (See Figure 2.7.)

Walks which start at 0 and end at k on the cycle graph correspond to
walks which start at 0 and end at any of the heights congruent to k modulo
2L + 4, on the number line. Hence to count walks of length t ending at
k on the cycle graph, sum over walks ending at lengths congruent to k
mod 2L + 4 on the number line. Stretching these later walks out in time,
they become directed walks in the half plane (see Fig 2.8), and application
of Lemma 1 gives the result.
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Figure 2.7: Illustrated is the cycle graph C2L+4, for L = 1. The cycle graph
‘unwraps’ to a number line, where heights are identified modulo
2L+ 4. Walks which start at 0 and end at 3 on the cycle graph
correspond to walks which start at 0 and end at any of the
heights congruent to 3 modulo 2L+ 4 on the number line.
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Figure 2.8: Walks of length t = 11 on the cycle graph C6, starting at vertex
0 and ending at vertex k = 3, correspond to walks in the half
plane that fall within any of the four binomial boxes shown.
(Each box has rightmost corner on the vertical line t = 11.) A
particular walk is illustrated.
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2.1.2 Counting strip paths with cylinders

We have a reinterpretation of Theorem 14.

Theorem 16. The number of Ballot-like paths of length t in a strip of height
L, where the paths begin at height y′ and end at height y, for 0 ≤ y′, y ≤ L
is

Wt = W+
t −W

−
t (2.16)

where
W+
t = Zt(|y − y′|, 2L+ 4) (2.17)

is the number of walks of length t on the cycle graph C2L+4, with starting
and ending positions separated by |y − y′|; and

W−t = Zt(|y + y′ + 2|, 2L+ 4) (2.18)

is the number of walks of length t on the cycle graph C2L+4, with starting
and ending positions separated by |y + y′ + 2|.

Explicitly,

W+
t =

∑
j

(
t

(t+ y − y′)/2 + (L+ 2)j

)
,

W−t =
∑
j

(
t

(t+ y + y′ + 2)/2 + (L+ 2)j

)
,

for −t−y+y
′

2L+4 ≤ j ≤ t−y+y′
2L+4 , and −t−y−y

′−2
2L+4 ≤ j ≤ t−y−y′−2

2L+4 respectively.
Alternatively, both sums may be taken over − ∞ ≤ j ≤ ∞ given the

convention that
(
a
b

)
:= 0 whenever the condition 0 ≤ b ≤ a fails.

Proof. Using Theorem 14 write

Wt =
∑
j

(
W+
t (j)−W−t (j)

)
(2.19)

=
∑
j

W+
t (j)−

∑
j

W−t (j), (2.20)

and apply Lemma 15.

An alternative formula to Equation (2.15) is known in the literature [96],
sequence number A095931, to be
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Lemma 17. The number of walks of length t on the cycle graph Cm, where
the walks start at vertex 0 and end at vertex k, is given by the formula

Zt(k,m) = (2t/m)
m−1∑
j=0

cos(2πkj/m) cos(2πj/m)t. (2.21)

Lemma 17, together with Theorem 16, immediately gives us an alterna-
tive expression for the number of strip paths.

Theorem 18. The number of Ballot-like paths of length t in a strip of height
L, where the paths begin at height y′ and end at height y, for 0 ≤ y′, y ≤ L
is

Wt =
2t−1

L+ 2

2L+3∑
j=0

(
cos(πd1j/(L+ 2))− cos(πd2j/(L+ 2))

)
cos(πj/(L+ 2))t

(2.22)
where d1 = |y − y′| and d2 = y + y′ + 2.

Comment 1. We now have several answers to the enumeration problem
for Ballot-like paths of length t in a strip of height L. Which is best to use
depends upon whether we have a relatively narrow strip and a long path, or
a relatively wide strip and short path. A natural consideration to bear in
mind is

• if t >> L, Theorem 18 may be better, since the sum therein is of order
L, whereas

• if L >> t, Theorem 16 may be better, since the sum therein is of order
t.
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Figure 2.9: Indicated are interdependencies of methods to calculate un-
weighted Ballot-like paths with various boundary conditions.



Chapter 3

Counting Corners and
Banded Paths

There are two kinds of weighted path enumeration problems considered in
this chapter, ‘corner counting’ and ‘banded’. These two kinds of weight-
ings differ from each other conceptually in two aspects. The first difference
refers to whether weights are assigned to vertices in the path or to edges in
the path. ‘Corner counting’ paths have weights assigned to their vertices,
whereas ‘banded’ paths have weights associated with their edges. The sec-
ond difference refers to another aspect of how weights are designated. For
banded paths, as with most other paths considered in this thesis, weights are
associated with locations in the underlying lattice; so that banded paths pick
up their weights as they pass through periodically weighted bands. For a
‘corner counting’ weighted path, the weight is independent of the underlying
lattice, instead depending entirely upon the intrinsic shape of the path.

Both corner counting and banded problems are of use to physicists as
well as being of inherent mathematical interest. Banded paths provide some
of the simplest examples of paths for which steps at every height have non-
unit weights assigned to them. They have interpretations in compact and
directed damp percolation [14]. They also provide a combinatorial inter-
pretation of one of the representations of the parallel update ASEP algebra
[41], [18]. Banded paths also relate to a weighted version of the cylinder
paths introduced in Subsection 2.1.1 of Chapter 2, since a weighted path
on a cylinder of circumference c ‘unwraps’ to a banded binomial path with
periodicity c. The ‘corner counting’ problem that we present is the most
elementary in its class, and has a direct interpretation in terms of polymer
physics. Paths with few corners correspond to fairly stretched-out polymers,

55
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and paths with many corners model polymers that are more compressed.
The two problems: corner counting and banded, seem at first to be

unrelated. However we construct a bijection between the corner counting
problem and a ‘bi-banded’ problem for which there are just two kinds of
bands alternating odd/even with the height. This bijection provides proof of
a foundational result for bi-banded paths, out of which all of the subsequent
bi-banded results are constructed.

3.1 Counting Corners

We begin by counting binomial paths by corners. Recall that binomial paths
have step set {N,E}, where N steps have the form (0, 1) and E steps have
the form (1, 0).

Definition 8. Let p = v0e1v1...en+mvn+m be a path on a lattice such that
each arc ei is one of exactly two possible types; i.e. the allowed step set is
{N,E} for some N and E. Let ei−1 = vi−1vi and ei = vivi+1 be a pair of
consecutive arcs. Then the intermediate vertex vi is defined to be a corner
provided that (ei−1, ei) is either a (N,E) pair or an (E,N) pair. We fix
the convention that the first vertex v0 is a corner only if e1 is an E step;
and that the last vertex vn+m is a corner only if en+m is a N step. (See
Figure 3.1.)

Definition 9. Let Cm,n be the set of binomial paths on the square lattice
which begin at vertex (0, 0) and end at vertex (m,n). A path p ∈ Cm,n has
corner weight

w(p) = c|corners|, (3.1)

where |corners| is the number of corners in the path p = v0e1v1...en+mvn+m.
The corner weight polynomial for binomial paths is defined to be

Cm,n(c) =
∑

p∈Cm,n

w(p). (3.2)

The following Theorem is a rediscovery of a special case of a Theorem
of Krattenthaler [70].

Theorem 19. The corner weight polynomial defined in Equation (3.2) is

Cm,n(c) =
∑
i≥0

(
n

i

)(
m

i

)
c2i+1. (3.3)
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Figure 3.1: A 4× 3 binomial box is shown, with an example path of weight
c5. We think of all paths as entering from the South and exiting
to the East, so that of the five corners possessed by this path,
the first one occurs at the origin.

Proof. Our proof depends upon a particular construction for the binomial
paths. Take an m × n portion of square lattice. Such a box consists of
n + 1 horizontal lines and m + 1 vertical lines. Label the first n horizontal
lines 1, 2, ..., n, starting at the bottom-most line and working upwards. For
convenience of reference, call these the black labels. Label the middle m−1
vertical lines 1, 2, ...,m− 1 from left to right, skipping the first and last line.
Call these the red labels. See Figure 3.2 for an example. There are

(
n
i

)
possible ways to choose i of the n black labels. There are

(
m−1
i−1

)
+
(
m−1
i

)
ways to choose either i− 1 or i of the red labels.

3

36

Figure 3.2: The first n of the horizontal lines are labeled 1, 2, ..., n in black,
starting at the bottom and leaving out the topmost boundary
line. The middle m− 1 of the vertical lines are labeled from left
to right 1, 2, ...,m− 1 in red, skipping both boundary lines.
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For each i such that 0 ≤ i ≤ min{n,m − 1}, independently choose i
black labels and either i or i − 1 red labels. Mark each label chosen - call
these marks check marks. We claim that each such choice of check marks
generates a binomial path with 2i + 1 corners. Conversely, each path from
(0, 0) to (m,n) with 2i+1 corners corresponds to exactly one choice of check
marks.

To see geometrically how the check marks give a recipe defining a path,
start with the assumption that the path enters the bottom left corner of the
grid ‘traveling’ North. Repeat the following two steps until reaching the top
right corner.

1. Continue in theN direction until reaching either the uppermost bound-
ary or another horizontal line bearing a check mark. Turn East.

2. Continue in the E direction until reaching either the rightmost vertical
boundary, or another vertical line whose label bears a check mark.
Turn North.

See Figure 3.3 for an example. This procedure will always terminate

Figure 3.3: Successively interpreting check marks as corners uniquely deter-
mines a binomial path.

with the path reaching the top right corner. There are two cases.

• Where we began with i black check marks and i red check marks, each
check mark generates a corner. There is one final corner generated
when the path hits the upper boundary. Thus there are i + i + 1
corners created in total.

• Where we began with i black check marks and i− 1 red check marks,
each check mark generates a corner. The path hits the right most
boundary, which generates another corner, and then the topmost bound-
ary at the final vertex, which generates the last corner. Hence there
are i+ (i− 1) + 1 + 1 corners generated.
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Thus in both cases we generate 2i + 1 corners. Conversely we can take
an arbitrary path with 2i+1 corners and generate a valid set of check marks
by extending each straight section of the path back until it hits either the
left most or lower boundary, and placing a black or red check mark there
accordingly.

Thus to count paths by corners we need only count sets of check marks,
appropriately grouped. We obtain

Cm,n(c) =
(
n

0

)(
m− 1

0

)
c+

((
n

1

)(
m− 1

0

)
+
(
n

1

)(
m− 1

1

))
c3

+
((

n

2

)(
m− 1

1

)
+
(
n

2

)(
m− 1

2

))
c5 + · · · (3.4)

Collecting terms as bracketed gives the theorem.

Example 2. We follow the method of the proof of Theorem 19 in Figure 3.4
to construct all 10 binomial paths in the binomial box of size 2× 3.

Figure 3.4: Check marks specify the corners, which determine the paths.
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3.2 Bi-banded Paths

Definition 10. A bi-banded weighting on a Ballot-like path is given by
weights on upsteps and downsteps between odd and even heights as follows.

w(upstep: even to odd) = w(downstep: odd to even) = a, (3.5)
w(upstep: odd to even) = w(downstep: even to odd) = b. (3.6)

We begin with bi-banded binomial paths. One such is illustrated in
Figure 3.5.

Figure 3.5: This bi-banded binomial path has weight a3b4.

Theorem 20. The bi-banded weight polynomial, Bm,n, for binomial paths
starting at vertex (0, 0) and ending at vertex (n+m,n−m), in the rotated
square lattice is

Bm,n =
∑
i

(
dm+n

2 e
n− i

)(
bm+n

2 c
i

)
ad

m+n
2 e+n−2ibb

m+n
2 c−n+2i. (3.7)

Proof. The proof depends on a construction for binomial paths in which we
specify where to place up and down steps. Consider all paths from (0, 0)
to (n + m,n −m) in the rotated square lattice, where m ≤ n. Such paths
contain n up steps, m down steps and have length n+m.

The bi-banded weighting defines horizontal bands containing, alternately,
all weights a and all weights b, as in Figure 3.5. In addition to these bands,
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define a set of alternating vertical bands. Call the vertical bands dark and
light accordingly as

dark ⇐⇒ 2j ≤ t ≤ 2j + 1, for j ∈ {0, 1, ..., dm+n
2 e}

light ⇐⇒ 2j + 1 ≤ t ≤ 2j + 2, for j ∈ {0, 1, ..., bm+n
2 c}.

See Figure 3.6.

Figure 3.6: In additional to the horizontal bands which give the edge weight-
ing for bi-banded paths, we define alternating dark and light
vertical bands.

Fix i. Independently choose n− i dark vertical bands and i light vertical
bands, marking the chosen bands, so that a total of n vertical bands are
chosen. There are (

bm+n
2 c

n− i

)(
dm+n

2 e
i

)
(3.8)

ways to achieve this. We show that each of them corresponds to a distinct
binomial path with weight

ad
m+n

2 e+n−2ibb
m+n

2 c−n+2i. (3.9)

To construct the path, start at the vertex (0, 0), and move to the right step
by step according to the rule

• Make a U step (i.e. step diagonally ‘Up’) if the vertical band is marked;
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• Make a D step (i.e. step diagonally ‘Down’) if the vertical band is
unmarked.

An example is illustrated in Figure 3.7. We observe that up steps weighted
a always occur above arrows in the dark bands. Similarly, up steps weighted
b always occur above arrows in the light bands. Furthermore, down steps
weighted a occur in light bands and downsteps weighted b occur in dark
bands. This is necessarily so, since same-weighted steps are separated by
an even difference in their heights, hence must also be separated by an even
number of time steps; which preserves the parity of the vertical bands.

Therefore the weight of the path is

a|dark Up|+|light Down|b|light Up|+|dark Down|, (3.10)

where |dark Up| is the number of up steps in a dark vertical band, |light Up|
is the number of up steps in a light vertical band, |dark Down| is the number
of down steps in a dark vertical band and |light Down| is the number of down
steps in a light vertical band. We have

|dark Up| = n− i (3.11)

|dark Down| =
⌊
m+ n

2

⌋
− (n− i) (3.12)

|light Up| = i (3.13)

|light Down| =
⌈
m+ n

2

⌉
− i, (3.14)

which gives expression (3.9). The theorem follows from summing on i over
the product of the coefficients (3.8) and the weights (3.9).
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Figure 3.7: Banded paths in an m × n binomial box are constructed by
specifying the location of Up steps by arrows, and Down steps
by blanks. In this example, m = 2, n = 4 and the weight
polynomial is P2,4 = 3ab5 + 9a3b3 + 3a5b.
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3.3 Corner-counting ↔ Bi-banded; in a square

The coefficients of the weight polynomials for both corner counting paths
in an m × n binomial box and bi-banded paths in an m × n binomial box
each determine a partition of

(
n+m
m

)
. Those partitions are the same when

n = m, i.e. for paths in a square binomial box. We will show this identity
bijectively. First we need to define some reversible operations on sets, as
follows.

Definition 11. Let Sn,i := {S ⊆ [n] such that |S| = i}.

• Rule 1

−→S [n]\S

Rule 1: Sn,i !→ Sn,n−i

by

Note that Rule 1 is its own inverse. Also note that Rule 1 implies the
binomial identity

(
n
n−i
)

=
(
n
i

)
.

• Rule 2

– Splitting

Rule 2 (split): Sn,i !→ Sn−1,i ∪ Sn−1,i−1

by S −→ S\{n}

– Combining

Rule 2 (combine): Sn−1,i ∪ Sn−1,i−1 !→ Sn,i

by S −→ S ∪ {n}

Note that Rule 2 implies the binomial identity
(
n
i

)
=
(
n−1
i−1

)
+
(
n−1
i

)
.

Rules 1 and 2 give geometric interpretations of algebraic relations be-
tween binomials, and are illustrated in Figures 3.8 and Figure 3.9.
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Rule 1:

Select the
compliment
of labels chosen

n− i maps to i

and vice versa.

(indicated by
arrows) so that

Here is one way
to choose 4 out
of 6 labels

←

← Here is the
complimentary
choice of 2 out
of 6 labels

Figure 3.8: Rule 1.

←

←

Here are
all ways
to choose
2 out of 3
labels

Here are
all ways
to choose
2 out of 2
OR
1 out of 2
labels

Figure 3.9: Rule 2.
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We now state the theorem.

Theorem 21. Let Cn,n be the corner weight polynomial for binomial paths
of length 2n in a square binomial box, and let Bn,n be the bi-banded weight
polynomial for binomial paths of length 2n in a square binomial box. Then

Cn,n =
∑
i

(
n

i

)(
n

i

)
c2i+1 (3.15)

Bn,n =
∑
i

(
n

n− i

)(
n

i

)
a2n−2ib2i. (3.16)

Furthermore, let C(i)
n be the set of binomial paths of length 2n in a square

binomial box containing exactly 2i+1 corners; and let B(i)
n be the set of bino-

mial paths of length 2n in a square binomial box whose bi-banded weighting
in a and b contains exactly n− i powers of a. Then there exists a bijection

C(i)
n ←→ B(i)

n . (3.17)

Proof. Equations (3.15) and (3.16) are special cases of Equations (3.3) and
(3.7) respectively. The bijection is specified as follows:

Identify each path in C(i)
n with its labelling in terms of black and red

check marks, as described in the proof of Theorem 19. Identify each path
in B(i)

n with its labelling in terms of marked dark and light vertical bands,
as described in the proof of Theorem 20.

Begin with a path in B(i)
n .

1. Apply Rule 1 to dark banded marks. These become the ‘black labels’
for corner counting paths.

2. Apply Rule 2 (splitting) to light banded marks to get the ‘red labels’
for corner counting paths.

To perform the inverse operation, start with a path in C(i)
n .

1. Apply Rule 1 to the ‘black labels’. These become the dark banded
marks for the bi-banded path.

2. Apply Rule 2 (combining) to the ‘red labels’. The result is the dark
banded marks for the bi-banded path.

The procedure specified is a bijection since Rules 1 and 2 of which it is
composed each specify bijections on labels. (A schema of the proof of The-
orem 21 is given in Figure 3.10.)
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Rule 1: Select the
compliment of the set
of objects chosen with
the first binomial, so
that n− i ↔ i.

Figure 3.10: Bi-banded coefficients biject with corner-counting coefficients.

An example of the bijection between corner-counting paths in a square
box and bi-banded paths in a square box is illustrated in Figures 3.11–3.12.

3.4 The bijection restricts to Dyck paths

The bijection of the last section sends Dyck paths to Dyck paths, so we have
a bonus result.

Definition 12. Let p = v0e1v1 . . . etvt be a Ballot-like path. Then arcs ei
are drawn from the step set {U,D}. Let ei−1 = vi−1vi and ei = vivi+1 be a
pair of consecutive arcs. Then the intermediate vertex vi is defined to be a
peak (respectively valley) provided that (ei−1, ei) is an (U,D) (respectively
(D,U)) pair.

Definition 13. Let Pt;y′,y be the set of Ballot-like paths on the square lattice
which begin at vertex (0, y′) and end at vertex (t, y). A path ω ∈ Pt;y′,y has
peak weight

w(ω) = p|peaks|, (3.18)

where |peaks| is the number of peaks in the path p = v0e1v1...etvt. The peak
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Figure 3.11: PART ‘A’ OF EXAMPLE: For a 3× 3 binomial box, the first
ten of

(
6
3

)
pairs of bijecting bi-banded and corner-counting

paths are shown.
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Figure 3.12: PART ‘B’ OF EXAMPLE: For a 3×3 binomial box, the last ten
of
(
6
3

)
pairs of bijecting bi-banded and corner-counting paths

are shown.



70 CHAPTER 3. COUNTING CORNERS AND BANDED PATHS

weight polynomial for Ballot-like paths is defined to be

Pt;y′,y(p) =
∑

ω∈Pt;y′,y

w(ω). (3.19)

Theorem 22. Let D2n(a, b) be the bi-banded weight polynomial for Dyck
paths of length 2n. Let D̂2n(p) be the peak weight polynomial for Dyck paths
of length 2n. Then

D2n(a, b) =
n∑
i=1

Nn,ia
2(n+1−i)b2(i−1), (3.20)

D̂2n(p) =
n∑
i=1

Nn,ip
i, (3.21)

where the {Nn,i}n≥1,i≥1 are defined by

Nn,i :=
1
i

(
n

i− 1

)(
n− 1
i− 1

)
(3.22)

and are the Narayana numbers.

Proof. The structure of the proof is as follows. We know from Theorem 21
that there exists a bijective mapping, call it ‘φ’, from corner-counting bino-
mial paths in a square box to bi-banded binomial paths in a square box.

A subset of the corner-counting binomial paths are corner-counting Dyck
paths. We show that under the bijection ‘φ’ Dyck paths map to Dyck paths.
In other words, restricting the domain of φ to Dyck paths yields an induced
mapping whose range consists entirely of Dyck paths, too. Conversely, re-
stricting the domain of the inverse function φ−1 to Dyck paths yields an
induced function whose range consists entirely of Dyck paths, as well.

Now corner-counting Dyck paths are identifiable with peak-counting
Dyck paths. Specifically, since Dyck paths always have exactly one more
peak than valley, the problem of counting corners is equivalent to that of
counting peaks, up to a change of exponent in the generating variable. Paths
with i peaks have 2i− 1 corners, for 1 ≤ i ≤ n.

Thus the induced bijection between bi-banded Dyck paths and corner-
counting Dyck paths extends to peak-counting Dyck paths; and the latter are
well known to generate Narayana numbers [96], sequence number A001263.

It remains to show why the bijection of Theorem 21 between bi-banded
and corner-counting binomial paths restricts to a bijection between Dyck
paths. We start with bi-banded Dyck paths.
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bi-banded ⇒ corner-counting
Begin with a bi-banded Dyck path in a square box, and identify it with

its labeling, as in Section 3.2. There is a marked dark vertical band for every
up-step labeled ‘a’, a marked light vertical band for every up-step labeled
‘b’, an unmarked dark vertical band for every down-step labeled ‘b’, and
an unmarked light vertical band for every down-step labeled ‘a’. (See the
example in Figures 3.11 and 3.12.)

Dyck paths must stay on or above the t-axis. Thus, in every horizontal
band, for every down-step there is a mapping to a uniquely identifiable up-
step preceding it. Hence, for every unmarked dark vertical band, there is a
uniquely identifiable marked light vertical band preceding it.

We need to show that after bijecting from bi-banded to corner-counting
paths, the property of staying above the t-axis is preserved. Carrying out
the bijection, unmarked dark vertical bands become marked black labels and
marked light vertical bands become marked red labels, except for possibly
the last one – markings in the rightmost light-banded position being trun-
cated. Thus for every marked black label at position k, there is a uniquely
identifiable marked red label at some position in {1, 2, ..., k − 1}.

But this is precisely what we need to ensure that the corner-counting
path corresponding to the black and red labeled markings is a Dyck path.
Each black check mark at position k sends the path heading downward. To
stop it from descending below the t-axis, we require a corresponding red
check mark at one of the positions {1, 2, ..., k − 1}, which is what we have
shown to be present.

corner-counting ⇒ bi-banded
Begin with a corner-counting Dyck path, and identify it with its labeling,

as in Section 3.1. To every black check mark there corresponds a unique red
check mark with smaller label which prevents the path from dropping below
the t-axis.

Carrying out the bijection to bi-banded paths, black check marks map
to unmarked dark vertical bands and red check marks map to marked light
vertical bands. Hence every down-step weighted ‘b’ in the bi-banded path
is preceded by a uniquely identifiable up-step weighted ‘b’.

Hence none of these b-weighted steps can be below the t-axis, because if
they were there would have to be a down-step weighted b between heights 0
and 1 with no preceding like-weighted up-step, a contradiction.

But the position of the b-weighted steps determine the entire path, given
that it must be connected. Since the lowest height that a b-weighted step
can drop to and still be above the t-axis is height 1, it follows that the lowest
height that a connecting a-weighted step may drop to is height 0; i.e. the
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path must be a Dyck path.

Example 3. Figure 3.13 illustrates the bijection of Figures 3.11 and 3.12
restricted to Dyck paths.
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Figure 3.13: The five Dyck paths of length 2n = 6, illustrating the bijection
between bi-banded paths and Dyck paths counted by peaks.

3.5 A Bi-banded Dyck Path Generating Function

We backtrack a little here, and start by re-deriving the bi-banded weight
polynomial for Dyck paths using generating functions. We define the short-
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hand
D2n(a, b) := D2n(a, b) (3.23)

for the bi-banded weight polynomial for Dyck paths of length 2n. We have

Lemma 23. Let D2n(a, b) be the weight polynomial for bi-banded Dyck paths
of length 2n. Then the weight polynomials satisfy recurrence

D2n(a, b) = a2

(n−1)/2∑
i=0

D2i(a, b)D2(n−1−i)(b, a) (3.24)

with initial condition D0(a, b) = 1. Let the generating function be

f(a, b;x) =
∑
n≥0

D2n(a, b)x2n. (3.25)

Then
f(a, b;x) = 1 + a2x2f(a, b;x)f(b, a;x). (3.26)

Proof. A bi-banded Dyck path of length 2n ≥ 2 may be factored into two
smaller banded Dyck paths, as in Figure 3.14. Summing over all possible
sizes for the subpaths gives recurrence (3.24).

Evaluating the generating function according to the banded weighting
a, b, a, ... and its compliment b, a, b, ... gives

1+a2x2f(a, b;x)f(b, a;x) =

1 + a2 [D0(a, b)D0(b, a)]x2 + a2 [D0(a, b)D2(b, a) +D2(a, b)D0(b, a)]x4 + ...
(3.27)

Comparing Equation (3.27) with the recurrence relation (3.24) gives the
relationship (3.26).

Theorem 24. The generating function for bi-banded Dyck paths of length
2n, (3.25), is

f(a, b;x) =
1 + x2(b2 − a2)−

√
(a2 − b2)2x4 − 2(a2 + b2)x2 + 1

2x2b2
. (3.28)

Proof. Define abbreviations A = f(a, b;x), B = f(b, a;x), S1 = a2x2, S2 =
b2x2. Then, by Lemma 23,

A = 1 + S1AB, (3.29)
B = 1 + S2BA. (3.30)
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Figure 3.14: A bi-banded Dyck path of length ≥ 2 may be factored into
two smaller banded Dyck paths (either of which may be the
zero path), as well as an up and a down step. The rightmost
subpath has opposite banding to the overall path.

Solving each equation for AB and equating gives

A− 1
S1

=
B − 1
S2

(3.31)

so that

B = (A− 1)
S2

S1
+ 1. (3.32)

Substituting Equation (3.32) into Equation (3.29) yields a quadratic for A:

A2(S2) +A(S1 − S2 − 1) + 1 = 0. (3.33)

Solving for A gives

1 + x2(b2 − a2)±
√

(a2 − b2)2x4 − 2(a2 + b2)x2 + 1
2x2b2

. (3.34)

We choose the minus sign so that the specialization f(1, 1;x) gives the cor-
rect generating function for unweighted Dyck paths.
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3.5.1 Bi-banded Dyck path weight polynomials, again

To (re)discover the weight polynomials, expand Equation (3.28) as a series
in x. We obtain

f(a, b;x) = 1
+a2x2

+a2(a2 + b2)x4

+a2(a4 + 3a2b2 + b4)x6

+a2(a6 + 6a4b2 + 6a2b4 + b6)x8

+a2(a8 + 10a6b2 + 20a4b4 + 10a2b6 + b8)x10 (3.35)
...

The triangle of coefficients is

1
1 1

1 3 1
1 6 6 1

1 10 20 10 1
1 15 50 50 15 1

1 21 105 175 105 21 1
1 28 196 490 490 196 28 1

...
(3.36)

Triangle (3.36) is recognizable as the Narayana triangle (also known
as the Catalan triangle) – see Sequence number A001263 of [96] – of
the ‘Narayana’ numbers that were introduced in Theorem 22. Thus we have
found an alternative route to, but not an alternative proof of Equation (3.20)
of Theorem 22.

If we wanted an alternative proof, given the generating function way of
finding the solution, the natural thing to try would be to use induction on
the recurrence relation (3.24). This is not straightforward. It boils down
to proving an identity which is a double sum over some binomials, where
the inductive variable sits both inside the binomials and in the summation
limits.

(n−1)/2∑
i=0

i∑
j=1

n−1−i∑
k=1

Ni,jNn−1−i,ka
2n+4−2j−2kb2j+2k−4 =

n∑
j=1

Nn,ja
2(n+1−j)b2(j−1),

(3.37)
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We turn the problem around, and instead of using an identity to create
an alternative proof, we use the fact that we have already proved bi-banded
weight polynomials to have Narayanan coefficients combinatorially, to con-
clude that the identity must hold. Thus we have

Corollary 25. The identity

n−2∑
i=1

j−1∑
k=0

(
n−1−i
k

)(
n−1−i
k−1

)(
i

j−1−i
)(

i
j−k
)

(n− 1− i)i
=

2j
(
n−1
j

)(
n−2
j

)
(n− j)(j + 1)

(3.38)

holds for that range of variables for which both sides are defined.

The bi-banded weight polynomial for Dyck paths turns out to be one of
the relatively rare instances where a combinatorial proof is easier than other
kinds of proofs, and precedes them.

3.6 Bi-banded Paths by generating functions

We begin with generating functions.

Theorem 26. Let
f(a, b;x) =

∑
n≥0

D2n(a, b)x2n (3.39)

be the generating function for Bi-banded Dyck paths which was given explic-
itly in Theorem 24, and let

g(a, b;h, x) =
∑
t≥0

Bt(a, b;h)x (3.40)

be the generating function for Bi-banded Ballot paths ending at height h.
Then

g(a, b;h, x) = adh/2ebbh/2cxhf(a, b;x)d(h+1)/2ef(b, a;x)b(h+1)/2c. (3.41)

Proof. The proof follows from a decomposition of Ballot paths into Dyck
paths connected by up steps. The ‘adh/2ebbh/2cxh’ term counts the connect-
ing up steps, and the powers of f count the Dyck path components. See
Figure 3.15.
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Figure 3.15: A bi-banded Ballot path may be factored into a sequence of bi-
banded Dyck paths with alternating bandings, connected by a
single step up between each (possibly empty) Dyck path.

Expanding the generating functions given by Theorem 26 for values of
h = 0, 1, 2, 3, ... gives triangles of coefficients of the same general structure
as Triangle (3.36). Fitting polynomials along diagonals we conjecture forms
for the coefficients.

h Guess ith coefficient, × weight Path length
for 0 ≤ i ≤ n− 1

0
(
n+1
i

)(
n
i

)
1
i+1 a2(n−i)b2i 2n

1
(
n+1
i

)(
n
i

)
1
i+1 a2(n−i)+1b2i 2n+ 1

2
(
n+1
i

)(
n
i

)
2n−i+2

(i+1)(i+2) a2(n−i)+1b2i+1 2n+ 2

3
(
n+2
i

)(
n+1
i+1

)
2
i+2 a2(n−i)+2b2i+1 2n+ 3

4
(
n+2
i

)(
n+1
i+1

)
3n−i+6

(i+2)(i+3) a2(n−i)+2b2i+2 2n+ 4

5
(
n+3
i

)(
n+2
i+2

)
3
i+3 a2(n−i)+3b2i+2 2n+ 5

6
(
n+3
i

)(
n+2
i+2

)
4n−i+12

(i+3)(i+4) a2(n−i)+3b2i+3 2n+ 6
...

...
...

...

The h = 0 coefficient is the already proven result for Dyck paths, with
indices shifted so that i starts at zero instead of one. The rest follow an
odd/even pattern, which, given that we know the Dyck path result as a
base case, we are able to prove by induction, using the standard Ballot
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recurrence

Bt(a, b;h) = Bt−1(a, b;h− 1) +Bt−1(a, b;h+ 1), (3.42)

for t, h ≥ 1; with
Bt(a, b; 0) = Bt−1(a, b; 1). (3.43)

We have

Theorem 27. Let Bt(a, b;h) be the weight polynomial for bi-banded Ballot
paths of length t, ending at height h. Then

Bt(a, b;h) =
dt/2e∑
i=0

(
dt/2e
i

)(
dt/2e − 1

i+ dh/2e − 1

)
dh/2e

i+ dh/2e
at−bh/2c−2ibbh/2c+2i (3.44)

for odd t and odd height, h. Also,

Bt(a, b;h) =
t/2∑
i=0

(
t/2
i

)(
t/2− 1

i+ h/2− 1

)
th/4 + t/2− i

(i+ h/2)(i+ h/2 + 1)
at−h/2−2ibh/2+2i

(3.45)
for even t and even height, h ≥ 2.

Proof. The proof is a tedious but straightforward induction.

3.7 Tri-banded generating functions

The tri-banded Dyck path generating function may be found by the same
method as for bi-banded.

Definition 14. A tri-banded weighting on a Ballot-like path is given
by weights on upsteps and downsteps between adjacent heights defined as
follows.

w(upstep: i to i+ 1) = w(downstep: i+ 1 to i) =


a i ≡ 0 (mod 3)
b i ≡ 1 (mod 3)
c i ≡ 2 (mod 3).

(3.46)

Theorem 28. The generating function for Tri-banded Dyck paths,

f(a, b, c;x) =
∑
n≥0

D2n(a, b, c)x2n (3.47)
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is given in closed form by f(a, b, c;x) =

(1− a2x2 − b2x2 + c2x2)−
√

(a2x2 + b2x2 − c2x2 − 1)2−4c2x2(1− a2x2)(1− b2x2)
2c2x2(1− a2x2)

(3.48)

Proof. Define shorthand notation

A := f(a, b, c;x) (3.49)
B := f(b, c, a;x) (3.50)
C := f(c, a, b;x) (3.51)

S1 := a2x2 (3.52)
S2 := b2x2 (3.53)
S3 := c2x2 (3.54)

Using analogous reasoning to that employed to give Equation (3.26) from
Figure 3.14 in Section 3.5, write f in terms of itself with permuted argu-
ments. We have functional relations

A = 1 + S1AB (3.55)
B = 1 + S2BC (3.56)
C = 1 + S3CA (3.57)

Substituting (3.57) into (3.56) into (3.55) and collecting terms gives

(S3 − S1S3)A2 + (S1 + S2 − S3 − 1)A+ (1− S2) = 0 (3.58)

A =
(1− S1 − S2 + S3)±

√
(S1 + S2 − S3 − 1)2 − 4S3(1− S1)(1− S2)

2S3(1− S1)
(3.59)

We have

A|S1=S2=S3=1 =
1±
√

1− 4x2

2x2
. (3.60)

Hence we choose the minus sign, since this gives the generating function
for the Catalan numbers in the particular case S1 = S2 = S3 = 1, as it
should.

Tri-banded Ballot path generating functions may be built out of tri-
banded Dyck path generating functions analogously to the construction of
(3.41) from Figure 3.15. We obtain
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Theorem 29. Let the generating function for Tri-banded Dyck paths which
was given in closed form in Theorem 28 be

f(a, b, c;x) =
∑
n≥0

D2n(a, b, c)x2n (3.61)

and let
g(a, b, c;h, x) =

∑
t≥0

Bt(a, b, c;h)xt (3.62)

be the generating function for Tri-banded Ballot paths ending at height h.
Then g is given in terms of powers of f as

g(a, b, c;h, x) =

adh/3ebd(h−1)/3ecd(h−2)/3exhf(a, b, c;x)d(h+1)/3ef(b, c, a;x)dh/3ef(c, a, b;x)d(h−1)/3e.
(3.63)

In the next section, similar arguments to those used in the bi and tri-
banded cases may be utilized to obtain n-banded Dyck and Ballot path
generating functions. Successive n-banded Dyck path generating functions
each satisfy a quadratic functional equation, as we will see.
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3.8 n-banded generating functions

Banded paths are a special case for which we can deal with an unbounded
number of decorations. We extend the work of the previous section to the
case of arbitrary n-bandings, instead of just bi-banded and tri-banded paths.
To give the n-banded generating function explicitly, we utilize orthogonal
polynomials, which we note are the same family that shall make another
appearance in Part II as Ballot paving polynomials.

Definition 15. An n-banded weighting on a Ballot-like path is given by
weights on upsteps and downsteps between adjacent heights as follows.

w(upstep: [i− 1] to [i]) = w(downstep: [i] to [i− 1]) = si, (3.64)

for i ≥ 1, where
[i] ≡ i (mod n). (3.65)

s1

s2

...

sn

s1

s2

...

...

...

snsnsnsnsnsn

s1 s1 s1 s1

s1s1s1 s1

s2s2

s2 s2

Theorem 30. For each n ∈ N, the n-banded Dyck path generating function,
A(x), satisfies quadratic functional equation:

SnPn−1(1)A2+

[(
n−2∑
i=0

Si+1Pi(1)

)
− SnP (1)

n−2 − 1

]
A−

[(
n−3∑
i=0

Si+2P
(1)
i (1)

)
− 1

]
=0,

(3.66)
where

S[i] := s2[i]x
2, (3.67)

shifted orthogonal polynomials P (j)
k (µ) are defined by three term recurrence

P
(j)
k (µ) = µP

(j)
k−1(µ)− Sk+jP

(j)
k−2(µ), (3.68)

together with initial conditions

P
(j)
0 (µ) = 1 (3.69)

P
(j)
1 (µ) = µ; (3.70)
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and the orthogonal polynomials Pk(µ) are equated with the zero-shifted ones:

Pk(µ) := P
(0)
k (µ). (3.71)

Proof. Define shorthand notation

A[i] := f(s[i], ..., s[i+n−1];x), (3.72)

Using analogous reasoning to that employed to give Equation (3.26)
from Figure 3.14 in Section 3.5, write f in terms of itself with permuted
arguments. We have functional relations

A1 = 1 + S1A1A2 (3.73)
A2 = 1 + S2A2A3 (3.74)

...
...

...
An = 1 + SnAnA1 (3.75)

We first prove that for 2 ≤ k < n,

k∏
i=1

Ai =
Pk−1(1)A1 − P (1)

k−2(1)∏k−1
i=1 Si

. (3.76)

The proof is by induction. For the base case, compare (3.73) with (3.76),
evaluated at k = 2. Now make inductive assumption (3.76), up to some
k < n. Then

k+1∏
i=1

Ai =

(
k−1∏
i=1

Ai

)
(AkAk+1) (3.77)

=

(
k−1∏
i=1

Ai

)(
Ak − 1
Sk

)
(3.78)

=

(
Pk−1(1)A1 − P (1)

k−2(1)
)
− Sk−1

(
Pk−2(1)A1 − P (1)

k−3(1)
)

∏k
i=1 Si

(3.79)

=
Pk(1)A1 − P (1)

k−1(1)∏k
i=1 Si

, (3.80)

where in line (3.78) we used functional relations (3.73)–(3.75), in line (3.79)
we used the inductive assumption, and in line (3.80) we used the orthogonal
polynomial recurrence relation (3.68). Hence Equation (3.76) is shown.
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Notice that repeatedly substituting functional relations (3.73)–(3.75), as
follows:

A1 = 1 + S1A1A2 (3.81)
= 1 + S1A1(1 + S2A2A3) (3.82)
= 1 + S1A1(1 + S2A2(1 + S3A3A4)) (3.83)
...

...
= 1 + S1A1(1 + S2A2(1 + . . . (1 + SnAnA1))) (3.84)

finally wraps to give

A1 = 1 +
n−1∑
i=1

 i∏
j=1

SjAj

+

 n∏
j=1

SjAj

A1. (3.85)

Abbreviating
A := A1, (3.86)

and collecting terms in (3.85) gives the theorem.

It is interesting to note that banded Dyck path generating functions are
quadratic, whereas those in a strip (as we will see in Chapter 9) have rational
generating functions. We might have expected banded paths to behave like
strip paths, since a banding is just a repetition of the finite weights in a
strip repeated over and over. The quadratic generating function is telling us
that despite the similarity between strip paths and banded paths, the latter
have more in common with un-weighted paths in the half plane.

As in the previous section, Ballot path generating functions may be built
out of Dyck path generating functions. This holds for any n-banding in an
analogous way to that for which the bi-banded and tri-banded Ballot path
generating functions were constructed in Theorems 26 and 29. The result for
general n is of just the same form as (3.63), with n copies of f corresponding
to n cyclings of its arguments.

Theorem 31. Let the generating function for n-banded Dyck paths which
was given in closed form in Theorem 30 be

f(s1, . . . , sn;x) =
∑
n≥0

D2n(s1, . . . , sn)x2n (3.87)

and let
g(s1, . . . , sn;h, x) =

∑
t≥0

Bt(s1, . . . , sn;h)xt (3.88)
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be the generating function for n-banded Ballot paths ending at height h.
Then g is given in terms of powers of f as

g(s1, . . . , sn;h, x) = xh

(
n−1∏
i=0

s
d(h−i)/ne
i f

(
s[i], ..., s[i+n−1];x

)d(h+1−i)/ne
)
.

(3.89)
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Pavings
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Chapter 4

Introduction to Pavings

Directed lattice paths turn out to be intimately connected to underlying
pavings, where looking at pavings instead of paths can, by several distinct
methods, strip away at least one dimension from the problem. In particular,
two dimensional directed lattice path enumeration problems can be solved
utilizing pavings on a one dimensional path graph. We begin with the
necessary definitions.

4.1 Definitions

A monomer is a single distinguished vertex in a graph. A dimer is a
distinguished pair of adjacent vertices. A trimer is a distinguished triple
of vertices v1v2v3 such that v1 is adjacent with v2 and v2 is adjacent with
v3. An n-mer is a distinguished set of n distinct vertices v1v2...vn such that
vi is adjacent with vi+1 for 1 ≤ i < n. A non-covered vertex is a vertex
which is not part of any n-mer for n ≥ 1. A non-covered vertex is also called
a 0-mer.

A paver is an n-mer, for any n ∈ N≥0. A paving, (G, p), is a graph, G,
together with a specified collection of pavers, p, such that no two distinct
pavers share a vertex. We abbreviate p ≡ (G, p) when it is clear from the
context which is the underlying graph. Visually, we represent a paving on a
graph by colouring the pavers a different colour from the rest of the graph,
or else by thickening the corresponding edges/vertices.

This use of the terms ‘paving’ and ‘paver’ is derived from the more
standard description of a paving as a tiling by the bijection indicated in
Figure 4.1. 0 The special case of a paving which utilizes only dimers and
non-covered vertices is commonly called a matching.

87
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Figure 4.1: A paving with a monomer, a dimer, a trimer and two non-
covered vertices. The upper picture is the representation we
use. The lower picture is a more standard representation as a
tiling.

The pavings required for this thesis all occur on a ‘path graph’. A path
graph is a graph whose vertices may be listed in order such that each vertex
is adjacent to the vertex immediately preceding it in the list (if there is a
preceeding vertex), the vertex immediately following it in the list (if there
is a following vertex), and to no other vertices.

Similarly, a path digraph is a digraph whose vertices may be listed in
order such that each vertex is adjacent to the vertex immediately preceding
it in the list (if there is a preceeding vertex), the vertex immediately following
it in the list (if there is a following vertex), and to no other vertices. The
path digraph (V,A) associated with the path graph (V,E) is that
digraph with vertex set V and arc set A where A = ∪uv∈E{uv, vu}.

We commonly use the same name for a path (di)graph as for its under-
lying vertex set. Examples of underlying vertex sets for path graphs which
we often use are the set Z, which we term the (number) line, the set Z≥0,
which we term the half (number) line and the set {0, 1, 2, ..., n−1}, which
we term a (number) line segment. We denote this last mentioned finite
path graph Pn. In each of the three named cases the edges are pairs of
adjacent integers.

Recall that an arc uv is said to be ‘of the form’ of the vector w provided
that v − u = w. We refer to arcs of the form (k, k ± i) as being (based at)
height k. Similarly, we refer to vertices labelled k as being at height k.

Recall that a ‘weight function’ is a function which maps a set of com-
binatorial objects into a field; the field usually being C, R or extensions
thereof. Let α ∈ p be a paver. Then w(α) is the weight of the paver.
Unless otherwise specified, the weight of a non-covered vertex is always µ;
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i.e.
w(α0) = µ (4.1)

for α0 a 0-mer.
The weight of a paving, p, on a graph is the product of the weights of

the pavers, α, in the paving; i.e.

w(p) =
∏
α∈p

w(α). (4.2)

A uniform weighting on a paving is a weighting such that all pavers
of the same length have the same weight, independently of location, i.e. for
fixed n,

w(n-mer) = constant. (4.3)

A decorated paving is a weighted paving whose weighting is not uniform.
A paving (weight) polynomial is a polynomial in µ which is the sum

of the weights of all of the pavings on a graph. In particular, the paving
weight polynomial on the path graph Pk is indexed by the order of the path
graph, so that

Pk(µ) =
∑

p a paving on Pk

w(p). (4.4)

Pavings are closely connected to cycles. Recall that a ‘cycle’ on a
(di)graph G is a walk v0v1 . . . vn−1vn on G such that v0v1 . . . vn−1 is a path,
where we also recall that a path is a walk with no repeated vertices. A cycle
configuration on a (di)graph G is any set of cycles on G. In particular,
a basic configuration (of cycles) on a (di)graph, G, is a set of cycles
on G such that no two cycles in the set share a vertex. An uncovered
vertex in a basic configuration is a vertex not contained in any cycle of the
configuration. A covering configuration (of cycles) on a (di)graph, G,
is a basic configuration such that there are no uncovered vertices in G.

The weight of an n-cycle, for positive n, on (di)graph G, is the product
of the weights of the vertices and edges/arcs in the cycle, multiplied by −1;
i.e.

w(c) = −
∏
v,e∈c

w(v)w(e) (4.5)

for c the cycle on G, each v a vertex and each e an edge/arc. When ver-
tices are unweighted, i.e. implicitly taken to have weight 1, Equation (4.5)
simplifies to

w(c) = −
∏
e∈c

w(e). (4.6)
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A 0-cycle is a cycle consisting of just one vertex, i.e. an uncovered vertex.
We define the weight of a 0-cycle separately, to be

w(c0) = µ, (4.7)

where c0 is a 0-cycle / uncovered vertex. Note that the definition of the
weight of an n-cycle differs from the definition of the weight of a generic
walk by the factor of − 1. The weight of a cycle configuration on a
(di)graph G is the product of the weights of the cycles in the configuration

w(C) =
∏
c∈C

w(c), (4.8)

where c’s are cycles in the cycle configuration C and we recall that w(c0) = µ
for c0 a 0-cycle.
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4.2 Motivation

4.2.1 Paths biject to walks

Start with an example. Consider the walk on the half line that is specified
by vertex list: 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 4, 3, 2, 1, 0. This walk has length 14,
starts at 0 and finishes at 0. The walk is difficult to illustrate on the half line
(see Fig 4.2, left), because it repeatedly visits the same vertices. However
creating an axis for time, and stretching the walk out in time, means that
each vertex has a distinct time coordinate. The new vertex list is (0,0),
(1,1), (2,2), (3,3), (4,2), (5,3), (6,4), (7,5), (8,4), (9,5), (10,4), (11,3), (12,2),
(13,1), (14,0), and now we have a path in the half plane, which is easy to
illustrate (see Fig 4.2, right).

Figure 4.2: A walk on the half line becomes a path in the half plane.

The principle is general: walks on a graph with vertex set V biject to
paths on a directed graph with vertex set V × Z≥0. Walks become paths
because the extra coordinate distinguishes between vertices, and the new
graph is a digraph whether or not the old one was, because paths on this
new graph must always advance in time.

Definition 16. Let G = (V,E) be a graph. For each edge e = {u, v} ∈ E,
create a pair of arcs

a = ((u, t), (v, t+ 1)), (4.9)
b = ((v, t), (u, t+ 1)). (4.10)

Let
A = ∪e∈E{a, b} (4.11)
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be the union of the arcs thus created. Then the digraph D = (V × Z≥0, A)
is called the the (time) extended digraph of G. Let H = (V,E′) be the
associated digraph of G. Then we call H the (time) compressed digraph
of D.

The following well-known observations follows from Definition 16.

Lemma 32. Any set of walks W on a graph G is in bijection with a set of
directed paths P on the time extended digraph of G. The bijection φ :W 7→ P
is defined by

φ(v0e1v1 . . . emvm) = φ(v0)φ(e1)φ(v1) . . . φ(em)φ(vm) (4.12)

where
φ(vt) = (vt, t) (4.13)

and
φ(et) := φ(vt−1vt) = ((vt−1, t− 1), (vt, t)). (4.14)

Thus the enumeration problem of counting walks on a graph is the same
as the enumeration problem of counting paths on a new, directed graph. In
particular, counting walks on the half line is the same as counting directed
paths in the half plane.

One more piece of terminology will be useful in the sequel.

Definition 17. Let W be a set of walks (either directed or undirected) on
a (di)graph G. Let P be the isomorphic set of directed paths (defined by
Lemma 32) on the extended digraph, D, of G. Let H be the associated
digraph of G. Then we say that

1. G is the graph underlying W.

2. H is the digraph underlying W.

3. D is the digraph underlying P.

4. H is the compressed digraph underlying P.

So now we have paths as walks. The next thing is to relate walks to
cycles.
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4.2.2 Walking or cycling?

The walk 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 4, 3, 2, 1, 0 of Figure 4.2 is made up of cycles.
To see this explicitly, successively remove cycles as follows.
(i) Parse the vertex list from left to right.
(ii) When a vertex, v, occurs which has been visited before, extract the
portion of the walk between the two copies of v, up to and including the
second copy, and add it to the list of cycles.
(iii) Repeat from step (i) until there are no more duplicated vertices in the
walk.

0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 4, 3, 2, 1, 0
↓

0, 1,2, 3, 4, 5, 4, 5, 4, 3, 2, 1, 0
↓

0, 1, 2, 3,4, 5, 4, 3, 2, 1, 0
↓

0, 1, 2, 3,4, 3, 2, 1, 0
↓

0, 1, 2,3, 2, 1, 0
↓

0, 1,2, 1, 0
↓

0,1, 0
↓
0

(4.15)

Because this walk ended at the same height it started at, the procedure
terminates with just that initial vertex,

{0}, (4.16)

together with the list of cycles

(2, 3), (4, 5), (4, 5), (3, 4), (2, 3), (1, 2), (0, 1). (4.17)

Had the walk ended up somewhere else from where it started, we would have
obtained a (shortest) path between beginning and ending points; as well as
a list of cycles extracted.

4.2.3 ‘Cycle paths paved’

The representation of a walk as a shortest path together with a sequence
of cycles has been used by Viennot [105] and subsequently others to biject
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directed lattice paths to combinatorial objects called ‘heaps’. ‘Heaps’ are
then enumerated in terms of ‘trivial heaps’ which in turn are in bijection with
pavings. In Part III of this thesis we introduce a number of new methods
to utilize pavings in the enumeration of paths.

In all methods where pavings are used to enumerate directed lattice
paths, the structure of the paving reflects the structure of cycles permissi-
ble in the underlying compressed digraph. We wish to be able to enumerate
many different kinds of directed paths, specified with many different allowed
step sets. These correspond to walks on a large collection of different di-
graphs. In the next chapter we define suitable classes of pavings to capture
the essential cycle information for almost all digraphs of interest.

This work builds upon the framework laid down by Viennot, [104], [103],
in mapping cycles on Ballot digraphs to dimers, an example of which is
illustrated in Figure 4.3.

Figure 4.3: All basic configurations of cycles on the path digraph with four
vertices are illustrated, along with a bijection to pavings.



Chapter 5

Pavings for uniformly
weighted digraphs

In this chapter we introduce a large class of uniformly weighted digraphs.
Each section introduces a new variety of digraph, which is the compressed
underlying digraph for a directed lattice path enumeration problem of in-
terest.

Within each section the following agenda is pursued.

1. Investigate the cycle structure suppported by the variety of digraph,
finding the nature of the individual cycles as well as determining all
possible basic configurations of cycles on such digraphs of arbitrary
finite order.

2. Define suitably (uniformly) weighted pavers, hence a family of paving
polynomials indexed by the order of the digraph, and a mapping be-
tween cycles and pavers such that the paving polynomials encode the
information we will need in the sequel about the basic cycle structures
of the given variety of digraph.

3. Explicitly list the first few paving polynomials, for small order di-
graphs.

4. Use combinatorics of pavings to find a recurrence on the paving poly-
nomials.

5. Find the roots of the characteristic polynomial of the recurrence.

6. Write an explicit closed form expression for the family of paving poly-
nomials.

95



96CHAPTER 5. PAVINGS FOR UNIFORMLY WEIGHTED DIGRAPHS

With each new variety of digraph introduced, some new combinatorial
or algebraic feature arises. Depending on the structure of the digraph, the
difficulty of steps 1–6 may individually lie anywhere in the range trivial to
formidable. The paving polynomials arising from uniformly weighted Ballot-
like and Motzkin-like path enumeration problems are the classic Fibonacci
and Motzkin orthogonal polynomials, as discovered and explicitly solved by
Viennot [104], [103]. In contrast Jump-step and Lukasiewicz paths give rise
to paving polynomials which are no longer orthogonal, for which step 5 in
particular may be intractable.

We begin with the compressed underlying digraph for Ballot paths.

5.1 Ballot digraphs

This section on Ballot digraphs and associated pavings, as well as the next
section, on Motzkin digraphs and pavings, is a review of the fundamental
idea of Viennot, upon which we will build the rest of our paving theory.

Definition 18. Let Dk = (V,A) be a digraph of order k with vertex set
V = {0, 1, . . . k − 1}, and arc set A composed of

• up arcs of the form (i, i+ 1), and

• down arcs of the form (i, i− 1).

Then any digraph isomorphic to Dk is a Ballot digraph.

We note that Ballot digraphs are path digraphs, as was indicated in Fig-
ure 4.3. In Figure 5.1 we show a generic Ballot digraph drawn horizontally,
illustrating some typical cycles. Of the several possible different uniform
weightings on Ballot-like paths, we choose one consistent with the path enu-
meration problems considered in Part I and define pavings according to that
choice.

Definition 19. Standard uniform Ballot arc weights are

w(up arc) = 1 (5.1)
w(down arc) = λ (5.2)

Note that when λ = 1 this is called the trivial (uniform) Ballot arc
weighting.
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λ λ

11

Figure 5.1: A basic cycle configuration on a Ballot digraph bijects to a
paving with dimers on a path graph.

Recall that a paving on a graph is a set of pavers such that no two pavers
share a vertex. We see in Figure 5.1 that only 2-cycles are possible on a
Ballot digraph, so all basic cycle configurations project to dimers. Thus the
pavers for Ballot pavings are 0-mers (i.e. non-covered vertices) and dimers.

Definition 20. Standard uniform Ballot paver weights are

w(dimer) = −λ (5.3)
w(0-mer) = µ. (5.4)

These weights, in conjunction with the definition of a paving polynomial, give
standard uniform Ballot paving polynomials. Note that for λ = 1 the
weights are termed trivial (uniform) paver weights and the polynomials
trivial (uniform) Ballot paving polynomials.

The first few standard uniform Ballot paving polynomials are as shown in
Figure 5.2. There is a linear recurrence relation on these paving polynomials,
which Figure 5.3 allows us to see. Having found the three term constant
coefficient recurrence, we solve it by the standard ansatz. Let

Pk = zk. (5.5)

Substitute (5.5) into recurrence

Pk+1 = µPk − λPk−1 (5.6)

to get characteristic equation

z2 − µz + λ = 0. (5.7)
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Figure 5.2: The first few Ballot polynomials.

Figure 5.3: A three term recurrence for Ballot paving polynomials may be
derived using the pavings. The question marks indicate that the
corresponding edge may or may not be paved, thus the first line
of the figure indicates that Pk+1(µ) is a sum over all possible
pavings on the line segment.
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Solve for z to get

z± =
µ±

√
µ2 − 4λ
2

. (5.8)

Thus, solving Pk = Azk+ + Bzk− for constants A and B determined by the
initial conditions P0(µ) = 1 and P1(µ) = µ, we obtain

Lemma 33. The family of standard uniform Ballot paving polynomials,
{Pk(µ)}k≥0, satisfies 3-term recurrence

Pk+1(µ) = µPk(µ)− λPk−1(µ) (5.9)

with characteristic equation

z2 − µz + λ = 0. (5.10)

The polynomials are given in closed form by

Pk(µ) =
(µ+

√
µ2 − 4λ)k+1 − (µ−

√
µ2 − 4λ)k+1

2k+1
√
µ2 − 4λ

. (5.11)

Note that subject to trivial uniform weighting λ = 1, this family of orthogonal
polynomials are those termed Fibonacci polynomials.

5.2 Motzkin digraphs

This section on Motzkin digraphs and associated pavings is, as in the Ballot
case, a review of Viennot’s basic insight. The modification required in the
shift from Ballot to Motzkin pavings allows loops on the digraph, and is the
same modification that will be required in all of our later generalizations in
order to allow loops in the digraphs (or, equivalently, horizontal steps in the
paths).

Definition 21. Let Dk = (V,A) be a digraph of order k with vertex set
V = {0, 1, . . . k − 1}, and arc set A composed of

• up arcs of the form (i, i+ 1),

• down arcs of the form (i, i− 1), and

• loops of the form (i, i).

Then any digraph isomorphic to Dk is a Motzkin digraph.
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Note that a Motzkin digraph is the same as a Ballot digraph except for
the addition of loops on the vertices. These loops mean that directed walks
on the time extended digraph may take horizontal steps in addition to up
and down steps.

We choose to develop pavings for the following uniform weighting.

Definition 22. Standard uniform Motzkin arc weights are

w(up arc) = 1 (5.12)
w(down arc) = λ (5.13)

w(loop) = b (5.14)

The Motzkin digraph supports 2-cycles and 1-cycles, as illustrated in
Figure 5.4. We define weightings on Motzkin-pavers as follows.

Definition 23. Standard uniform Motzkin paver weights are

w(dimer) = −λ (5.15)
w(monomer) = −b (5.16)

w(0-mer) = µ. (5.17)

These weights, in conjunction with the definition of a paving polynomial,
give standard uniform Motzkin paving polynomials.

b bb

λλ

11

Figure 5.4: On a Motzkin digraph, cycles biject to monomer-dimer pavings.

The first few standard uniform Motzkin paving polynomials are given in
Figure 5.5.

Motzkin polynomials satisfy a three term recurrence as illustrated in
Figure 5.6. We have Lemma:
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Figure 5.5: The first few standard uniform Motzkin polynomials.

Figure 5.6: A three term recurrence for Motzkin paving polynomials de-
rived using pavings. The question marks indicate that the cor-
responding edge or vertex may or may not be paved, and we
are summing over all such possibilities. With regard to the last
vertex, there are three ways in which this can happen. Either
the last vertex is a monomer, the last vertex is uncovered, or
the last vertex is part of a dimer.
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Lemma 34. The family of standard uniform Motzkin paving polynomials
{Pk(µ)}k≥0 satisfies 3-term recurrence

Pk+1(µ) = (µ− b)Pk(µ)− λPk−1 (5.18)

with characteristic equation

z2 − (µ− b)z + λ = 0 (5.19)

The polynomials are given in closed form by

Pk(µ) =
(µ− b+

√
(µ− b)2 − 4λ)k+1 − (µ− b−

√
(µ− b)2 − 4λ)k+1

2k+1
√

(µ− b)2 − 4λ
.

(5.20)
Note that for λ = 1, these are the family of orthogonal polynomials called
Motzkin polynomials.

Comment 2. We see that the form of the solution for the Motzkin paving
polynomial is very similar that for the Ballot paving polynomial, with just a
shift in the argument from µ to µ − b. This observation is general: adding
loops (all with the same weight) to the vertices of a digraph, or, equivalently,
allowing (identically weighted) monomers in a paving, changes the paving
polynomial only by a shift in argument; since loops must always map to either
monomers or uncovered vertices, independently of the rest of the paving.

5.3 ‘2-up’ digraphs

Definition 24. Let Dk = (V,A) be a digraph of order k with vertex set
V = {0, 1, . . . k − 1}, and arc set A composed of

• short up arcs of the form (i, i+ 1), i.e. i i+1,

• long up arcs of the form (i, i+ 2), i.e. i i+1 i+2 and

• down arcs of the form (i, i− 1), i.e. ii−1 .

Then any digraph isomorphic to Dk is a 2-up digraph. When A also
includes an extra set of arcs:

• loops of the form (i, i), i.e. i
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then digraphs isomorphic to Dk are called Lukasiewicz 2-up digraphs.

By Comment 2 of the previous section, it is sufficient to find 2-up paving
polynomials, since Lukasiewicz 2-up paving polynomials are obtainable from
the former by a shift in argument.

In Figure 5.7 we illustrate an unweighted 2-up digraph, with a pair of
generic cycles shown. There are two kinds: those of the form (short up step,
down step) and those of the form (long up step, down step, down step);
which map to dimers and trimers respectively.

11

1 1 1

Figure 5.7: An unweighted 2-up digraph with a cycle of both possible types
shown, with bijection to dimers and trimers indicated.

We define three different uniform arc weightings on 2-up digraphs, from
which follow three uniform paver weightings on the path graph, as illustrated
in Figures 5.8, 5.9 and 5.10.

Definition 25. Uniform 2-up standard arc weighting ‘1’ is

w(short up arc) = 1 (5.21)
w(long up arc) = 1 (5.22)
w(down arc) = λ (5.23)

Definition 26. Uniform 2-up standard paver weighting ‘1’ is

w(trimer) = −λ2 (5.24)
w(dimer) = −λ (5.25)
w(0-mer) = µ. (5.26)

These weights, in conjunction with the definition of a paving polynomial,
give Uniform 2-up standard weighting ‘1’ paving polynomials.



104CHAPTER 5. PAVINGS FOR UNIFORMLY WEIGHTED DIGRAPHS

Figure 5.8: Uniform weighting ‘1’ on a 2-up digraph with cycles bijecting to
dimers and trimers.

Definition 27. Uniform 2-up standard arc weighting ‘2’ is

w(short up arc) = η (5.27)
w(long up arc) = 1 (5.28)
w(down arc) = 1 (5.29)

Definition 28. Uniform 2-up standard paver weighting ‘2’ is

w(trimer) = −1 (5.30)
w(dimer) = −η (5.31)
w(0-mer) = µ. (5.32)

These weights, together with the definition of a paving polynomial, give Uni-
form 2-up standard weighting ‘2’ paving polynomials.

Figure 5.9: Uniform weighting ‘2’ on a 2-up digraph with cycles bijecting to
dimers and trimers.
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Definition 29. Uniform 2-up standard arc weighting ‘3’ is

w(short up arc) = 1 (5.33)
w(long up arc) = γ (5.34)
w(down arc) = 1 (5.35)

Definition 30. Uniform 2-up standard paver weighting ‘3’ is

w(trimer) = −γ (5.36)
w(dimer) = −1 (5.37)
w(0-mer) = µ. (5.38)

These weights, together with the definition of a paving polynomial, give Uni-
form 2-up standard weighting ‘3’ paving polynomials.

Figure 5.10: Uniform weighting ‘3’ on a 2-up digraph with cycles bijecting
to dimers and trimers.

We develop the paving recurrence for Uniform weighting ‘1’. The first
few such 2-up paving polynomials are illustrated in Figure 5.11. Figure 5.12
illustrates the derivation of the four-term recurrence in the following Lemma.

Lemma 35. The family, {Pk(µ)}k≥0, of uniform 2-up paving polynomials
subject to standard weighting ‘1’, satisfies four-term recurrence

Pk+1(µ) = µPk(µ)− λPk−1(µ)− λ2Pk−2(µ) (5.39)

with characteristic equation

z3 − µz2 + λz + λ2 = 0. (5.40)

Thus
Pk = Azk1 +Bzk2 + Czk3 (5.41)
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Figure 5.11: The first few 2-up polynomials under Uniform weighting ‘1’.

Figure 5.12: A four term recurrence for ‘2-up’ paving polynomials derived
using pavings subject standard weighting ‘1’. The question
marks indicate that we are summing over all possibilities such
that edges so marked are either paved or not paved.
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where A, B and C are constants obtainable using the the initial conditions
provided by Figure 5.11, and z1, z2, z3 are the roots of characteristic equa-
tion (5.41). Further, sending

Pk(µ) 7→ Pk(µ− b) (5.42)

yields the family of uniform Lukasiewicz 2-up paving polynomials subject to
2-up standard weighting ‘1’, with the additional arc weighting on the digraph
of

w(loop arc) = b; (5.43)

and the corresponding additional paver weighting

w(monomer) = −b. (5.44)

We note that equation (5.41) may trivially be found explicitly using a
computer algebra system, in terms of powers of sums of fractions of sums of
cube roots of sums of square roots. But we can do better than write down the
resulting cumbersome expression. Looking ahead to Chapter 8, we will find
that µ is not the most convenient variable, and that 2-up paving polynomials
may be written in other more ‘natural’ variables which yield more concise
expressions.

5.4 ‘3-up’ digraphs

Definition 31. Let Dk = (V,A) be a digraph of order k with vertex set
V = {0, 1, . . . k − 1}, and arc set A composed of

• short up arcs of the form (i, i+ 1),

• medium up arcs of the form (i, i+ 2),

• long up arcs of the form (i, i+ 3) and

• down arcs of the form (i, i− 1).

Then any digraph isomorphic to Dk is a 3-up digraph. When A also
includes an extra set of arcs:

• loops of the form (i, i),

then digraphs isomorphic to Dk are called Lukasiewicz 3-up digraphs.
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Figure 5.13: An unweighted 3-up digraph with the three generic types of
cycle shown, bijecting to dimers, trimers and 4-mers.

Figure 5.13 indicates the three kinds of cycle possible on a 3-up digraph.
These biject to dimers, trimers and 4-mers. Four more choices of uniform
weightings are defined below and illustrated in figures 5.14 – 5.17, with more
obtainable by combining those possibilities.

Definition 32. Uniform 3-up standard arc weighting ‘1’ is

w(short up arc) = 1 (5.45)
w(medium up arc) = 1 (5.46)

w(long up arc) = 1 (5.47)
w(down arc) = λ (5.48)

Definition 33. Uniform 3-up standard paver weighting ‘1’ is

w(4-mer) = −λ3 (5.49)
w(trimer) = −λ2 (5.50)
w(dimer) = −λ (5.51)
w(0-mer) = µ. (5.52)

These weights, together with the definition of a paving polynomial, give Uni-
form 3-up standard weighting ‘1’ paving polynomials.

Definition 34. Uniform 3-up standard arc weighting ‘2’ is

w(short up arc) = η (5.53)
w(medium up arc) = 1 (5.54)

w(long up arc) = 1 (5.55)
w(down arc) = 1 (5.56)
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Figure 5.14: Uniform weighting ‘1’ on a 3-up digraph with cycles bijecting
to pavers.

Definition 35. Uniform 3-up standard paver weighting ‘2’ is

w(4-mer) = −1 (5.57)
w(trimer) = −1 (5.58)
w(dimer) = −η (5.59)
w(0-mer) = µ. (5.60)

These weights, in conjunction with the definition of a paving polynomial,
give Uniform 3-up standard weighting ‘2’ paving polynomials.

Figure 5.15: Uniform weighting ‘2’ on a 3-up digraph with cycles bijecting
to pavers.

Definition 36. Uniform 3-up standard arc weighting ‘3’ is

w(short up arc) = 1 (5.61)
w(medium up arc) = γ (5.62)

w(long up arc) = 1 (5.63)
w(down arc) = 1 (5.64)
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Definition 37. Uniform 3-up standard paver weighting ‘3’ is

w(4-mer) = −1 (5.65)
w(trimer) = −γ (5.66)
w(dimer) = −1 (5.67)
w(0-mer) = µ. (5.68)

These weights, in conjunction with the definition of a paving polynomial,
give Uniform 3-up standard weighting ‘3’ paving polynomials.

Figure 5.16: Uniform weighting ‘3’ on a 3-up digraph with cycles bijecting
to pavers.

Definition 38. Uniform 3-up standard arc weighting ‘4’ is

w(short up arc) = 1 (5.69)
w(medium up arc) = 1 (5.70)

w(long up arc) = δ (5.71)
w(down arc) = 1 (5.72)

Definition 39. Uniform 3-up standard paver weighting ‘4’ is

w(4-mer) = −δ (5.73)
w(trimer) = −1 (5.74)
w(dimer) = −1 (5.75)
w(0-mer) = µ. (5.76)

These weights, in conjunction with the definition of a paving polynomial,
give Uniform 3-up standard weighting ‘4’ paving polynomials.
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Figure 5.17: Uniform weighting ‘4’ on a 3-up digraph with cycles bijecting
to pavers.

We develop the paving recurrence for Uniform weighting ‘1’. Proceeding
by analogy with Figure 5.12, we derive

Lemma 36. The family, {Pk(µ)}k≥0, of uniform 3-up paving polynomials
subject to standard weighting ‘1’, satisfies five-term recurrence

Pk+1(µ) = µPk(µ)− λPk−1(µ)− λ2Pk−2(µ)− λ3Pk−3(µ) (5.77)

with characteristic equation

z4 − µz3 + λz2 + λ2z + λ3 = 0 (5.78)

Thus
Pk = Azk1 +Bzk2 + Czk3 +Dzk4 (5.79)

where A, B, C and D are constants and z1, z2, z3, z4 are the roots of char-
acteristic equation (5.78). Further, sending

Pk(µ) 7→ Pk(µ− b) (5.80)

yields the family of uniform Lukasiewicz 3-up paving polynomials subject to
3-up standard weighting ‘1’, with the additional arc weighting on the digraph
of

w(loop arc) = b; (5.81)

and the corresponding additional paver weighting

w(monomer) = −b. (5.82)

Note that solving characteristic equation (5.78) for z gives four roots,
each of which is a long expression in µ (and λ) involving sums, fractions,
square and cubic roots. The roots z1, z2, z3 and z4 may be simplified by the
methods of Chapter 8.



112CHAPTER 5. PAVINGS FOR UNIFORMLY WEIGHTED DIGRAPHS

5.5 ‘d-up’ digraphs

Definition 40. Let Dk = (V,A) be a digraph with vertex set V = {0, 1, . . . k−
1}, and arc set A composed of

• u-up arcs of the form (i, i+ u), for values of u in {1, . . . d}; and

• down arcs of the form (i, i− 1).

Then any digraph isomorphic to Dk is a d-up digraph. When A also
includes an extra set of arcs:

• loops of the form (i, i),

then digraphs isomorphic to Dk are called Lukasiewicz d-up digraphs.

We define one of many possible uniform weightings.

Definition 41. Uniform d-up standard arc weighting ‘1’ is

w(u-up arc) = 1 (5.83)
w(down arc) = λ (5.84)

Definition 42. Uniform d-up standard paver weighting ‘1’ is

w(u-mer) = −λu−1 for u ≥ 2 (5.85)
w(0-mer) = µ. (5.86)

These weights, in conjunction with the definition of a paving polynomial,
give Uniform d-up standard weighting ‘1’ paving polynomials.

Then

Lemma 37. The family, {Pk(µ)}k≥0, of uniform d-up paving polynomials
subject to standard weighting ‘1’, satisfies (d+ 2)-term recurrence

Pk+1(µ) = µPk(µ)− λPk−1(µ)− λ2Pk−2(µ)− ...− λdPk−d(µ) (5.87)

with characteristic equation

zd+1 − µzd + λzd−1 + λ2zd−2 + ...+ λd = 0. (5.88)

Thus

Pk =
d+1∑
i=1

Aiz
k
i (5.89)
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where the Ai are constants and the zi are the roots of the characteristic
equation (5.88). Further, sending

Pk(µ) 7→ Pk(µ− b) (5.90)

yields the family of uniform Lukasiewicz d-up paving polynomials subject to
d-up standard weighting ‘1’, with the additional arc weighting on the digraph
of

w(loop arc) = b; (5.91)

and the corresponding additional paver weighting

w(monomer) = −b. (5.92)

Comment 3. For d ≥ 4 the characteristic polynomial of Equation (5.88)
is a quintic or higher degree polynomial. By Abel’s Impossibility Theorem,
there is no finite algorithm using just additions, subtractions, multiplica-
tions, divisions, and root extractions by which to find all roots of such poly-
nomials, [106]. Thus, although we may be lucky in certain special cases,
in general the best we can expect is an approximate family of uniform d-up
paving polynomials {Pk(µ)}k≥0, built out of numerical estimates for Ai(µ)
and zi(µ).

5.6 ‘Mixed-up’ digraphs

Definition 43. Let {h1, . . . , hl} be any set of positive integers ordered such
that h1 < . . . < hl. Let Dk = (V,A) be a digraph with vertex set V =
{0, 1, . . . k − 1}, and arc set A composed of

• u-up arcs of the form (i, i+u), for values of u in {h1, h2, . . . hl}; and

• down arcs of the form (i, i− 1).

Then any digraph isomorphic to Dk is a mixed-up digraph. When A also
includes an extra set of arcs:

• loops of the form (i, i),

digraphs isomorphic to Dk are called Lukasiewicz mixed-up digraphs.

The significance of mixed-up digraphs and their cousins Lukasiewicz
mixed-up digraphs is that this is the most general class that still bijects
to pavings - see the example in Figure 5.18.
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These classes of digraphs generalize those in Sections 5.1 – 5.5, and are
the last of the digraphs in this chapter with only one kind of down arc.
The preceding special cases comprise most of those instances of mixed-up
digraphs for which calculating a closed form for the paving polynomial is
tractable. A more generic example is illustrated in Figure 5.18. In this

Figure 5.18: A mixed-up digraph with up edges of the form (k, k + 1)
and (k, k + 4). The two kinds of cycles that may exist on
this digraph map to dimers and 5-mers. The most general
background weighting on the edges of the digraph is shown,
from which dimers and 5-mers inherit independent weights
− α := −λη and − β := −λ4ε respectively.

example, arcs are of the forms (k, k + 1), (k, k + 4) and (k, k − 1). These
result in two kinds of cycles which biject to dimers with weight − α and
5-mers with weight − β. Reasoning by analogy with Figure 5.12 we derive
paving polynoimal recurrence:

Pk+1(µ) = µPk(µ)− αPk−1(µ)− βPk−4(µ) (5.93)

and characteristic equation

z5 − µz4 + αz3 + β = 0 (5.94)

for this mixed-up digraph. This quintic characteristic equation is amongst
the class which cannot be solved by a finite number of additions, subtrac-
tions, multiplications, divisions, and root extractions. In general,

Lemma 38. Any family, {Pk(µ)}k≥0, of mixed-up paving polynomials sub-
ject to any uniform arc weighting satisfies some (hl + 2)-term recurrence,
where hl is the maximum value of u such that non-zero weighted up arcs of
the form (i, i+u) exist in the mixed up digraph. The recurrence has structure

Pk+1(µ) = µPk(µ)− ck−1Pk−1(µ)− . . .− ck−hlPk−hl(µ) (5.95)
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for constants c0, . . . ck−hl, and characteristic equation

zhl+2 − µzhl+1 + chlz
hl . . .+ c0 = 0. (5.96)

Notice that the characteristic polynomials of Equation (5.96) always con-
tain a term of degree one less than their order. This feature tends to make
finding exact roots difficult, for higher order polynomials.

5.7 Jump 2-step digraphs

With ‘jump step’ digraphs come a proliferation of cycles. This is where the
mapping to pavings becomes something better than just a conveniently flat-
tened notation for cycles, as we can now combine several cycles into a single
weighted paver, which cuts the complexity of combinatorial calculations.

Definition 44. Let Dk = (V,A) be a digraph of order k with vertex set
V = {0, 1, . . . k − 1}, and arc set A composed of

• short up arcs of the form (i, i+ 1),

• long up arcs of the form (i, i+ 2),

• short down arcs of the form (i, i− 1) and

• long down arcs of the form (i, i− 2),

Then any digraph isomorphic to Dk is a Jump 2-step digraph. When A
also includes an extra set of arcs:

• loops of the form (i, i),

then digraphs isomorphic to Dk are called L-Jump 2-step digraphs.

The Jump 2 digraph can support an infinity of distinct kinds of cycles,
of increasing length, the first few of which are illustrated in Figure 5.19.
The figure shows unweighted arcs on the digraph, which we call the ‘trivial
weighting’.

Definition 45. The trivial uniform Jump-2 arc weighting, also called
standard weighting ‘0’, is

w(short up arc) = 1 (5.97)
w(long up arc) = 1 (5.98)

w(short down arc) = 1 (5.99)
w(long down arc) = 1 (5.100)
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The trivial weighting on arcs leads to a weighting with a more interesting
structure on pavers. We have

Definition 46. Standard uniform Jump-2 paver weighting ‘0’ is

w(0-mer) = µ (5.101)
w(dimer) = −1 (5.102)
w(trimer) = −2− µ (5.103)
w(4-mer) = −1 (5.104)
w(n-mer) = −2 for n ≥ 5. (5.105)

These paver weights, together with the definition of a paving polynomial, give
uniform standard weighting ‘0’ Jump-2 paving polynomials.

The derivation of this weightings on pavers comes from the projection of
cycles illustrated in Figure 5.19 onto a path graph.

• There is just one cycle structure, namely (short up, short down), which
projects to a dimer. The cycle has weight (−1)(1)(1), thus dimers are
assigned weight − 1.

• There are three cycle structures which project to a trimer. These have
weights (−1)(1)(1)(1), (−1)(1)(1)(1) and (−1)(1)(1)(µ) respectively;
where the last of the trio collects weight µ from the uncovered vertex
in the middle. Adding together the three possibilities, trimers are
assigned weight −2−µ, so that the weights of all three cycle structures
are counted at once.

• There are three cycle configurations which project to a 4-mer. The
first two consist of a single cycle each, and both carry weight −1. The
third consists of a pair of cycles both of the form (long up, long down)
which overlap as illustrated, but are a pair of distinct cycles since they
share no vertices. Each member of the pair has weight −1 so combined
the pair has weight (−1)2 = +1. Summing together the weights of the
three configurations, 4-mers are assigned weight − 1− 1 + 1 = −1.

• There are precisely two cycle structures which project to an n-mer, for
n ≥ 5. Both consist of a single cycle with weight − 1. Adding these
together gives weight − 1− 1 = −2 for any n-mer such that n ≥ 5.

The first few Jump-2 paving weight polynomials (subject to standard
uniform weighting ‘0’) are calculated combinatorially in Figure 5.20. Collecting
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Figure 5.19: A Jump 2 step digraph. Cycles of arbitrary length are sup-
ported by this digraph.

terms from Figure 5.20, and extending the list a little, gives

P0(µ) := 1 (5.106)
P1(µ) = µ (5.107)
P2(µ) = µ2 − 1 (5.108)
P3(µ) = µ3 − 3µ− 2 (5.109)
P4(µ) = µ4 − 5µ2 − 4µ (5.110)
P5(µ) = µ5 − 7µ3 − 6µ2 + 3µ+ 2 (5.111)
P6(µ) = µ6 − 9µ4 − 8µ3 + 10µ2 + 12µ+ 3 (5.112)

The presence of pavers of arbitrary length would seem to bode ill for a
fixed order recurrence relation for Jump 2 paving polynomials, but there is
a pleasant surprise in store. Start by getting a k + 1 term recurrence using
Figure 5.21. Write this result down twice, with staggered coefficients:

Pk+1 =µPk − Pk−1 − (2 + µ)Pk−2 − Pk−3 − 2Pk−4 − 2Pk−5 − ...− 2 (5.113)
Pk =µPk−1 − Pk−2 − (2 + µ)Pk−3 − Pk−4 − 2Pk−5 − 2Pk−6 − ...− 2 (5.114)

Take the difference between Equations (5.113) and (5.114). We obtain a
short recurrence for the Pk’s in Lemma 39.
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Figure 5.20: The first few jump 2 polynomials.
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Figure 5.21: Breaking up the paving according to the possibilities for the
last vertex gives a (k + 2) - term linear recurrence for Jump 2
step paving polynomials.
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Lemma 39. The family, {Pk(µ)}k≥0, of uniform jump-2 paving polynomials
subject to standard weighting ‘0’, satisfies a 6-term recurrence:

Pk+1 = (µ+1)Pk− (µ+1)Pk−1− (µ+1)Pk−2 +(µ+1)Pk−3−Pk−4 (5.115)

with characteristic equation

z5 − (µ+ 1)z4 + (µ+ 1)z3 + (µ+ 1)z2 − (µ+ 1)z + 1 = 0, (5.116)

which has five solutions

z = −1, z =
1
4

(
2±

√
µ2 − 4µ±

√
2
√
−10− 4µ−

√
µ2 − 4µ(2 + µ) + (2 + µ)2

)
.

(5.117)
Thus

Pk =
5∑
i=1

Aiz
k
i (5.118)

where the roots zi are the members of Equation (5.117), and the Ai are
constants obtainable from the initial conditions given by Equations (5.106)
– (5.112). Further, sending

Pk(µ) 7→ Pk(µ− b) (5.119)

yields the family of uniform Lukasiewicz 2-up paving polynomials subject to
2-up standard weighting ‘1’, with the additional arc weighting on the digraph
of

w(loop arc) = b; (5.120)

and the corresponding additional paver weighting

w(monomer) = −b. (5.121)

Comment 4. The characteristic polynomial of Equation (5.116) is note-
worthy in two ways.

1. The polynomial is a quintic for which we may nonetheless find roots
exactly; and

2. The polynomial is linear in µ. We will use this fact in Chapter 8 to find
a new variable in which the above five roots have terser incarnation.
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5.8 Jump 3-step digraphs

Definition 47. Let Dk = (V,A) be a digraph of order k with vertex set
V = {0, 1, . . . k − 1}, and arc set A composed of

• short up arcs of the form (i, i+ 1),

• medium up arcs of the form (i, i+ 2),

• long up arcs of the form (i, i+ 3),

• short down arcs of the form (i, i− 1),

• medium down arcs of the form (i, i− 2) and

• long down arcs of the form (i, i− 3),

Then any digraph isomorphic to Dk is a Jump 3-step digraph. When A
also includes an extra set of arcs:

• loops of the form (i, i),

then digraphs isomorphic to Dk are called L-Jump 3-step digraphs.

As in the Jump-2 case, we consider here only the trivial arc weighting.

Definition 48. The trivial uniform Jump-3 arc weighting, or stan-
dard weighting ‘0’, is

w(short up arc) = 1 (5.122)
w(medium up arc) = 1 (5.123)

w(long up arc) = 1 (5.124)
w(short down arc) = 1 (5.125)

w(medium down arc) = 1 (5.126)
w(long down arc) = 1 (5.127)

Jump-3 step digraphs support a multitude of kinds and configurations of
cycles. The process of grouping together and adding up the weights of all the
cycles which project onto a specific n-mer, becomes a combinatorial problem
in its own right, which we have not solved for general n. We merely calculate
the weights that the n-mers inherit from the cycles for n = 1, 2, ..., 7.
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Definition 49. The first few paver weights for Standard uniform Jump-
3 paver weighting ‘0’ are

w(0-mer) = µ (5.128)
w(dimer) = −1 (5.129)
w(trimer) = −2− µ (5.130)
w(4-mer) = −4− 4µ− µ2 (5.131)
w(5-mer) = −4− 3µ (5.132)
w(6-mer) = −8− 8µ− µ2 (5.133)
w(7-mer) = −14− 20µ− 6µ2 (5.134)

We define higher order n-mers consistently with Equations (5.128)–(5.134)
procedurally, by

w(n-mer) =
∑
C∈Rn

w(C), (5.135)

where Rn is the set of configurations of cycles, C, which project to an n-mer.
The weight of a configuration, w(C), is the product of weights of cycles in
the configuration, i.e.

W (C) =
∏
c∈C

w(c), (5.136)

where we recall that the weight of a cycle w(c), is given by the product of the
weights of the arcs in the cycle (including uncovered vertices which are 0-
arcs) multiplied by −1. These paver weights, together with the definition of a
paving polynomial, specify the uniform standard weighting ‘0’ Jump-3
paving polynomials.

Comment 5. Paver weights for standard uniform jump-3 paver weighting
‘0’ are polynomials in µ which are at most quadratic, since there can be no
cycle configuration in the jump-3 digraph which both projects to an n-mer
and contains 3 or more uncovered vertices.

Figures 5.22, 5.23 and 5.24 illustrate the derivation of the weights for
dimers, trimers, 4-mers and 5-mers. Comparison between them shows the
rapid growth, with n, in numbers of cycle configurations that map to a given
n-mer. This growth makes the problem of assigning weights to general n-
mers more difficult, but would also mean that if a general expression were
found then the combinatorial complexity saved by counting pavings instead
of cycles would be large.

In Figure 5.25 we generate the first few paving polynomials.
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Figure 5.22: Cycles that map to dimers and trimers are the same as for
Jump 2 step digraphs.

Figure 5.23: These thirteen cycle configurations on the Jump 3 step digraph
coalesce into a single 4-mer with weight − µ2 − 4µ− 4.
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Figure 5.24: To make sure of capturing all twenty-nine of these cycle con-
figurations Mathematica code was written which generated all
permutations of {1, 2, 3, 4, 5} (since each such permutation la-
bels a configuration of cycles on the Jump 3 step digraph) and
then pared away those which did not project to a 5-mer.
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Figure 5.25: The first few Jump 3 step paving polynomials.



126CHAPTER 5. PAVINGS FOR UNIFORMLY WEIGHTED DIGRAPHS

Lemma 40. Let {Pk(µ)}k≥0 be the family of uniform jump-3 paving poly-
nomials subject to standard uniform weighting ‘0’. Then the first few such
polynomials are

P0(µ) = 1 (5.137)
P1(µ) = µ (5.138)
P2(µ) = µ2 − 1 (5.139)
P3(µ) = µ3 − 3µ− 2 (5.140)
P4(µ) = µ4 − 6µ2 − 8µ− 3 (5.141)
P5(µ) = µ5 − 9µ3 − 14µ2 − 6µ (5.142)
P6(µ) = µ6 − 12µ4 − 20µ3 − 4µ2 + 8µ+ 3 (5.143)
P7(µ) = µ7 − 15µ5 − 26µ4 + 6µ3 + 38µ2 + 23µ+ 4. (5.144)

Note that these polynomials factor as follows.

P2(µ) = (µ− 1)(µ+ 1) (5.145)
P3(µ) = (µ− 2)(µ+ 1)2 (5.146)
P4(µ) = (µ− 3)(µ+ 1)3 (5.147)
P5(µ) = (µ+ 1)2µ(µ2 − 2µ− 6) (5.148)
P6(µ) = (µ+ 1)(µ2 + µ− 1)(µ3 − 2µ2 − 8µ− 3) (5.149)
P7(µ) = (µ3 + µ2 − 2µ− 1)(µ4 − µ3 − 12µ2 − 15µ− 4). (5.150)

The pattern which emerges and then ceases between orders 2 and 4
occurs in a more sustained way in the section on ‘Jump-any digraphs’, where
its origins are explicated.

5.9 Jump Any-step digraphs and an Involution

Definition 50. Let Dk = (V,A) be a digraph of order k with vertex set
V = {0, 1, . . . k − 1}, and arc set A composed of

• u-up arcs of the form (i, i+ u) and

• d-down arcs of the form (i, i− d),

for u, d ∈ N. Then any digraph isomorphic to Dk is a Jump Any-step
digraph. When A also includes an extra set of arcs:

• loops of the form (i, i),
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then digraphs isomorphic to Dk are called L-Jump Any-step digraphs.

Here we consider only the trivial arc weighting.

Definition 51. The trivial uniform Jump-Any arc weighting, or
standard weighting ‘0’ is

w(u-up arc) = 1 (5.151)
w(d-down arc) = 1. (5.152)

The trivial uniform Jump-Any arc weighting extends to the trivial uniform
L-Jump-Any arc weighting, or standard weighting ‘0’ for L-Jump-
Any arcs, by the addition of the uniform weight on loops

w(arc of the form (i, i)) = b. (5.153)

One might expect Jump Any-step digraphs to pose arduous difficulties,
given that it took only three kinds of up and down edges in the last section
to make cycles proliferate and counting them prohibitive. It turns out that
adding more complexity lets us cancel a lot of it out, so that Jump Any-step
digraphs are easier than all the rest. We derive paver-weighting consistent
with the trivial arc weighting in Subsection 5.9.1. We obtain

Definition 52. Standard uniform Jump-Any paver weighting ‘0’ is

w(0-mer) = µ (5.154)
w(n-mer) = −(µ+ 2)n−2 for n ≥ 2. (5.155)

These paver weights, together with the definition of a paving polynomial, give
uniform standard weighting ‘0’ Jump-Any paving polynomials.

5.9.1 An iterated set of involutions to find paving weights

We begin with the 2-cycle on a pair of adjacent vertices. This cycle projects
to a dimer. We can extend it to project to a trimer in three different ways.
These are illustrated in Figure 5.26.

The same trick applied again in Figure 5.27 gives most of the cycle
configurations the next size up, but not all. The configurations we didn’t
get are interesting in two ways. The first is that their weights cancel in pairs.
The second is that they are more complicated-looking than those which were
generated by the three extension operations.
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Figure 5.26: Starting with a 2-cycle on adjacent vertices, we create all those
cycles which project to a trimer by operating in three possible
ways on our initial cycle.
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combinations of stretching and adding arcs:

Figure 5.27: The cycles that project to 4-mers come in two groups: those
which may be generated by extending spanning cycle on one
fewer vertices, and the exceptional remainder. This remainder
group cancel with each other.
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It turns out that the features present in Figure 5.27 hold across cycle
configurations projecting to n-mers for all n. The simple-looking configura-
tions, which will always be single cycles of the form (up, ..., up, down, ...,
down), will always come from stretching simple configurations of the same
form on one less vertex. The more complicated configurations will always
cancel in pairs. Thus three stretching operations ensure that the number of
cycles contributing to the weight of an n-mer, after the oppositely weighted
ones have been cancelled out, will be 3n−2 for all n ≥ 2.

The next few pages are devoted to checking these claims and conse-
quently showing that the weight of an n-mer is − (µ+ 2)n−2 for all n ≥ 2.

We define a spanning (cycle) configuration on n vertices to be
a cycle configuration on a digraph whose vertices can be labeled 1, 2, ..., n,
such that the cycle configuration projects to an n-mer, i.e. if there are
multiple cycles in the configuration then they overlap so that there are no
gaps between them. We define a set of contributing configurations to
an n-mer, Cn, to be a subset of the set of spanning configurations on n
vertices, Sn, such that the sum of the weights of the elements of Cn is equal
to the sum of the weights of the elements of Sn but no element of Cn has
opposite weight to any other element of Cn. In analogy with the concept of
a basis, a set of contributing configurations is not necessarily unique.

We formally define the stretch operations as follows. These operations
apply to spanning configurations on n vertices; and produce spanning con-
figurations on n + 1 vertices. The Stretch top; add bottom operation
replaces the unique edge of the form (p, n) with the edge (p, n+ 1), as well
as inserting the edge (n + 1, n) to re-complete the cycle. Since we are on
a Jump Any-step digraph the underlying edges are there to chose. The
Stretch both operation replaces the unique edges of the form (p, n) and
(n, q) respectively with (p, n + 1) and (n + 1, q). The Stretch bottom;
add top operation replaces the unique edge of the form (n, q) with the edge
(n+ 1, q), as well as inserting the edge (n, n+ 1) to re-complete the cycle.

We want to show that the members of the set of spanning cycle config-
urations on k + 1 vertices always either come from stretching a spanning
configuration on k vertices, or they cancel in pairs. To this end, consider all
spanning configurations on k+ 1 vertices labeled 1, 2, ..., k+ 1. Focus on the
second last vertex. The cases are:

1. The vertex k is not part of a cycle in the configuration:

Thus edges (k, k+1) and (k+1, k) are not included in the configuration.
But since the configuration is spanning, we know that edges (p, k+ 1)
and (k + 1, q) must be present for some p < k and some q < k.
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Thus we may transform the configuration by ‘shrinking’ the last two
mentioned edges. i.e. Replace marked edge (p, k + 1) with (p, k); and
replace marked edge (k+ 1, q) with (k, q). This new configuration is a
spanning configuration of cycles on the Jump Any-step digraph with
vertices labeled 1, 2, ..., k.

Conversely, any spanning configuration of cycles on vertices 1, 2, ..., k
may be extended to a spanning configuration on k + 1 vertices by
‘stretching’ the edges; i.e. replacing k where it appears with k + 1.

Thus configurations which fall into this case may all be generated by
the ‘Stretch both’ operation indicated in Figure 5.27, applied to cycles
which span k vertices.

2. The edge (k, k + 1) is part of a cycle in the configuration:

Therefore the edge (k + 1, k) cannot be present unless k = 1, because
if it was, there would be a ‘gap’ between vertices k− 1 and k, and the
configuration would not be a spanning configuration. Thus for k > 1,
there must be an edge present of the form (k + 1, q), where q < k.

Hence we may perform the inverse of the “Stretch bottom; add top”
operation indicated in Figure 5.27 to obtain a cycle configuration which
spans one fewer vertices. Conversely, applying the “Stretch bottom;
add top” operation to any spanning configuration on k vertices gives
a spanning configuration with the edge (k, k + 1) present in a cycle.

Thus, for k > 1, configurations which fall into this case may all be
generated by the “Stretch bottom; add top” operation indicated in
Figure 5.27, applied to cycles which span k vertices.

3. The edge (k + 1, k) is part of a cycle in the configuration:

By reasoning mutatis mutandis to the previous case, for k > 1, config-
urations which fall into this case may all be generated by the “Stretch
top; add bottom” operation indicated in Figure 5.27, applied to cycles
which span k vertices.

4. An edge of the form (j, k), for j ≤ k − 1, is part of the cycle configu-
ration and the edges (k, k + 1) and (k + 1, k) are not:

For this case to occur we must have k + 1 ≥ 4.

Then an edge of the form (k, i) must be present for i ≤ k− 1. Reason:
the edge exiting k has got to go backwards because it can’t go forwards.
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Also, edges of the form (p, k + 1) and (k + 1, q) must be present for
p ≤ k − 1 and q ≤ k − 1. Reason: edges entering and exiting ‘k + 1’
have got to come from and go to somewhere.

These four cases comprise all of the possibilities. Cases 1–3 were all
shown to be derived by stretching operations. We need to show that all
members of Case 4 cancel in pairs.

To this end, define an operation crossuncross on cycle configurations
belonging to Case 4. Such configurations always contain an edge of the
form (k, i), for i ≤ k − 1; and one of the form (k + 1, q), for q ≤ k − 1.
‘Crossuncross’ replaces this pair of edges in the cycle configuration by a new
pair

(k, i), (k + 1, q) 7→ (k + 1, i), (k, q). (5.156)

Clearly,
crossuncross2 = Identity (5.157)

We argue that ‘crossuncross’ always increases or decreases the number of
cycles by one as follows. Suppose that the edges (k, i) and (k + 1, q) are
each part of disjoint cycles. Then there exists a path pi,k from i to k
as well as a path pq,k+1 from q to k + 1. After applying ‘crossuncross’,
pi,k(k, q)pq,k+1(k + 1, i) constitutes a single cycle. Hence the number of cy-
cles has been decreased by one. A similar argument shows that if edges (k, i)
and (k+1, q) start out part of the same cycle, ‘crossuncross’ splits them into
exactly two distinct cycles.

Since ‘crossuncross’ changes only the parity of the number of cycles and
does not change the number of uncovered vertices, it multiplies the weight of
a configuration by − 1. Since each configuration maps to one whose weight
is the negative of its own, the involution ‘crossuncross’ cancels the weights
of all configurations in Case 4.

Having shown that all spanning configurations either came from stretch-
ing operations or else cancel with each other, we have shown that iteratively
applying the three stretching operations, starting with n = 2 and the 2-cycle
will for each iteration generate a set of contributing configurations for any
n-mer.

To check the weights, note that Figures 5.26 and 5.27 show that for
n = 2, 3, 4 the contributing configurations have total weights respectively
−1, −(µ+2) and −(µ+2)2. All that remains is to check that the application
of the three stretching operations increases the weight of the set by a factor
of µ + 2 for each iteration. This follows directly from the definition of the
stretch operations. The first and last of these three operations don’t change
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the number of uncovered vertices, and applied to a single cycle they generate
a single cycle. Hence these two leave the weight invariant. The middle
operation introduces an extra uncovered vertex, but does not change the
number of cycles either. Therefore it produces a cycle with weight µ times
the weight of the originating cycle. Hence together the three operations
generate three new cycles of combined weight µ+ 2 times the weight of the
cycle they extended.

5.9.2 Jump-Any Paving polynomials

The first few standard uniform weight ‘0’ Jump-Any paving polynomials
factorize nicely:

P1(µ) = µ (5.158)
P2(µ) = (µ− 1)(µ+ 1) (5.159)
P3(µ) = (µ− 2)(µ+ 1)2 (5.160)
P4(µ) = (µ− 3)(µ+ 1)3 (5.161)

...
...

...

We need a recurrence relation to prove the pattern. We obtain a long re-
currence relation in Figure 5.28. A trick inspired by the one that worked
in the Jump 2 step case works in the Jump Any-step case. Write down the
long recurrence relation twice, with coefficients staggered by one. Multiply
the second equation by (µ+ 2):

Pk+1 =µPk − Pk−1 − (µ+ 2)Pk−2 − ...− (µ+ 2)k−1 (5.162)
(µ+ 2)Pk =µ(µ+ 2)Pk−1 − (µ+ 2)Pk−2 − (µ+ 2)3Pk−4 − ...− (µ+ 2)k−1

(5.163)

Take the difference between the two and simplify to get

Lemma 41. The family, {Pk(µ)}k≥0, of uniform jump-any paving polyno-
mials subject to standard weighting ‘0’, satisfies

Pk+1 = 2(µ+ 1)Pk − (µ+ 1)2Pk−1. (5.164)

This 3-term recurrence relation has characteristic equation which factors as

(z − (µ+ 1))2 = 0 (5.165)

so that
Pk(µ) = (µ− (k − 1)) (µ+ 1)k−1. (5.166)
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Figure 5.28: Breaking up the paving according to the possibilities for the
last vertex gives a (k + 2) - term linear recurrence for Jump
Any-step paving polynomials.
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Comment 6. Since equation (5.164) is a 3-term recurrence, the family
of Pk(µ)’s are orthogonal polynomials. Furthermore, the closed form solu-
tion (5.166) is explicitly rational. This is a more tractable form even than
that obtained in Section 5.1 for Ballot paving polynomimals!

Comment 7. Note that this result has connections to the theory of Toeplitz
matrices, since the path enumeration problem associated with Jump-Any
paving polynomials has a transfer matrix of Toeplitz form.

Another unheralded nicety appears in the extension to L-Jump Any-step
digraphs. As was explained in Comment 2, adding loops whose edge carries
uniform weight b shifts the weight of pavers and paving polynomials via the
substitution µ 7→ µ − b. Here, choosing b = 2 transforms Equation (5.155)
into a set of monomial weights for pavers. Alternatively, choosing b = 1
transforms the paving polynomials (5.166) into the especially simple form
Pk(µ− 1) = (µ− k)µk−1.
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5.10 Summary of Recurrences

For comparison, we list a paving polynomial recurrence for some choice of
standard uniform weighting on various classes of digraph considered in this
chapter.

Digraph Paving Polynomial Recurrence

Ballot Pk+1(µ) = µPk(µ)− λPk−1(µ)

Motzkin Pk+1(µ) = (µ− b)Pk(µ)− λPk−1(µ)

2-up Pk+1(µ) = µPk(µ)− λPk−1(µ)− λ2Pk−2(µ)

3-up Pk+1(µ) = µPk(µ)− λPk−1(µ)− λ2Pk−2(µ)− λ3Pk−3(µ)

d-up Pk+1(µ) = µPk(µ)− λPk−1(µ)− λ2Pk−2(µ)− ...− λdPk−d(µ)

Jump 2 Pk+1 = (µ+ 1)Pk − (µ+ 1)Pk−1 − (µ+ 1)Pk−2

+ (µ+ 1)Pk−3 − Pk−4

Jump 3 unsolved

Jump Any Pk+1(µ) = 2(µ+ 1)Pk(µ)− (µ+ 1)2Pk−1(µ).



Chapter 6

Decorated pavings

Humpty Dumpty sat on a wall
Humpty Dumpty had a great fall
All the king’s horses and all the king’s men
Couldn’t put Humpty together again.

‘What makes solving non constant coefficient linear recurrence relations
hard?’, is a question to motivate this chapter. The situation stands in con-
trast to the constant coefficient case, for which there is a known algorithm
that will in principal always give a solution. Even then, difficulties may arise
in the step which requires finding the roots of the characteristic polynomial,
since as we know from the work of Gauss and Abel on the quintic [107],
there is no general algorithm for finding said roots. However, modulo that
difficulty, a general method exists for solving a constant coefficient linear
recurrence.

When even a finite set of coefficients are permitted to stray from con-
stancy, however, the usual method for solving a constant coefficient linear
recurrence breaks down. The problem is that a recurrence relation tells you
what is happening to the nth term in relation to the previous few, whereas
the deviations from constancy are hidden somewhere early in the sequence.
We solve this problem by seeing non-constant coefficient recurrences as ‘dec-
orated pavings’, which we can break apart at an arbitrary point, and then,
unlike Humpty Dumpty, put the pieces back together again.

The decorated pavings we’re most interested in are those which arise from
decorated digraphs, since it is these which relate to the lattice paths we wish
to enumerate. We begin by recalling the essential definitions for digraphs
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from ‘Path Definitions’, page xxv, and for pavings from Section 4.1, page 89:

1. A ‘uniformly weighted digraph’ is a weighted digraph for which arcs
of the same form all carry the same weighting.

2. A ‘decorated digraph’ is a weighted digraph whose weighting is not
uniform.

3. A ‘uniformly weighted paving’ is a weighted paving for which pavers
of the same size all carry the same weighting.

4. A ‘decorated paving’ is a weighted paving whose weighting is not uni-
form.

A decorated weighting on a digraph induces a decorated weighting on a
paving, in just the same way as a uniform weighting on a digraph induced
a uniform weighting on a paving in the previous chapter. In each of the
following sections we introduce decorations on digraphs which correspond
to walk problems of interest, and use them to define suitable decorated
pavings. Thence we work directly with the decorated pavings to calculate
decorated paving polynomials.

Within this chapter, decorated paving polynomials shall be denoted
Pk(µ), whilst the undecorated paving polynomials that we found in the
last chapter shall be denoted Mk(µ).

6.1 Decorated Ballot pavings

The definition of decorated Ballot pavings which follows, together with the
bijection between weighted pavings and weighted cycles, is review of the key
idea of Viennot. We then illustrate the principal that paving polynomials
may be explicitly calculated by breaking and recombining pavings – an idea
due to Richard Brak – to the closed-form calculation of a class of decorated
paving polynomials.

Definition 53. General downstep decorated Ballot arc weights on
up arcs and down arcs are

w(up arc) = 1 (6.1)
w((k, k − 1)) = λk (6.2)

Figure 6.1 indicates the weighting induced by this arc-weighting upon
pavers in the path graph.
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11 11 11 1

λ1 λ2 λ3 λ4 λ5 λ6 λ7

−λ6 −λ7−λ5−λ4−λ3−λ2−λ1

0 1 2 3 4 5 6 7

Figure 6.1: A decorated Ballot digraph leads to a decorated path graph.
A 2-cycle on the digraph is shown, projecting to a dimer with
decorated weight − λ4.

Definition 54. General decorated Ballot paver weights for uncovered
vertices and dimers are

w(0-mer) = µ (6.3)
w({k − 1, k}) = −λk. (6.4)

These paver weights, together with the definition of a paving polynomial, give
general decorated Ballot paving polynomials

We recall the result of Figure 5.3, and modify the labeling slightly to get

Lemma 42. Given a set of non-constant weights, {λk}, (i.e. it is not the
case that λk = λ for some λ and all k) the family, {Pk(µ)}k≥0, of general
decorated Ballot paving polynomials satisfies non-constant coefficient 3-term
recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ) (6.5)

as compared with the family, {Mk(µ)}k≥0, of standard uniform Ballot paving
polynomials, which satisfies constant coefficient 3-term recurrence

Mk+1(µ) = µMk(µ)− λMk−1(µ). (6.6)

Comment 8. Since all Ballot paving polynomials, decorated or undecorated,
satisfy a 3-term recurrence as shown in Lemma 42, they are all orthogonal
polynomials [104], [103].

Specific decorated paving polynomials are expressed in terms of the Mk’s
by breaking apart the path graph representing the set of decorated pavings.
In particular, Figure 6.2 illustrates how to find the decorated paving poly-
nomial for a paving with decorations near each end of the path graph.
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This class of pavings is of particular interest because it includes pavings
relevant to some of the simplest ‘difficult’ path problems, and also because
these enumerations are important in a number of applications [27], [19], [15].

Theorem 43. Let the family of l-wall weights decorated Ballot paving
polynomials, {Pk(µ)}k≥0, be defined by weights on monomers and dimers
on a path graph as follows.

w(0-mer) = µ (6.7)

w({i− 1, i}) =


κi 1 ≤ i ≤ l
λ l + 1 ≤ i ≤ L− l
ωL−i+1 L− l + 1 ≤ i ≤ L

. (6.8)

Then

PL+1(µ) = Dκ
l+1(µ)Dω

l+1(µ)ML−2l−1(µ)
−λ
(
Dκ
l (µ)Dω

l+1(µ) +Dκ
l+1(µ)Dω

l (µ)
)
ML−2l−2(µ)

+λ2Dκ
l (µ)Dω

l (µ)ML−2l−3(µ), (6.9)

where the D’s are general decorated Ballot polynomials in µ defined by initial
conditions

Dκ
0 (µ) = 1 (6.10)

Dκ
1 (µ) = µ (6.11)

with recurrence relation

Dκ
i+1(µ) = µDκ

i (µ)− κiDκ
i−1(µ), (6.12)

similarly for Dω
i (µ); and Mi(µ)’s are the standard uniform Ballot polyno-

mials.

Comment 9. Many of the weighted path enumeration problems we are most
interested in are examples of an l-wall weighting, for small values of l. For
instance, the DiMazio/Rubin problem posed in 1971 [37] and solved in 2006
[15], [25] is such a wall weighting for l = 1. For fixed small l, the D’s
of Theorem 43 are short polynomials easily calculated using their defining
recurrences.

Theorem 43 is a special case of the following more general observation.
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PL+1(µ) =

ML−2l−1(µ)

ML−2l−2(µ)

ML−2l−3(µ)

Figure 6.2: A wall-weights decorated Ballot paving polynomial is shown for
l = 3. We break it in two places, in all 22 possible ways. In the
last three lines we collect terms.
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Lemma 44. Let {Pk(µ)}k≥0 be a family of decorated Ballot paving poly-
nomials with a finite number of decorations, i.e. the sequence of weights
{λk}k≥0 in recurrence (6.5) has the property that

λk 6= λ (6.13)

for only a finite number of values of k. Let the number of such decorations
be d. Then the Pk’s may be expressed as a finite sum of products of uniform
Ballot paving polynomials. That is,

Pk(µ) =
m∑
i=1

ci

n∏
j=1

Mj(µ) (6.14)

where
1 ≤ m ≤ 2d, (6.15)

1 ≤ n ≤ d+ 1 (6.16)

and ci’s are polynomials in µ (with coefficient λk’s) of degree at most 2d.

We defer the proof of Lemma 44 until stating a similar result for Motzkin
pavings in the next section. Note that the bound on the number of sums, 2d,
is only tight when the decorations are sufficiently isolated from each other.
To illustrate the potential difference between the bound and the reality, in
Theorem 43, d = 2l may be arbitrarily large but there are still only 3 terms
in the sum (right hand side of Equation (6.9)). Also the bound of the degree
of the ci’s is only tight when the decorations come in a single contiguous
block. Consideration of the possible block structures of decorations would
lead to more detailed theorems with tighter bounds. In practice, complexity
considerations should be carried out of a case-by-case basis depending on
the ‘block structure’ of the weights – the more bunched together the weights
are, the better for lower complexity.

6.2 Decorated Motzkin pavings

The definition of decorated Motzkin pavings which follows, together with
the bijection between weighted pavings and weighted cycles, is review of
Viennot’s idea, as it was for the Ballot case. Once again, the observation due
to Brak that paving polynomials may be explicitly calculated by breaking
and recombining pavings is what gives this definition it’s power in the sense
which we go on to use it in Chapter 10.
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Definition 55. General downstep decorated Motzkin arc weights
on up arcs, loops and down arcs are

w(up arc) = 1 (6.17)
w((k, k)) = bk (6.18)

w((k, k − 1)) = λk (6.19)

Figure 6.3 indicates the weighting induced by this arc-weighting upon
pavers in the path graph.

b0 b1 b2 b3 b4 b5 b6 b7

1 1 1 1 1 1 1

λ1 λ2 λ3 λ4 λ5 λ6 λ7

−λ7−λ6−λ5−λ4−λ3−λ2−λ1

−b1−b0 −b2 −b3 −b4 −b5 −b6 −b7

Figure 6.3: A decorated Motzkin digraph leads to a decorated path graph.
A 1-cycle and a 2-cycle on the digraph are shown, projecting
to a monomer and a dimer respectively with decorated weights
− b3 and − λ6.

Definition 56. General decorated Motzkin paver weights for uncov-
ered vertices, monomers and dimers are

w(0-mer) = µ (6.20)
w({k}) = −bk (6.21)

w({k − 1, k}) = −λk. (6.22)

These paver weights, together with the definition of a paving polynomial, give
general decorated Motzkin paving polynomials

We recall the result of Figure 5.6, and modify the labeling slightly to get
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Lemma 45. The family, {Pk(µ)}k≥0, of general decorated Motzkin paving
polynomials satisfies non-constant coefficient 3-term recurrence

Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ) (6.23)

as compared with the family, {Mk(µ)}k≥0, of standard uniform Motzkin
paving polynomials, which satisfies constant coefficient 3-term recurrence

Mk+1(µ) = (µ− b)Mk(µ)− λMk−1(µ). (6.24)

Comment 10. Since all Motzkin paving polynomials, whether decorated or
undecorated, satisfy a 3-term recurrence as shown in Lemma 45, they are
all orthogonal polynomials [104], [103].

Specific decorated paving polynomials are expressed in terms of the Mk’s
by breaking apart the path graph representing the set of decorated pavings in
the same generic fashion as was indicated for Ballot pavings in the previous
section. A similar result to Theorem 43 is obtainable by similar methods.
We also have general result

Lemma 46. Let {Pk(µ)}k≥0 be a family of decorated Motzkin paving poly-
nomials with a finite number of decorations, i.e. the sequences of weights
{λk}k≥0 and {bk}k≥0 in recurrence (6.23) have the property that

λk 6= λ (6.25)

for only a finite number, dλ, of values of k;

bk 6= b (6.26)

for only a finite number, db, of values of k. Then the Pk’s may be expressed
as a finite sum of products of uniform Motzkin paving polynomials. That is,

Pk(µ) =
m∑
i=1

ci

n∏
j=1

Mj(µ) (6.27)

where
1 ≤ m ≤ 2dλ3db , (6.28)

1 ≤ n ≤ dλ + db + 1 (6.29)

and ci’s are polynomials in µ (with coefficient λk’s and bk’s) of degree at
most 2dλ + db.
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Note, analogously with Lemma 44, this bound is far from tight when
blocks of weights are bunched together.

Proof. Fix n ∈ N. Let Pn(µ) be a paving polynomial associated with a
paving on a path graph of order n. Let db be the number of decorations on
monomers and dλ be the number of decorations on dimers.

Suppose there is a decorated monomer at height k. Then the path graph
splits into at most two smaller path graphs in one of at most four different
ways. (If the monomer happens to be located at an extreme position on
each end of the path graph, then we obtain only one smaller path graph
in each of three ways.) Of these ways, two group together, as shown in
Figure 6.4. Thus there are at most three terms created by the extraction of

? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ???
0 1 2 kk−1k−2 k+1 k+2 n−1n−2n−3

? ?? ? ? ? ? ? ? ? ? ? ? ???
−bk

0 1 2 kk−1k−2 k+1 k+2 n−1n−2n−3

? ?? ? ? ? ? ? ? ? ? ???
0 1 2 kk−1k−2 k+1 k+2 n−1n−2n−3

=

+

? ?? ? ? ? ? ? ? ? ? ???
0 1 2 kk−1k−2 k+1 k+2 n−1n−2n−3

? ?? ? ? ? ? ? ? ? ? ? ? ???
0 1 2 k−1k−2 k+1 k+2 n−1n−2n−3

+

+
µ

−λk

−λk+1

? ?? ? ? ? ? ? ? ? ? ? ? ???
0 1 2 k−1k−2 k+1 k+2 n−1n−2n−3

? ?? ? ? ? ? ? ? ? ? ???
0 1 2 k−2 k+1 k+2 n−1n−2n−3

=

? ?? ? ? ? ? ? ? ? ? ???
0 1 2 k−1k−2 k+2 n−1n−2n−3

(µ− bk)

λk

λk+1

−

−

−

−

Figure 6.4: Extracting a decoration on a monomer by breaking apart the
path graph gives a sum of at most three distinct terms, each of
which is made up of a product of shorter paving polynomials.

one decorated monomer. After repeating the procedure db times, a sum of
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at most 3db terms has been created.
Now suppose the dimer {j − 1, j} carries decorated weight − λj . Then

a path graph of order m splits into pieces in at most two ways, as indicated
in Figure 6.5. Repeating this procedure at most dλ times multiplies the

=

+

−? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ???
0 1 2 n−1n−2n−3j−2 j−1 j+1 j+2j

? ?? ? ? ? ? ? ? ? ? ???
0 1 2 n−1n−2n−3j−2 j−1 j+1 j+2j

? ?? ? ? ? ? ? ? ? ? ? ? ? ? ???
0 1 2 n−1n−2n−3j−2 j−1 j+1 j+2j

−λj

Figure 6.5: Extracting a decoration on a dimer by breaking apart the path
graph gives a sum of at most two distinct terms, each of which
is made up of a product of shorter paving polynomials.

number of terms by at most 2dλ . Thus bound (6.28) has been shown.
Notice also that the first time that the path graph is broken, at most

two separate pieces are produced. With each subsequent break, at most one
extra piece is created. When all breaks at decorations have been made, all
the pieces inbetween are uniformly weighted. Thus there are are most dλ +
db+1 terms in the product of Motzkin paving polynomials; i.e. bound (6.29)
is shown.

Finally observe that in breaking the path where there are decorations,
uncovered vertices are created only in the positions of the decorations. Each
decorated dimer involved two vertices and decorated vertices are singlets, so
that the degrees of the ci’s are at most equal to 2dλ + db.

Thus the lemma has been shown. Note that this argument has also
proven Lemma 44.

6.3 Decorated d-up pavings

We develop some decorated d-up paving results explicitly for the case d = 2.

Definition 57. General decorated 2-up standard arc weighting ‘1’
for short up arcs, long up arcs and down arcs is

w(short up arc) = 1 (6.30)
w(long up arc) = 1 (6.31)
w({k, k − 1}) = λk (6.32)

Figure 6.6 indicates the weighting upon pavers in the path graph induced
by this arc weighting.



6.3. DECORATED D-UP PAVINGS 147

11 11 1111 11 11 1

λ7λ6λ5λ4λ3λ2λ1

−λ4λ5−λ2

Figure 6.6:

Definition 58. General decorated 2-up standard paver weighting
‘1’ for 0-mers, dimers and trimers is

w(0-mer) = µ (6.33)
w({k − 1, k}) = −λk (6.34)

w({k − 1, k, k + 1}) = −λkλk+1 (6.35)

These weights, in conjunction with the definition of a paving polynomial, give
General decorated 2-up standard weighting ‘1’ paving polynomials.

We recall the result of Figure 5.12, and make minor modifications to
obtain

Lemma 47. The family, {Pk(µ)}k≥0, of 2-up paving polynomials subject
to general decorated weighting ‘1’ satisfies non-constant coefficient 4-term
recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ)− λk−1λkPk−2(µ) (6.36)

as compared with the family, {Mk(µ)}k≥0, of standard uniform ‘1’ 2-up
paving polynomials, which satisfies constant coefficient 4-term recurrence

Mk+1(µ) = µMk(µ)− λMk−1(µ)− λ2Mk−2(µ). (6.37)

Specific decorated paving polynomials are expressed in terms of the Mk’s
by breaking apart the path graph representing the set of decorated pavings
in the same generic fashion as was indicated for Ballot and Motzkin pavings
in the previous sections. We consider an example for which weights are
clustered near the lower end of the path graph in figure 6.7 to derive the
following theorem.
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Theorem 48. Let the family of r-return weights decorated 2-up paving
polynomials,
{Pk(µ)}k≥0, be defined by weights on 0-mers, dimers and trimers on a path
graph as follows.

w(0-mer) = µ (6.38)

w({i− 1, i}) =

{
κi 1 ≤ i ≤ r
λ r + 1 ≤ i ≤ L

(6.39)

w({i− 1, i, i+ 1}) =

{
κi−1κi 1 ≤ i ≤ r − 1
λ r + 1 ≤ i ≤ L− 1

(6.40)

Then

PL+1(µ) =
Dr+1(µ)ML−r(µ)−

(
λDr(µ) + λκrDr−1

)
ML−r−1(µ)− λ2Dr(µ)ML−r−2(µ)

(6.41)

where the D’s are general decorated Ballot polynomials in µ defined by initial
conditions

D0(µ) = 1 (6.42)
D1(µ) = µ (6.43)
D2(µ) = µ2 − κ1 (6.44)

with recurrence relation

Di+1(µ) = µDi(µ)− κiDi−1(µ)− κiκi−1Di−2(µ) (6.45)

and Mi(µ)’s are 2-up paving polynomials subject to standard uniform weight
‘1’.

Decorated paving polynomials for d-up pavings may also be expressed
as a sum over uniform d-up polynomials, though with an increasing penalty
in number of summands as d grows.

6.4 Decorated Mixed-up pavings

Decorations on mixed-up pavings may be defined after the same fashion
as those on d-up pavings. The same principles also apply to breaking up
the pavings and expressing the decorated polynomials in terms of uniform
ones. Bounds on numbers of sums may be found by considering the maximal
number of times the the paving needs to be ‘broken’ to isolate the decorations
from the rest of the paving.
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PL+1(µ) =
−κr−1−κr −λ −λ −λ −λ −λ

r−2

r−2

r−2

r−2

r−2

L−2r−1 r+1 r+2r

L−2r−1 r+1 r+2r

L−2r−1 r+1 r+2r

L−2r−1 r+1 r+2r

r+3

r+3

r+3

r+3

L−2r−1 r+1 r+2r r+3

−κr−1−κr −λ −λ −λ −λ

−κr−1 −λ −λ −λ −λ

−κr−1 −λ −λ

−λ −λ −λ

−λ2

−λκr

Figure 6.7: 2-up paving polynomials with r-return weight decorations can
be written in terms of undecorated 2-up paving polynomials.
As usual, question marks indicate that the given edge may or
may not be paved, and that we are taking the sum over all such
pavings.
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6.5 Decorated Jump 2-step pavings

Jump step pavings are special since they contain arbitrarily long pavers.
Nonetheless we may sometimes find expressions for the decorated paving
polynomials in terms of short sums of uniformly weighted paving polynomi-
als. As an example, we develop the paving polynomial for a ‘short return’
weighting.

Definition 59. The
short return-weight decorated Jump-2 arc weighting is

w(long up arc) = 1 (6.46)
w(short up arc) = 1 (6.47)

w(long down arc) = 1 (6.48)

w(short down arc) =

{
κ for arc (1, 0)
1 otherwise

(6.49)

As indicated by Figures 6.8–6.9, this induces a decorated weighting on
pavers as follows.

Definition 60. The short return weight decorated Jump-2 paving
weighting is

w(0-mer) = µ, (6.50)

w({0, 1}) = −κ (6.51)
w({0, 1, 2}) = −(κ+ 1)− µ (6.52)

w({0, 1, 2, 3}) = −κ (6.53)
w({0, 1, . . . , n}) = −(κ+ 1) for n ≥ 4 (6.54)

and, for i ≥ 1,

w({i, i+ 1}) = −1 (6.55)
w({i, i+ 1, i+ 2}) = −2− µ (6.56)

w({i, i+ 1, i+ 2, i+ 3}) = −1 (6.57)
w({i, i+ 1, . . . , i+ n}) = −2 for n ≥ 4. (6.58)

These paver weights, together with the definition of a paving polynomial, give
short return weight decorated Jump-2 paving polynomials
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Figure 6.8: A return weight decoration on a Jump-2 digraph induces deco-
rated pavers of increasing length. The first few are shown above.
The sequence is continued in Figure 6.9.



152 CHAPTER 6. DECORATED PAVINGS

Figure 6.9: The sequence of decorated pavers induces by a return weight
decoration on a Jump-2 digraph is continued from Figure 6.8.
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Lemma 49. Let {Pk(µ)}k≥0 be the family of Jump 2-step short return
weight decorated paving polynomials of Definition 60. Let {Mk(µ)}k≥0 be
the family of uniform Jump-2 paving polynomials of Definition 46. Then

2Pk+1 = (κ+1)Mk+1−µ(κ−1)Mk−(κ−1)Mk−1+(µκ+κ+1)Mk−2−(κ−1)Mk−3.
(6.59)

Proof. Breaking apart the path graph in the usual way in Figure 6.10 gives a
long expression for Pk+1(µ) in terms of shorter uniform graphs. Comparing
this expression, Equation (6.60), with the long recurrence for unweighted
pavings, Equation (6.61) that we had previously calculated in Section 5.7:

Pk+1 = µMk−κMk−1−(µ+κ+1)Mk−2−κMk−3−(κ+1)Mk−4−(κ+1)Mk−5−...
(6.60)

Mk+1 = µMk −Mk−1 − (µ+ 2)Mk−2 −Mk−3 − 2Mk−4 − 2Mk−5 − ... (6.61)

we see that the difference

2Pk+1 − (κ+ 1)Mk+1 (6.62)

gives the theorem.

6.6 Decorated Jump Any-step pavings

Jump Any-step pavings are special just as Jump 2-step pavings are, because
they contain arbitrarily long pavers, but may still sometimes have concise
paving polynomials. We develop the paving polynomial for a Jump Any-step
‘short return’ weighting.

Definition 61. The short return weight decorated Jump-Any arc
weighting is

w(u-up arc) = 1 (6.63)

w(d-down arc) =

{
κ for arc (1, 0)
1 otherwise

(6.64)

An argument precisely analogous to that carried out in Subsection 5.9.1
for Jump Any-step paths under the trivial uniform weighting gives decorated
paver weights as in Definition 62. A sketch of this argument is summarized
in Figure 6.11. The only modification to the reasoning required is to check
that pairs of cycle weights that cancelled in the uniform case still cancel in
the decorated case. This holds because the ‘cross-uncross’ involution only
effects arcs to the right of arc (1, 0) which holds the κ weight. Thus we have
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Figure 4.1:

42

Figure 4.1:

42
Figure 4.1:

42
Figure 4.1:

42
Figure 4.1:

42

Figure 4.1:

42

Figure 6.10: The Jump-2 return weight decorated paving polynomial may
be expressed in terms of a long sum of shorter uniform Jump-2
paving polynomials.
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Definition 62. The short return weight decorated Jump-Any paving
weighting is

w(0-mer) = µ (6.65)
w({0, 1}) = −κ (6.66)

w({i, i+ 1}) = −1 for i ≥ 1 (6.67)
w({0, 1, . . . , n}) = −(µ+ (κ+ 1))(µ+ 2)n−2 for n ≥ 2 (6.68)

w({i, i+ 1, . . . i+ n}) = −(µ+ 2)n−1 for i ≥ 1, n ≥ 2 (6.69)

and i ≥ 1. These paver weights, together with the definition of a paving
polynomial, give short return weight decorated Jump-Any paving
polynomials.

A suitable modification of the labeling of Figure 6.10 gives long expres-
sion for Pk+1(µ) in terms of shorter M ’s:

Pk+1 = µMk − κMk−1 −
k∑
i=2

(µ+ κ+ 1)(µ+ 2)i−2Mk−i (6.70)

Comparing this with the long recurrence for Mk+1(µ) in terms of shorter
M ’s that was found in Section 5.9:

Mk+1 = µMk −Mk−1 −
k∑
i=2

(µ+ 2)i−1Mk−i (6.71)

we derive
Lemma 50. Let {Pk(µ)}k≥0 be the family of Jump Any-step short return
weight decorated paving polynomials of Definition 62. Let {Mk(µ)}k≥0 be
the family of uniform Jump Any-step paving polynomials of Definition 52,
with formula given by Equation (5.166). Then

Pk+1(µ) =(
µ+ κ+ 1
µ+ 2

)
Mk+1(µ)−

(
µ(κ− 1)
µ+ 2

)
Mk(µ)−

(
(µ+ 1)(κ− 1)

µ+ 2

)
Mk−1(µ). (6.72)

Corollary 51. Let {Pk(µ)}k≥0 be as in Lemma 50. Then

Pk(µ) = (µ+ 1)k−2(µ2 − (k − 2)(µ+ 1)− κ). (6.73)

Comment 11. Corollary 51 gives a neat closed form explicitly rational
paving polynomial on short-return weight decorations for Jump-Any pavings.
Setting κ = 1 gives back the similarly neat result of Lemma 41 which comes
from the uniform digraph weighting. These results reflect the special prop-
erties of the determinants of: Toeplitz matrices and small perturbations of
Toeplitz matrices; with which weighted Jump-Any pavings are associated.
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κ
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κ

κ
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κ

−κ

−κ

−κ

−κ

−κµ

Configurations which project to 4-mers but get missed are

Build decorated cycles that extend to an extra vertex by three different combinations
of stretching and adding arcs:

Figure 6.11: Decorated cycles that project to (n+1)-mers may be built from
decorated cycles that project to n-mers in just the same way as
we did in the uniform case. Fortunately, those configurations
which cancelled in the uniform case still cancel here.
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6.7 Summary of Recurrences

For comparison, we list a paving polynomial recurrence for some choice of
decorated weightings on various classes of digraph considered in this chapter.

Digraph Paving Polynomial Recurrence

Ballot Pk+1(µ) = µPk(µ)− λkPk−1(µ)

Motzkin Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ)

2-up Pk+1(µ) = µPk(µ)− λkPk−1(µ)− λk−1λkPk−2(µ)

Jump 2 2Pk+1 = (κ+ 1)Mk+1 − µ(κ− 1)Mk − (κ− 1)Mk−1

+ (µκ+ κ+ 1)Mk−2 − (κ− 1)Mk−3,
where Mk’s are uniformly weighted Jump 2 polynomials.

Jump Any Pk+1(µ) =
(
µ+κ+1
µ+2

)
Mk+1(µ)−

(
µ(κ−1)
µ+2

)
Mk(µ)

−
(

(µ+1)(κ−1)
µ+2

)
Mk−1(µ),

where Mk’s are uniformly weighted Jump Any polynomials.
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Chapter 7

Higher dimensional musings

7.1 Higher dimensional walks as motivation

We would like to count paths in three or higher dimensions in slabs of cubic
or hyper-cubic lattice, as a natural extension to the work counting paths in
a strip on the two-dimensional square lattice.

So far, in Chapters 5 and 6, we’ve developed one-dimensional pavings
which we will use to count two dimensional directed paths. The most
straightforward generalization in higher dimensions would be to develop
n-dimensional pavings which we could use to count (n+ 1)-dimensional di-
rected paths.

This is not the approach we take. Instead we explore the feasibility
of developing 1-dimensional pavings (as before) which encode information
about directed paths in dimensions higher than 2.

The reason for attempting this route requires some explanation. We
expect it to be difficult, since there is a lot of ‘room to move’ in a high
number of dimensions which will need to be compressed into a single di-
mension. The reason is that one-dimensional pavings are special, in a way
that, for instance, tilings of the plane are not. As illustrated throughout
Chapter 6, one-dimensional pavings give us a powerful means to isolate
decorated parts of a paving from uniform parts, so that we may obtain
closed-form expressions for pavings with finitely many decorations – see for
instance Figures 6.2, 6.4, 6.7, 6.10.

The crucial difference between a one-dimensional paving and a higher
dimensional paving in this context is in its connectivity properties. To isolate
one part of a path graph from another we may split the graph into two pieces
by removing a single dimer, whereas removing a single tile from a tiling of a

159
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higher dimensional space will typically leave it connected – for definiteness
think about removing one triangle from a regular tiling of the plane with
equilateral triangles.

Summarizing, the a priori justification for this chapter is to try to find

• one-dimensional pavings which encode information about paths in
higher dimensions

As it turns out, we also find an a posteriori justification, discovering

• ‘equivalent pavings’. That is, we find that distinct paving problems
with distinct paving polynomials and recurrences may arise from the
same path problem and encode the same set of desired information
(as well as possibly some extra irrelevant information on which they
disagree).

The notion of ‘equivalent pavings’ is of interest both in the high and low
dimensions. It may be important because we have found examples where
some of the paving polynomial recurrences (and corresponding characteristic
equations for the uniform cases) are very much simpler than others, for the
same path problem.

The best we could hope for is the good situation in which, given a difficult
recurrence, one is able to find a paving representation for it, and then an
equivalent paving representation encoding the same information (as well as
possibly some extra, irrelevant information) but with a simpler recurrence.

All of this work is very preliminary. What follows is a presentation of
some basic ideas, with room for further explorations.

Figure 7.1 shows a cube. The arrows indicate that the cube may be
considered to be a directed graph, with vertices at the corners and arcs
connecting them. One may trace a path from the near vertex (indicated) to
the far vertex (also indicated). There are six such walks, corresponding to
three choices of which arc to leave by, times two choices at the next vertex,
and then only one choice available at the following vertex. Each of the six
paths, one of which is shown, have length three.

The same figure is drawn, slightly rotated so that in this two dimensional
projection the vertices at which the path begins and ends are superimposed,
in Figure 7.2. Thus the path on the three dimensional cube may be seen
as a walk that closes upon itself, on a two dimensional directed triangular
lattice.

By stacking cubes together, or else partitioning the cube we started with
into smaller cubes, and then in either case projecting as in Figure 7.2, we
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Walk from here

to here

Figure 7.1: A cube, with a path from the near to the far vertex shown.

Walks from here
back to here

Figure 7.2: The same path and cube that were shown in Figure 7.1, slightly
rotated so that the projection is a closed walk on a piece of
directed triangular lattice.
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obtain a larger piece of this directed triangular lattice, which is illustrated
in Figure 7.3. Formally we define

Figure 7.3: A larger piece of the ‘flat cube’ lattice.

Definition 63. Let L be a lattice with vertex set

V = {α1s1 + α2s2 + α3s3|α1, α2, α3 ∈ Z} (7.1)

defined as the span over Z of allowed step set

{s1, s2, s3} (7.2)

where
s1 + s2 + s3 = (0, 0) (7.3)

and the pair
{si, sj} (7.4)

are linearly independent over Z for any i 6= j ∈ {1, 2, 3}. Then L is a flat
cube lattice. If, in addition, {s1, s2, s3} are vectors in R2 at angles of
120 degrees to each other, L is termed an equilateral flat cube lattice.
A particular choice of allowed step set which gives the equilateral flat cube
lattice of Figure 7.3 is

s1 = (
√

3/2, 1/2), (7.5)
s2 = (−

√
3/2, 1/2), (7.6)

s3 = (0,−1). (7.7)
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7.2 Cycles on a planar digraph

As usual, we are interested in the cycles on the time compressed (recall
Definition 16) digraph shown in Figure 7.3. Several cycles are illustrated in
Figure 7.4. It is clear that in this representation, cycles must all be depicted

Figure 7.4: A configuration of cycles on the ‘flat cube’ lattice.

as triangles of varying sizes. No more elaborate shapes are possible.
We want to count signed cycles. As noted in Section 7.1, one approach

is to map the cycle configurations to tilings of the plane. The possibility we
explore instead is to map the cycle problem to a one-dimensional tiling of a
path graph, as we have done in earlier chapters.

The basic approach and some expected difficulties are explored via a
simple example in the next section. This example also leads us to define the
concept of ‘equivalent pavings’, which may turn out to be independently
useful.

7.3 Isomorphic digraphs

We begin with a standard definition.

Definition 64. A pair of (di)graphs G1 = (V1, A1), G2 = (V2, A2) are called
isomorphic provided that there exists a bijective mapping φ : V1 7→ V2 such
that for uv an arc/edge in A1

φ(uv) := φ(u)φ(v) (7.8)
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is an arc/edge in A2. The mapping φ is called an isomorphism.

Next we describe/define a way of drawing digraphs which is suited to
our purposes.

Definition 65. Let D be a digraph of order n. Then we say that a linear
representative of D is a digraph R which is an isomorphic copy of D
drawn in a certain way, as follows.

• Vertices of R are labeled 0, 1, . . . n− 1.

• Vertices of R are indicated visually by a line of dots drawn in a line
from left to right such that the dot representing vertex i + 1 is to the
right of the dot representing vertex i for all i.

• Arcs are drawn as curved lines on either side of the row of vertices
(with arrows indicating direction).

• Arcs from i to j with i ≤ j are drawn above the row of vertices, and
arcs from j to i with j > i are drawn below the row of vertices.

7.4 An example

We consider a single rowed piece of the flat cube lattice, as illustrated in
Figure 7.5. There are many ways in which its vertices may be labeled,

Figure 7.5: A narrow slice of ‘flat cube’ lattice.

each generating an isomorphic copy of the digraph. We choose three such
labelings, and illustrate the linear representative for each. For the first two
we develop families of paving polynomials and compare them.

7.4.1 Labeling A

Labeling ‘A’, of the single-rowed flat cube digraph, leads to a linear represen-
tative as shown in Figure 7.6, supporting cycles all of the same appearance
independently of location. All cycles project to trimers; and all basic con-
figurations of cycles project to pavings with trimers.
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0 2 4

1 3 5

6 8

7 9

0 1 2 3 4 5 6 7 8 9

−1 −1 −1

Figure 7.6: Labeling A. The digraph has linear representative such that each
cycle projects to a trimer. Under the trivial weighting on the
digraph, trimers inherit weight − 1.

Under the trivial weighting on the digraph, all arcs have weight 1, thus
pavers inherit weight (−1)(1)(1)(1). Labeling ‘A’ naturally extends to single-
rowed sections of the flat cube digraph of arbitrary order. The corresponding
path graph is also extended to arbitrary order, supporting pavings with
trimers along its length. In the usual way, such pavings define an infinite
family of paving polynomials {Pk(µ)}k≥0.

The first few such paving polynomials are derived in Figure 7.7. We find
a recurrence relation on these paving polynomials in Figure 7.8. Thus we
have

Lemma 52. Let {Pk(µ)}k≥0 be the family of trivially uniformly weighted
paving polynomials generated by labeling ‘A’ on a single rowed piece of ‘flat
cube’ lattice, as in Figure 7.6. Then the paving polynomials satisfy third
order recurrence

Pk(µ) = µPk−1 − Pk−3, (7.9)

with characteristic equation

z3 − µz2 + 1 = 0 (7.10)

and subject to initial conditions P0(µ) := 1, P1(µ) = µ and P2(µ) = µ2.
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P1 =

P2 =

P3 =

µ

µ µ

µ µ µ −1
,

P4 = µ µ µ
,

µ µ
,

µ(−1) (−1)+ +
Figure 7.7: The first few trivially uniformly weighted paving polynomials

generated by labeling ‘A’ on a single rowed piece of ‘flat cube’
lattice.

0 1
? ? ? ? ?

=

0 1
?

0 1
? ? ?

+ −1

?

?

Pk =
k−1k−2k−3k−4k−5

k−1k−2k−3k−4k−5

k−1k−2k−3k−4k−5

= µPk−1 − Pk−3

Figure 7.8: Trivially uniformly weighted paving polynomials generated by
labeling ‘A’ on a single rowed piece of ‘flat cube’ lattice satisfy
a third order recurrence relation.
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0 2 4

1 3 5

0 1 2 3 4 5

6

6

7

7

8

8

9

9

Figure 7.9: Labeling ‘B’. The digraph has linear representative such that
single cycles project to 4-mers and pairs of overlapping cycles
project to 6-mers.

7.4.2 Labeling B

Labeling ‘B’ of the single-rowed flat cube digraph gives a linear representa-
tive as shown in Figure 7.9. This representative supports cycles with one
of two possible appearances, as well as the possibility that cycles overlap.
Both shapes of cycles project to 4-mers, as shown in Figure 7.10. Thus the
trivial arc weighting on the digraph leads to a weighting of − 1 − 1 = −2
applied to 4-mers on the path graph.

It is also possible for (at most) a pair of such cycles to overlap, so that
their combined projection is a 6-mer. Thus the trivial arc weighting on the
digraph leads to a weighting of (−1)(−1) = +1 applied to 6-mers on the
path graph.

All basic configurations of cycles on the digraph project to pavings on
the path graph with 4-mers and 6-mers. However not all pavings with 6-
mers and 4-mers come from a basic cycle configuration. Looking carefully
we see that only every second vertex in the path graph may be the least
(leftmost) vertex in a paver.

Labeling ‘B’ may be naturally extended to an arbitrarily long row of the
flat cube lattice, with corresponding linear representation and path graph.
The path graph supports pavers along its length, subject to the constraint
that the leftmost vertex in a paver must always be of even parity.
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−2µ

Figure 7.10: Labeling ‘B’. Two kinds of cycle which both project to 4-mers
means that the paver inherits the weight −2µ under the trivial
arc weighting.

The first few paving polynomials are given in Figure 7.11. A recurrence
relation is derived in Figures 7.12 and 7.13.

We have

Lemma 53. Let {Pk(µ)}k≥0 be the family of trivially uniformly weighted
paving polynomials generated by labeling ‘B’ on a single rowed piece of ‘flat
cube’ lattice, as in Figure 7.9. Then the paving polynomials with even indices
satisfy recurrence

P2n(µ) = µ2P2n−2(µ)− 2µP2n−4(µ) + P2n−6(µ). (7.11)

Paving polynomials with odd indices are obtainable from those with even
indices as follows.

P2n+1(µ) = µP2n(µ) (7.12)

The even index recurrence Equation (7.11) has characteristic equation

z6 − µ2z4 + 2µz2 − 1 = 0. (7.13)

The first few paving polynomials are

P0(µ) := 1 (7.14)
P1(µ) = µ (7.15)
P2(µ) = µ2 (7.16)
P3(µ) = µ3 (7.17)
P4(µ) = µ4 − 2µ (7.18)
P5(µ) = µ5 − 2µ2 (7.19)
P6(µ) = µ6 − 2µ3 + 1. (7.20)
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P1 =

P2 =

P3 =

µ

µ µ

µ µ µ

,
P4 = µ µ µ µ

,
µ µ µ µ µ µP5 =

P6 = µ µ µ µ µ µ
,

µ µ
,

+1

−2µ

−2µ

−2µ

Figure 7.11: The first few trivially uniformly weighted paving polynomials
generated by labeling ‘A’ on a single rowed piece of ‘flat cube’
lattice.

P2n =
0 1 2 2n−1

? ? ? ? ? ? ?

=

0 1 2 2n−1
? ? ?

0 1 2 2n−1
? ? ? ?

+

2n−2

2n−2

2n−2

2n−3

2n−3

2n−3

2n−4

2n−4

2n−4

2n−5

2n−5

2n−5

2n−6

2n−6

2n−6

? ? ? ?

? ? ? ?

? ? ? ?

2n−72n−82n−92n−10

2n−72n−82n−92n−10

2n−72n−82n−92n−10

0 1 2 2n−1
? ?+

2n−22n−32n−42n−52n−6
? ? ?

2n−72n−82n−92n−10

?

+1

−2µ

= µ2P2n−2 − 2µP2n−4 + P2n−6

Figure 7.12: The recurrence relation for trivially uniformly weighted paving
polynomials with even indices, generated by labeling ‘B’ on a
single rowed piece of ‘flat cube’ lattice, is derived.
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0 1 2 2n−1
? ? ? ? ? ? ?

2n−22n−32n−42n−52n−6
? ? ? ?

2n−72n−82n−92n−10
?

2n
P2n+1 =

0 1 2 2n−1
? ? ? ? ? ? ?

2n−22n−32n−42n−52n−6
? ? ? ?

2n−72n−82n−92n−10 2n
=

= µP2n

Figure 7.13: Trivially uniformly weighted paving polynomials who indices
are odd numbers, as defined by labeling ‘B’ on a single rowed
piece of ‘flat cube’ lattice, may be obtained from those with
even indices.

Notice that the even index paving polynomials subject to labeling ‘B’ (as
in Lemma 53) are identical with the even index paving polynomials subject
to labeling ‘A’ (as in Lemma 52). As expected odd index paving polynomials
differ in the two labelings since they correspond to different boundaries on
the original slice of flat cube lattice.

7.4.3 Labeling C

Cycles on the digraph drawn linearly with the labeling of Figure 7.14 present
with one of two possible appearances. Both of these shapes project to 6-
mers. A pair of overlapping cycles may project to an 8-mer, 9-mer or 10-mer
depending on where they overlap. Triples may also overlap and project to
a 10-mer.

One natural extension of the labeling of Figure 7.14 to an arbitrarily
long row from a flat cube lattice is illustrated in Figure 7.15. This labeling
makes determining induced pavings more difficult than with labelings ‘A’
and ‘B’. The problem is that vertex labels ‘n−1’ and ‘n’ are close together as
integers but far apart as vertices on the digraph. (Distance between a pair
of vertices on a graph or digraph is the length of the shortest path between
the vertices, where the length of a path is the number of edges in the path.)

Labeling ‘C’ is indicative of the difficulties to expect in attempting to find
pavings of path graphs which characterize cycles on portions of the flat cube
lattice which consist of more than one row of small triangles. An intuition
is that labelings ‘A’ and ‘B’ take advantage of the fact that a single-rowed
slice is almost a one-dimensional problem; whereas as we take thicker strips
the two-dimensionality of the entire flat cube lattice comes more into play.
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0 1 2 3 4 5

43210

98765

9876

Figure 7.14: Labeling ‘C’. The digraph has linear representative such that
single cycles project to 6-mers. Pairs and triples of overlapping
cycles project to higher order pavers.

210

n n+1 n+2 2n−12n−22n−3

n−3 n−2 n−1

Figure 7.15: Labeling ‘C’. An extension of the labeling indicated in Fig-
ure 7.14 to higher order digraphs.
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7.5 Equivalent pavings

To define ‘equivalant pavings’ we need to formalize notions of ‘overlapping
cycles’ and ‘induced pavings’ which we have used implicitly up until here.

Definition 66. Let D be a digraph and R be a linear representative (see
Definition 65) of D. Then a pair of cycles {c1, c2} is said to overlap in R
provided that the following condition holds.

• There exists a triple of vertices u, v, w in R such that u < v < w and
either

– u,w ∈ c1 and v ∈ c2; or

– u,w ∈ c2 and v ∈ c1.

A set of cycles S = {c1, . . . ck} is said to overlap in R provided that for
every cycle ci ∈ S, there exists a distinct cj ∈ S (i.e. ci 6= cj) such that the
pair {ci, cj} overlap in R. A set of cycles is called non-overlapping in R
provided that they do not overlap in R.

Definition 67. Let D be a digraph of order n. Let R be a linear representa-
tive of D. Let P be a path graph of order n with vertex labeling 0, 1, . . . n−1.
Let S be a basic configuration of cycles on R. Then S projects to an ‘induced
paving’ on P by the following steps.

1. Partition the set S into disjoint subsets

S = ∪1≤i≤kSi, (7.21)
∅ = ∩1≤i≤kSi; (7.22)

such that

(a) each Si is a set of overlapping cycles, and

(b) Si ∪ Sj is non-overlapping for all i 6= j.

Note that this partitioning exists and is unique, as follows from the
definition of an overlapping set of cycles.

2. For each set Si (which may contain one or more cycles) create a single
paver on the path graph P, as follows. Let p be the least vertex in
Si, and q be the greatest vertex, where least and greatest are defined
according to the ordinary ordering of the integers. Then the paver
induced on P by (Si,R), is the set {p, p + 1, . . . q}. The collection
of pavers on P is called the paving induced on P by (S,R).
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Further, the set of pavings induced on P by (S, R), where

S = {S|S is a basic configuration of cycles} (7.23)

is called a complete set of induced pavings.

We may now define ‘equivalent pavings’.

Definition 68. Let D be a digraph of fixed order n, and let S be a basic
configuration of cycles on D. Let R1 and R2 be two linear representatives
of D, and let P be a path graph with vertices 0, 1, . . . , n− 1. Let

• p1 be the paving induced on P by (S,R1); and

• p2 be the paving induced on P by (S,R2).

Then p1 and p2 are termed equivalent pavings. A set of equivalent pavings
induced by S defined as in Equation (7.23), is called a complete set of
equivalent pavings.

For example, the pavings induced by Labelings ‘A’ and ‘B’ of the previous
section are equivalent for any fixed even order of the inducing digraph. It
follows from the definitions that

Lemma 54. Let P be a path graph; with pavings thereon induced by some
digraph D. Then

1. A pair of equivalent pavings on P have the same paving monomial.

2. A pair of complete sets of equivalent pavings on P have the same paving
polynomial.

The implication of Lemma 54 is that in tackling a paving or cycle count-
ing problem, we may potentially switch back and forth between different
paving representations as convenient.

Further, if a given paving problem has a difficult recurrence, we may
be able to replace it (perhaps by interpolating other polynomials, as arose
in the example considered in Section 7.4) by an equivalent problem with a
simpler recurrence. For instance, the recurrence

P2n(µ) = µ2P2n−2(µ)− 2µP2n−4(µ) + P2n−6(µ) (7.24)

of labeling ‘B’ from Section 7.4 is more complicated than the recurrence

Pk(µ) = µPk−1 − Pk−3 (7.25)
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of labeling ‘A’ from Section 7.4. Working with Equation (7.25) instead of
Equation (7.24) loses no information, but it means the advantage of replacing
characteristic polynomial

z6 − µ2z4 + 2µz2 − 1 (7.26)

with
z3 − µz2 + 1. (7.27)

The latter polynomial is more directly amenable to the root-simplifying
methods of Chapter 8.



Chapter 8

Laurent Pavings

If a problem is symmetric in some ways we may derive some
profit from noticing its interchangeable parts and it often pays
to treat those parts which play the same role in the same
fashion. Try to treat symmetrically what is symmetrical, and
do not destroy wantonly any natural symmetry.

George Polya, ‘How to Solve It’ [89]

In this chapter we discover that recasting Ballot and Motzkin paving
polynomials in terms of a well known change of variables, when interpreted
combinatorially, leads to a new kind of paving which is unexpectedly simpler
than the original. The relevant variable change has the form

µ 7→ aρ+ b+ cρ−1, (8.1)

with a, b and c constants and b = 0 for Ballot polynomials. We term the
new kind of paving a ‘Laurent paving’ because the negative powers of ρ in
Equation (8.1) lead to representation by a Laurent polynomial. When we
need to distinguish between Laurent pavings (respectively Laurent paving
polynomials) and our original pavings (respectively paving polynomials), we
refer to the originals as Viennot pavings (respectively Viennot paving
polynomials.)

The simplicity of Laurent pavings (which we will formally define below)
was unexpected because the change of variables replaces one object with
either two or three, so that one would expect an exponential proliferation of
configurations. It turns out that the anticipated abundance is compensated
for by a cascade of cancellation.

175
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An advance clue to the simplicity of Laurent pavings could have been
found in the simplicity of those Laurent polynomials which are obtained by
making a substitution of the form (8.1) into Viennot Ballot and Motzkin
paving polynomials; and which we later term ‘Laurent paving polynomials’
– see Theorems 56 and 63 below. These explicitly rational expressions are
essential for the new variant of ‘Constant Term’ method which is introduced
in Chapter 10.

In light of the new efficacies we have found for classic variable change (8.1),
we look a little more deeply at the substitution, both from a combinatorial
and an algebraic point of view, to see why this choice works well. In thinking
about why, one perspective is that using positive, zero and negative powers
of ρ reflects the geometry of walks on the underlying digraph, which allows
a ‘disentangling’, both combinatorial and algebraic, of types of steps: up,
across and down.

Next we apply, a priori, to other step sets the same considerations from
which we derived, a posteriori, the Ballot/Motzkin substitution (8.1). By
this approach we achieve partial success, in that we obtain a useful simpli-
fication but not complete rationalization of 2-up and Jump 2-step paving
polynomials.

8.1 Disentangling Ballot pavings

We begin this section by defining Ballot Laurent pavings.

8.1.1 Laurent pavings

We first specify the pavers which shall be used in Ballot Laurent pavings,
and some useful associated notation.

Definition 69. Let Pk be a path graph of order k, with vertices 0, 1, . . . , k−1.
Then a plus-mer is a distinguished vertex of Pk carrying weight ρ. A plus-
mer is represented by the symbol

+ (8.2)

A minus-mer is a distinguished vertex of Pk carrying weight λρ−1. The
coefficient λ is termed a background weight. A minus-mer is represented
by the symbol

− (8.3)
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The term sign-mer is used to indicate either a plus-mer or a minus-mer.
The symbol we use for a signmer, i.e. to represent a vertex for which it has
not been determined whether it is paved as a plus-mer or minus-mer is

± (8.4)

A Laurent-weighted dimer is the dimer {i− 1, i} carrying weight − λ̂i.
The symbol we use for a Laurent-weighted dimer is

−λ̂i
(8.5)

When λ̂i = 0, the Laurent-weighted dimer is termed vanishing, and when
λ̂i 6= 0, the Laurent-weighted dimer is termed non-vanishing. The symbol
we use to represent an edge for which it has not been determined whether it
is paved or not is

?
−λ̂i

(8.6)

Definition 70. Let {i1 − 1, i1} and {i2 − 1, i2} be a pair of non-vanishing
dimers such that i2−1 > i1 and such that there are no non-vanishing dimers
inbetween. Then the set of vertices {i1+1, i1+2, . . . , i2−2} is called the gap
(between non-vanishing dimers). A plus-minus run is a collection of
plus-mers and minus-mers in a gap such that every dimer in the gap is paved
with either a plus-mer or a minus-mer; and for each plus-mer in the gap,
its vertex label is smaller than that for any minus-mer in the gap.

Definition 71. A Laurent Ballot paving of a path graph Pk is a set of

• non-vanishing dimers

• plus-mers, and

• minus-mers

such that no two pavers share a vertex, and, furthermore, the gaps between
non-vanishing dimers are each paved with plus-minus runs.

Definition 72. Given a path graph Pk and set (possibly empty) of non-
vanishing Laurent-weighted dimers λ̂k, the Laurent Ballot paving poly-
nomial is the sum over the weights of Laurent pavings:

P̃k(ρ) :=
∑
r∈Rk

w(r), (8.7)
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where Rk is the set of Laurent Ballot pavings on Pk. The weight of a
Laurent Ballot paving, w(r), is the product

w(r) =
∏
m∈r

w(m), (8.8)

with each m a paver in r and

w(m) =


ρ for m a plus-mer
λρ−1 for m a minus-mer; and
− λ̂k for m the Laurent dimer {k − 1, k}.

(8.9)

An example of a Laurent Ballot Paving with associated Laurent Ballot
Paving Polynomial is given in Figure 8.1.

+ + + +

+ + +

+ +

+

+ +

+

± ± ± ±?

−

−

− −

− −

− − − −

− −

−

=

+

+

+

+

+

+

+

−λ̂3

−λ̂3

−λ̂3

−λ̂3

Figure 8.1: A Laurent Ballot paving with background weight λ, and
single non-vanishing decoration λ̂3. The Laurent paving
polynomial is P̃4(ρ) =

(
ρ4 + λρ2 + λ2 + λ3ρ−2 + λ4ρ−4

)
−(

ρ2 + λ+ λ2ρ−2
)
λ̂3.

We have defined Laurent Ballot paving polynomials as a weighted sum
over Laurent Ballot pavings. The same algebraic objects may be obtained
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by making a substitution into the Viennot Ballot paving polynomials. This
result is the content of the following key Theorem.

Theorem 55. Fix λ. Let {Pk(µ)}k≥0 be a family of (Viennot) Ballot paving
polynomials satisfying recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ) (8.10)

for some sequence of λk’s. Then under rational change of variables,

µ 7→ ρ+ λρ−1. (8.11)

we have
Pk(µ(ρ)) = P̃k(ρ), (8.12)

where P̃k(ρ)’s are Laurent Ballot polynomials with Laurent weights on dimers,
λ̂k, related to the coefficients in Equation (8.10) by

λ̂k := λk − λ. (8.13)

Note, as we will see in the proof of Theorem 55, any choice of λ will
give the same Laurent paving polynomial, but choosing λ such that the λ̂k’s
equal zero for as many values of k as possible will reduce the complexity of
the calculation. We first give an example of Theorem 55, and then follow
with the proof.

A Laurent paving example

Fix λ. We consider the family of (Viennot) Ballot polynomials defined by
the usual recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ), (8.14)

where in this instance the λ3 6= λ and λk = λ for all other values of k. Then
we may calculate the corresponding family of Laurent polynomials (with
respect to λ) defined by

P̃k(ρ) = Pk(ρ+ λρ−1) (8.15)

as a sum over Laurent pavings, as is illustrated for P̃4(ρ) in the right hand
side of Figure 8.1. Alternatively one may calculate P4(µ) using a Viennot
paving as in the left hand side of the same figure, and then substitute

µ = ρ+ λρ−1. (8.16)
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Carrying out this substitution shows that many terms cancel to give

P4(µ) = µ4 − 2λµ2 − λ3µ
2 + λλ3 (8.17)

= (ρ+ λρ−1)4 − 2λ(ρ+ λρ−1)2 − λ3(ρ+ λρ−1)2 + λλ3 (8.18)
=

(
ρ4 + λρ2 + λ2 + λ3ρ−2 + λ4ρ−4

)
−
(
ρ2 + λ+ λ2ρ−2

)
(λ3 − λ)(8.19)

= P̃4(ρ). (8.20)

The left hand side of Figure 8.2 gives the Viennot paving polynomial, P4(µ),
in terms of Viennot pavings. The right hand side of Figure 8.2 indicates the
calculation of the Laurent paving polynomial, P̃4(ρ), in terms of Laurent
pavings.

−λ

−λ

−λ

−λ3

−λ3

? ? ?P4(µ) =

=

+

+

+

+

= µ4 − 2λµ2 − λ3µ
2 + λλ3

µ µ µ µ

µ µ

µµ

µµ

P̃4(ρ) = ± ± ± ±
−λ −λ −λ3 ?

=

+

−λ̂3

=
(
ρ4 + λρ2 + λ2 + λ3ρ−2 + λ4ρ−4

)

−
(
ρ2 + λ + λ2ρ−2

)
λ̂3

−λ̂3

± ± ± ±

± ±

Figure 8.2: A Viennot paving and a Laurent paving give respectively the
Viennot paving polynomial and the Laurent paving polynomial
for edge weighting λ1 = λ2 = λ, λ3 6= λ; for some λ. The
Laurent paving is shown in abbreviated form, with all possible
plus-minus runs indicated by the ± symbols. Compare with the
non-abbreviated version in Figure 8.1.

Proof of Theorem 55

Proof. Theorem 55 asserts the commutativity of the following diagram.
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polynomials
Laurent paving

polynomials

Laurent pavings

= OR+ −µ
µ = ρ + λρ−1

λk = λ̂k + λ

,

= OR
−λ̂k−λk −λ

,

Involution on: Cancellation on:

Weighted sum

Weighted sum

Viennot pavings
Viennot paving

The proof of the theorem is by construction of the involution indicated.
Let {Pk(µ)}k≥0 be a family of Viennot paving polynomials defined by the
recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ), (8.21)

with
{λk}k≥0 (8.22)

some sequence of weights. Fix λ. We will later see why it is advantageous
to choose λ such that

λ̂k := λk − λ (8.23)

is equal to zero for as many values of k as possible. We know by Lemma 42
that

Pk(µ) =
∑
p

w(p), (8.24)

where p’s are Viennot pavings with dimers weighted

w({k − 1, k}) = −λk (8.25)

and uncovered vertices weighted

w(0-mer) = µ. (8.26)

Thus a first (inefficient) way to calculate the Laurent polynomial is to start
with Viennot pavings, and create (and sum over) many new pavings by
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replacing instances of vertices weighted µ with plus-mers and minus-mers:

+

−
µ

ρ+1

λρ−1
(8.27)

in all possible ways. Thus each Viennot paving containing n uncovered
vertices spawns 2n of the new pavings. We have

Pk(ρ+ λρ−1) =
∑
p′

w(p′), (8.28)

where p′’s are pavings with plus-mers, minus-mers, and dimers (still) weighted
as in Equation (8.25). At this stage, the plus-mers and minus-mers are inter-
spersed amongst each other, and not restricted to plus-minus runs between
dimers. We also have the ‘wrong’ kind of dimers for the theorem, and need
to make another substitution to include the ‘right’ kind. A rearrangment of
Equation (8.23) gives

λk = λ̂k + λ (8.29)

which substitution can be performed combinatorially by replacing pavings
containing instances of λk with two pavings, the first with λ̂k in the position
of the original λk and the second with λ in the position of the original λk.
Now we have Pk(ρ+ λρ−1) in terms of λ̂k’s (and λ’s) instead of λk’s, via

Pk(ρ+ λρ−1) =
∑
p′′

w(p′′), (8.30)

where p′′’s are pavings with plus-mers, minus-mers, and two kinds of dimers,
those weighted −λ and those weighted − λ̂k. The distribution of plus-mers
and minus-mers is still general. Next we describe an involution which we
show precisely cancels out by weight all pavings with plus-mers and minus-
mers not in plus-minus runs, against all pavings containing dimers weighted
− λ; leaving exactly the Laurent pavings described in Definition 70. We

need some terminology.

• Let a minus-plus pair be adjacent vertices {i, i + 1} such that i is
paved as a minus-mer and i+ 1 is paved as a plus-mer.

• Let a dimer, {i, i+ 1}, with weight − λ be termed a plain dimer.

• Let a pair of adjacent vertices, {i, i+ 1} which are either a minus-plus
pair or a plain dimer be termed a bad pair.
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• Let any paving containing a bad pair be called a bad paving.

We may now define the sets upon which the involution shall act.

• Let Ω be the set of pavings of the path graph Pk with plus-mers,
minus-mers, plain dimers and Laurent weighted dimers (denoted p′′ in
Equation (8.30)).

• Let Ω+ ⊆ Ω be that subset of Ω consisting of pavings containing an
even number of minus-plus pairs.

• Let Ω− ⊆ Ω be that subset of Ω consisting of pavings containing an
odd number of minus-plus pairs.

It follows that

Ω = Ω+ ∪ Ω−, and (8.31)
∅ = Ω+ ∩ Ω−. (8.32)

Schematically we have Figure 8.3.

Ω+ Ω−

Λ :

Pavings containing an even
number of minus-plus pairs

number of minus-plus pairs
Pavings containing an odd

Figure 8.3: An involution exchanging minus-plus pairs for plain dimers.

It remains only to describe the involution. Let

Λ : Ω→ Ω (8.33)
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by the following rule.

• If r ∈ Ω is not a bad paving, then Λ(r) = r.

• Otherwise:

– if the rightmost bad pair in r is a plain dimer, replace that pair
with a minus-plus pair;

– if the rightmost bad pair in r is a minus plus pair, replace that
pair with a plain dimer.

We see that
Λ2 = identity, (8.34)

as it must for an involution. Furthermore, since any bad paving must contain
a rightmost bad pair, each bad paving in Ω+ (respectively Ω−) is mapped
to a bad paving in Ω− (respectively Ω+). We note that Λ restricted to
the class of bad pavings is a bijective mapping, as we see by the following
considerations. (See Figure 8.4.)

µ µ

+ +

+ −
− +

− −

−λk

−λ̂k

−λ

,

Figure 8.4: There is a bijection between minus-plus pairs and plain dimers.

• Within the context of Viennot pavings,

– for each paving with an adjacent pair, {i, i + 1}, of uncovered
vertices, there exists another paving, equal in all other respects
except that the pair {i, i + 1} are paved with a dimer weighted
− λi;

– for each paving with adjacent vertex pair {i, i + 1} paved with
a dimer weighted − λi, there exists another paving, equal in all
other respects except that {i, i+ 1} are both uncovered.

• In the mapping from Viennot pavings to pavings in Ω,
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– each pair of adjacent uncovered pavings generates exactly one
minus-plus pair; and

– each dimer weighted − λi generates exactly one plain dimer.
(Note that this holds even when −λi = −λ. In this situation the
Laurent dimer is vanishing, but the plain dimer is still created.)

Thus all pavings containing plain dimers are canceled out, and only those
with Laurent dimers remain. Also, all pavings containing minus-plus pairs
are canceled out, so that only those whose plus-mers and minus-mers form
plus-minus runs, remain. Hence the fixed point set of the involution lies
entirely within Ω+ and is precisely the set of Laurent pavings.

It remains now only to check that the weights of bad pavings cancel. We
see that they do, since

w(minus-plus pair) = ρλρ−1 (8.35)
= λ, (8.36)

whilst

w(plain dimer) = −λ. (8.37)

As the mapping Λ alters only the right-most bad pair in a paving and leaves
the rest intact, Equations (8.36) and (8.37) show that

w(Λ(r)) = −w(r), (8.38)

as required.

Comments on the involution proving Theorem 55

An example of the involution in the proof of Theorem 55 is illustrated in
Figures 8.5–8.6. We now see why choosing λ such that

λ̂k := λk − λ (8.39)

equals zero as often as possible is an advantage. This maximizes the number
of vanishing Laurent dimers. Since vanishing dimers, by definition, have
weight zero, they set to zero the weight of any paving they occur in, which
means that those pavings need not be generated in the first place.
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Figure 8.5: Viennot pavings of the path graph P2 generate pavings in Ω (as
defined in the proof of Theorem 55). The choice λ1 = λ, λ2 6= λ
is illustrated.
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Figure 8.6: Ω-pavings of Figure 8.5 cancel under the involution of the proof
of Theorem 55, leaving only Laurent pavings.
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8.1.2 Laurent polynomials

The well-known part of this section is the simplifying effect of the change
of variables on paving polynomials. Given the previous Theorem 55, we
see that the simplified Viennot paving polynomial for uniformly weighted
Ballot paths, after change of variables, is the Laurent paving polynomial
for the same class of paths; and that it is explicitly rational. We use this
classical change of variables, along with the combinatorics of pavings we have
developed, to give Lemma 57, to also obtain explicitly rational expressions
for decorated Laurent paving polynomials. It is on this lemma that the ‘CT’
method of Chapter 10 critically relies.

Theorem 56. Let {Mk(µ)}k≥0 be the family of standard uniform Viennot
Ballot paving polynomials and let {M̃k(ρ)}k≥0 be the associated family of
standard uniform Ballot Laurent paving polynomials, under change of vari-
ables

µ 7→ ρ+ λρ−1. (8.40)

Then the closed form expression for uniform Viennot Ballot paving polyno-
mials:

Mk(µ) =
(µ+

√
µ2 − 4λ)k+1 − (µ−

√
µ2 − 4λ)k+1

2k+1
√
µ2 − 4λ

(8.41)

becomes closed form expression for uniform Laurent Ballot paving polyno-
mials:

M̃k(ρ) =
ρk+1 − λk+1ρ−(k+1)

ρ− λρ−1
. (8.42)

Proof. By Theorem 55, the Laurent paving polynomial is obtained from the
Viennot paving polynomial by direct substitution.

We also obtain an immediate corollary to Lemma 44, giving decorated
Laurent Ballot polynomials in explicitly rational closed form.

Lemma 57. Let {P̃k(ρ)}k≥0 be a family of decorated Laurent Ballot paving
polynomials with a finite number of non-vanishing weights, i.e.

λ̂k 6= 0 (8.43)

for only a finite number, d, of values of k. Then the P̃k’s may be expressed
as a finite sum of products of uniform Laurent Ballot paving polynomials,
M̃j. That is,

P̃k(ρ) =
m∑
i=1

c̃i

n∏
j=1

M̃j(ρ), (8.44)
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where M̃j(ρ) is given by Equation (8.42) of Theorem 56,

1 ≤ m ≤ 2d, (8.45)

1 ≤ n ≤ d+ 1 (8.46)

and c̃i’s are Laurent polynomials in ρ (with coefficient λ̂k’s). Further, the
absolute value of the highest power of ρ in any c̃i is less than or equal to 2d.

An example we will make use of in the sequel is the Laurent polynomial
for the l-wall weighting introduced in Section 6.1.

Theorem 58. Let {P̃k(ρ)}k≥0 be the family of l-wall weights decorated
Ballot Laurent paving polynomials, given by non-vanishing weights on
dimers as follows.

w({i− 1, i}) =

{
κ̂i 1 ≤ i ≤ l
ω̂L−i+1 L− l + 1 ≤ i ≤ L

. (8.47)

Then

P̃L+1(ρ) =

(
D̃κ
l+1(ρ)− λρ−1D̃κ

l (ρ)
ρl

)(
D̃ω
l+1(ρ)− λρ−1D̃ω

l (ρ)
ρl

)
ρL

ρ− λρ−1

−

(
D̃κ
l+1(ρ)− ρD̃κ

l (ρ)
λlρ−l

)(
D̃ω
l+1(ρ)− ρD̃ω

l (ρ)
λlρ−l

)
λLρ−L

ρ− λρ−1
(8.48)

where the D̃’s are general decorated Laurent Ballot polynomials defined by

D̃κ
i (ρ) := Dκ

i (µ), (8.49)

where
Dκ
i+1(µ) = µDκ

i (µ)− κiDκ
i−1(µ), (8.50)

initial conditions Dκ
0 (µ) = 1 and Dκ

1 (µ) = µ hold; and similarly for Dω
i (µ).

Proof. Start with the result of Theorem 43. Then

P̃L+1(ρ) = D̃κ
l+1(ρ)D̃ω

l+1(ρ)M̃L−2l−1(ρ)

−λ
(
D̃κ
l (ρ)D̃ω

l+1(ρ) + D̃κ
l+1(ρ)D̃ω

l (ρ)
)
M̃L−2l−2(ρ)

+λ2D̃κ
l (ρ)D̃ω

l (ρ)M̃L−2l−3(ρ) (8.51)

= D̃κ
l+1(ρ)D̃ω

l+1(ρ)
(
ρL−2l − λL−2lρ−L+2l

ρ− λρ−1

)
−λ
(
D̃κ
l (ρ)D̃ω

l+1(ρ) + D̃κ
l+1(ρ)D̃ω

l (ρ)
)(ρL−2l−1 − λL−2l−1ρ−L+2l+1

ρ− λρ−1

)
+λ2D̃κ

l (ρ)D̃ω
l (ρ)

(
ρL−2l−2 − λL−2l−2ρ−L+2l+2

ρ− λρ−1

)
(8.52)
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Collecting ρL and ρ−L terms gives the theorem.

This capacity to separate out the large L part of the expression from the
rest of the Laurent polynomial will be a distinct advantage, come Chapter 10.

8.1.3 The ‘disentangling’ variable

We now go back and re-examine the classic change of variables which has
worked so well in simplifying both pavings and paving polynomials. We first
note the the non-isotropic version we use,

µ 7→ ρ+ λρ−1 (8.53)

is not the only possibility. It is perhaps more common to use the isotropic
variant

µ 7→
√
λρ+

√
λρ−1. (8.54)

In fact any substitution of the form

µ 7→ αρ+ βρ−1 (8.55)

where α and β are chosen so that

αβ = λ (8.56)

will do the required job. We choose version (1.25), almost arbitrarily, as it
most completely reflects the geometry of Ballot paths, as in (8.57).

Well known that ...

det(I − xTL) satisfies 3-term recurrence in L.

1 −x 0 0
−λ1x 1 −x 0

0 −λ2x 1 −x
0 0 −λ3x 1

(19)

Det

Cof

CT

[
Py′(1/x)P (y+1)

L−y (1/x)

xt+1PL+1(1/x)

]

Pk(µ) =
(µ +

√
µ2 − 4λ)k+1 − (µ−

√
µ2 − 4λ)k+1

2k+1
√

µ2 − 4λ

– 3-term recurrence

⇒ orthogonal polynomials

Use combinatorics – derive recurrences,
– solve recurrences.

+1

−1
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1 −x 0 0
−λ1x 1 −x 0

0 −λ2x 1 −x
0 0 −λ3x 1

(19)

Det

Cof

CT

[
Py′(1/x)P (y+1)

L−y (1/x)

xt+1PL+1(1/x)

]

Pk(µ) =
(µ +

√
µ2 − 4λ)k+1 − (µ−

√
µ2 − 4λ)k+1

2k+1
√

µ2 − 4λ

– 3-term recurrence

⇒ orthogonal polynomials

Use combinatorics – derive recurrences,
– solve recurrences.

+1

−1

19

λ
=⇒ µ !→ ρ+1 + λρ−1

(8.57)

Or, this choice could have arisen from seeking to find an explicitly rational
solution to the Viennot Ballot paving recurrence (5.9). With this in mind,
solve the characteristic equation (5.10)

z2 − µz + λ = 0

for µ to obtain
µ = z + λz−1. (8.58)

Replacing z with ρ gives new characteristic polynomial

z2 − (ρ+ λρ−1)z + λ = 0. (8.59)
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This new polynomial factorizes, as

(z − ρ)(z − λρ−1) = 0. (8.60)

The factorization corresponds to the splitting of the second order paving
polynomial recurrence for the uniform Ballot paving weighting into a pair
of coupled first order recurrences, which we investigate in the next section.

8.1.4 Pairs of coupled recurrences for Laurent polynomials

The factorization of the characteristic polynomial (8.60) for uniform Viennot
Ballot polynomials points to a capacity to split the second order recurrence
for uniform Ballot polynomials into a pair of coupled first order recurrences.
Said first order recurrences turn out to correspond to simply characterizable
subsets of the Laurent pavings.

When we extend the analysis to decorated pavings, we retain the new
pair of coupled recurrences but lose their first-order property. These ‘split’
Laurent polynomials are of independent interest in Section 8.1.5. Here we
define them and investigate the coupled recurrences.

Definition 73. Recall that

P̃k(ρ) =
∑
r∈Lk

w(r) (8.61)

where Lk is the set of Laurent pavings on the path graph Pk with vertices
0, 1, . . . k − 1.

Given a Laurent polynomial P̃k(ρ), the pair of signed Laurent poly-
nomials are P̃+

k (ρ) and P̃−k (ρ) as follows. The plus-suffixed Laurent
paving polynomial is

P̃+
k (ρ) =

∑
r∈L+

k

w(r) (8.62)

where L+
k ⊆ Lk is the set of Laurent pavings on the path graph such that

either

• the last vertex, ‘k − 1’, is a plus-mer, or

• the last pair of vertices, ‘{k − 2, k − 1}’, is a (Laurent) dimer.



8.1. DISENTANGLING BALLOT PAVINGS 191

The minus-suffixed Laurent paving polynomial is

P̃−k (ρ) =
∑
r∈L−k

w(r) (8.63)

where L−k ⊆ Lk is the set of Laurent pavings on the path graph such that

• the last vertex, ‘k − 1’, is a minus-mer.

The signed Laurent polynomials P̃+
k (ρ) and P̃−k (ρ) are referred to as the

positive and negative parts, respectively, of P̃k(ρ).

? ? ??

? ? ????

? ? ????

−λ̂L

+

−

? ?

? ?

? ?

LL−1L−2L−310

LL−1L−2L−310

LL−1L−2L−310

+

+

P̃L+1(ρ) =

}

} P̃+
L+1(ρ)

P̃−L+1(ρ)

Figure 8.7: All pavings split into two groups: plus-suffixed and minus-
suffixed, which give plus-suffixed and minus-suffixed paving
polynomials, respectively.

Theorem 59. Let {P̃k(ρ)}k≥0 be a family of decorated Laurent paving poly-
nomials, and let {P̃+

k (ρ)}k≥0, {P̃−k (ρ)}k≥0 be the associated pair of families
of signed Laurent polynomials. Then

P̃+
k (ρ) = ρP̃+

k−1(ρ)− λ̂k−1P̃
+
k−2(ρ)− λ̂k−1P̃

−
k−2(ρ) (8.64)

P̃−k (ρ) = λρ−1P̃+
k−1(ρ) + λρ−1P̃−k−1(ρ) (8.65)

subject to initial conditions

P̃+
1 (ρ) = ρ (8.66)
P̃+

0 (ρ) = 1 (8.67)
P̃−0 (ρ) = 0. (8.68)

Also,
P̃k(ρ) = P̃+

k (ρ) + P̃−k (ρ) (8.69)
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In particular, the family of uniform Laurent paving polynomials {M̃k(ρ)}k≥0;
has signed parts: {M̃+

k (ρ)}k≥0, {M̃−k (ρ)}k≥0; for which coupled recurrences
(8.64)–(8.65) become a pair of first order coupled recurrences

M̃+
k (ρ) = ρM̃+

k−1(ρ) (8.70)

M̃−k (ρ) = λρ−1M̃+
k−1(ρ) + λρ−1M̃−k−1(ρ), (8.71)

subject to initial conditions

M̃+
0 (ρ) = 1 (8.72)

M̃−0 (ρ) = 0. (8.73)

We have
M̃k(ρ) = M̃+

k (ρ) + M̃−k (ρ). (8.74)

The occurrence of first order coupled recurrences (8.70)–(8.71) coincides
with the factorization of the characteristic polynomial for the classic uniform
recurrence. That is,

Mk+1(µ) = µMk(µ)− λMk−1(µ) (8.75)

has characteristic polynomial

z2 − µz + λ = 0 (8.76)

which factors under variable change

µ 7→ ρ+ λρ−1 (8.77)

as
(z − ρ)(z − λρ−1) = 0. (8.78)

Proof. Equation (8.69) follows directly from the definition of signed paving
polynomials, as illustrated in Figure 8.7. Coupled recurrences (8.64)–(8.65)
follow from Figure 8.8, with equation (8.69) applied to the result. The
initial conditions (8.66)–(8.68) are those required for consistency with classic
paving initial conditions. The first order coupled recurrences (8.70)–(8.71)
for the uniform case follow from (8.64)–(8.65), with all dimers vanishing.
Equations (8.72)–(8.74) are also special cases of (8.67)–(8.69). Finally, (8.78)
is immediate given Equations (8.75) and (8.76) from Lemma 33.
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+

? ? ? ? ? ? ? ? ? ??
0 k−1k−2k−3k−41 2

+?P̃+
k (ρ) =

=

? ? ? ? ? ? ? ?
0 k−3k−41 2

? ? ? ? ? ? ? ? ?
0 k−2k−3k−41 2

+ −λ̂k−1

+?

=

? ? ? ? ? ? ? ? ? ?
0 k−1k−2k−3k−41 2

−P̃−k (ρ) =

ρP̃+
k−1(ρ)− λ̂k−1P̃k−2(ρ)

λρ−1P̃k−1(ρ)=

Figure 8.8: Signed Laurent polynomials are expressible in terms of shorter
signed and unsigned Laurent polynomials.
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8.1.5 Further combinatorics of the ‘Wall Weights’ example

An application of signed Laurent polynomials which will be of importance
to us for calculations, in Chapter 10, is the ‘wall-weighting’. The differences
in Equation (8.48) of Theorem 58 have combinatorial interpretations.

Lemma 60. Let
D̃+
l (ρ) =

∑
p∈L+

l

w(p), (8.79)

where L+
l is the set of Laurent pavings on the path graph of order l with

vertices {0, 1, . . . , l− 1}, such that the paving ends in either a plus-mer or a
dimer; and dimers {i− 1, i} are weighted − κ̂i. Let

D̃− l(ρ) =
∑
p∈L− l

w(p), (8.80)

where L− l is the set of Laurent pavings on the path graph of order l, with
vertices {0, 1, . . . , l − 1} such that the paving begins in either a minus-mer
or a dimer; and dimers {i− 1, i} are weighted − κ̂i. Then

D̃l+1(ρ)− λρ−1D̃l(ρ) = D̃+
l+1(ρ) (8.81)

and
D̃l+1(ρ)− ρD̃l(ρ) = D̃− l+1(ρ). (8.82)

Proof. The idea is illustrated in Figure 8.9. For equation (8.81), consider
the term

λρ−1D̃l(ρ). (8.83)

The factor D̃l(ρ) corresponds to the set of all Laurent pavings on l vertices.
The factor λρ−1 is the weight of a minus-mer. Appending a minus-mer to
the end of any Laurent paving gives a new Laurent paving, since a minus-
mer may follow either a dimer or a plus-minus run. Thus expression (8.83)
corresponds to that subset of Laurent pavings on l + 1 vertices which end
with a minus-mer. Hence performing the difference D̃l+1(ρ) − λρ−1D̃l(ρ)
combinatorially cancels off those terms and leaves precisely those Laurent
pavings on l + 1 vertices which end with either a plus-mer or a dimer; i.e.
D̃+
l+1(ρ). Thus Equation (8.81) is shown.

The proof of Equation (8.82) is similar, except in this case we append
a plus-mer to the start of a Laurent paving on l vertices, since a plus-mer
may precede either a plus-minus run or a dimer in a Laurent paving.
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+ +

+ −
−−{ }

−κ̂1

+

−{ }

=
+ −

−−
+

−
−
−

−

−

−

− λρ−1

=

+ +

−κ̂1

+ +

−κ̂1

= D̃+
2 (ρ)

D̃2(ρ) λρ−1D̃1(ρ)

Figure 8.9: The difference D̃l+1(ρ)− λρ−1D̃l(ρ) = D̃+
l+1(ρ); an example.
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8.1.6 Viennot and Laurent pavings: complexity

Finally we compare and contrast Viennot and Laurent pavings with regard
to which is the most practical to use, assuming that the algebraic object we
really want is the Laurent paving polynomial.

Some relevant questions we could ask about pavings and paving polyno-
mials, Veinnot and Laurent, are, can we find them:

1. reasonably quickly?

2. in closed form?

3. in a concise and explicitly rational closed form?

The latter two questions have been answered in the affirmative for the
Ballot problem with a finite number of decorations, in Lemma 33 (uniform
Viennot), Lemma 44 (decorated Viennot), Theorem 56 (uniform Laurent)
and Lemma 57 (decorated Laurent). The remainder of this section is an
outline of some broad considerations around the first question.

We restrict ourselves to the pavings for which we know the answer to
the second and third questions, i.e. those for which the path graph may be
arbitrarily long but there is a fixed finite number of decorations. We recall
that the Viennot paving polynomials for such Ballot pavings satisfy three
term recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ),

for which only a finite number of the λk’s differ from some background
weight λ.

A baseline for complexity comparisons is given by considering how long it
would take to find Viennot paving polynomials directly from the recurrence,
without any of the shortcuts that we have developed. We observe that

1. Iterating the defining recurrence gives the kth paving polynomial in
O(k) time.

2. Listing the pavings directly takes O(gk), time, where g = (1 +
√

5)/2
is the golden ratio.

It is an immediate consequence of the Viennot paving polynomial recur-
rence that Ballot paving polynomials and are counted by Fibonacci numbers,
as is well-known in the literature of ‘Matchings’ on a path graph. (Note that
a ‘Matching’ on a path graph is precisely a Ballot paving, i.e. a selection of
dimers.)
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Lemma 61. Let Rk be the set of Viennot Ballot pavings on path graph Pk.
Then the number of Viennot Ballot pavings of Pk is

|Rk| =
(1 +

√
5)k+1 − (1−

√
5)k+1

2k+1
√

5
. (8.84)

Asymptotically,

|Rk| ∼

(
1 +
√

5
2

)k
. (8.85)

Expression (8.84) is the sequence of Fibonacci numbers.

As is evident from Lemma 61, the utility of Viennot pavings as a compu-
tational tool does not derive from listing all possibilities directly, since this
is an exponential-time process.

The alternative described in Chapter 6, of breaking up the Viennot
pavings into decorated and undecorated stretches, submitting the latter to
the standard algebra of constant coefficient recurrences, solving the former
using either the recurrence or the pavings directly, and reassembling the
constituent parts, is likely to be much faster, especially for pavings with
long stretches of uniform weighting.

This ‘break and recombine’ approach yields Viennot paving polynomials
directly, as sums of products of smaller uniform Viennot paving polynomials.
This same approach may also yield Laurent polynomials, either by simply
substituting the change of variables at the end, or by replacing the classic
paving segments with Laurent paving segments in the penultimate step.

What of using Laurent pavings directly from the beginning? Firstly we
note a difference from classic pavings of aesthetic if not computational im-
portance. That is, for Laurent pavings we need not ‘outsource’ solution of
the uniform stretches – we read their weight immediately off the combina-
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torics of plus-minus runs:

0 1 2 L−1L−2L−3
+ + + + + +

0 1 2 L−1L−2L−3
+ + + + ++

0 1 2 L−1L−2L−3
+ + + ++

0 1 2 L−1L−2L−3
+ + ++

...

0 1 2 L−1L−2L−3
+ ++

0 1 2 L−1L−2L−3
++

0 1 2 L−1L−2L−3
+

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

= ρL + λρL−2 + λ2ρL−4+

=
ρL+1 − λL+1ρ−L−1

ρ− λρ−1

. . . + λLρ−L

M̃L(ρ) =

(8.86)

Also, using Laurent pavings to find Laurent polynomials is optimally effi-
cient in the sense that there is no cancellation of terms needed in transcribing
the polynomial from the paving, whereas in getting the Laurent polynomial
from the Viennot paving segments that are generated in the ‘break and re-
combine’ approach, some collecting of terms or cancellation may be required.
Yet Viennot pavings are convenient in a way that Laurent pavings are not:
we cannot directly and arbitrarily ‘break and recombine’ Laurent pavings
as we can Viennot. Thus Laurent pavings are less convenient for compart-
mentalizing a calculation. We illustrate the trade-off with the example in
Figures 8.10–8.11. The two pieces that the Viennot paving in Figure 8.10
breaks into become two parts of a Laurent polynomial under the familiar
variable change µ 7→ ρ+ λρ−1. We have, for the weighting illustrated,

P̃10(ρ) = −(κ̂3 + λ)
(
(ρ+ λρ−1)2 − (κ̂1 + λ)

)
M̃6(ρ)

+
(
(ρ+ λρ−1)3 − (κ̂1 + κ̂2 + 2λ)(ρ+ λρ−1)

)
M̃7(ρ).(8.87)

Whereas the Laurent paving gives directly

P̃10(ρ) = M̃10(ρ)− κ̂1M̃8(ρ)− κ̂2M̃1(ρ)M̃7(ρ)− κ̂3M̃2(ρ)M̃6(ρ)+ κ̂1κ̂3M̃6(ρ).
(8.88)
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? ?? ?
−κ1 −κ2 −κ3 −λ −λ −λ −λ −λ −λ

? ?? ? ?P10(µ) =

= ?
−κ1 −κ3 −λ −λ −λ −λ −λ

? ?? ? ?

?? ?
−κ1 −κ2 −λ −λ −λ −λ −λ −λ

? ?? ? ?+

= −κ3

(
µ2 − κ1

)
M6(µ) +

(
µ3 − (κ1 + κ2)µ

)
M7(µ)

Figure 8.10: This Viennot paving breaks into two pieces.

? ?? ? ± ± ± ± ± ±P̃10(ρ) = ?? ?
−κ̂1 −κ̂2 −κ̂3

= ± ± ± ± ± ±

± ± ± ± ± ±
−κ̂1

± ± ± ± ± ±
−κ̂2

± ± ± ± ± ±
−κ̂3

± ± ± ± ± ±
−κ̂1 −κ̂3

+

+

+

+

± ± ± ±

± ±

±

±±

±

Figure 8.11: This Laurent paving problem splits into 5 terms.
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We conclude that for finding Laurent polynomials, Laurent pavings are
more elegant, Viennot pavings are more flexible; and the optimal choice of
tool depends on the detail of the application.

8.2 Disentangling Motzkin pavings

8.2.1 Laurent pavings

‘Laurent Motzkin pavings’ are composed of the same objects as defined in
Definition 69 for Ballot pavers, but with the following additions.

Definition 74. Let Pk be a path graph of order k, with vertices 0, 1, . . . , k−1.
Then a flat-mer is a distinguished vertex of Pk carrying weight b. A flat-
mer is represented by the symbol

b (8.89)

A plain monomer is the monomer {i} carrying weight − b. The symbol
for a plain monomer is

−b
(8.90)

A Laurent-weighted monomer is the monomer {i} carrying weight − b̂i.
The symbol for a Laurent-weighted monomer is

−b̂i
(8.91)

When b̂i = 0, the Laurent-weighted monomer is termed vanishing, and
when λ̂i 6= 0, the Laurent-weighted monomer is termed non-vanishing.

Definition 75. Let {i1, i2} and {i3, i4} be a pair of non-vanishing pavers
(where i1 may equal i2, if the first is monomer; and i3 may equal i4, if
the second is monomer) such that i3 > i2 and such that there are no non-
vanishing pavers inbetween. Then the set of vertices {i2 + 1, . . . , i3 − 1} is
called the gap (between non-vanishing pavers). A plus-minus run is
a collection of plus-mers and minus-mers in a gap such that for each plus-
mer in the gap, its vertex label is smaller than that for any minus-mer in
the gap.

Definition 76. A Laurent Ballot paving of a path graph Pk is a set of
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• non-vanishing dimers

• non-vanishing monomers

• plus-mers, and

• minus-mers

such that no two pavers share a vertex, and, furthermore, the gaps between
non-vanishing dimers are each paved with plus-minus runs.

Definition 77. Given a path graph Pk and (possibly empty) sets of non-
vanishing Laurent-weighted dimers λ̂i and non-vanishing Laurent-weighted
monomers b̂j the
Laurent Motzkin paving polynomial is the sum over the weights of
Laurent pavings:

P̃k(ρ) :=
∑
r∈Rk

w(r), (8.92)

where Rk is the set of Laurent Motzkin pavings on Pk; the weight of a
Laurent Ballot paving, w(r), is the product

w(r) =
∏
m∈r

w(m), (8.93)

with each m a paver in r and

w(m) =


ρ for m a plus-mer
λρ−1 for m a minus-mer
− b̂k for m the Laurent monomer {k}; and
− λ̂k for m the Laurent dimer {k − 1, k}.

(8.94)

Theorem 62. Fix λ. Let {Pk(µ)}k≥0 be a family of (Viennot) Motzkin
paving polynomials satisfying recurrence

Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ) (8.95)

for some sequences of λi’s and bj’s. Then under rational change of variables,

µ 7→ ρ+ b+ λρ−1. (8.96)

we have
Pk(µ(ρ)) = P̃k(ρ), (8.97)
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where P̃k(ρ)’s are Laurent Motzkin polynomials with Laurent weights, λ̂i and
b̂j related to the coefficients in Equation (8.10) by

λ̂i := λi − λ, (8.98)
b̂j := bj − b. (8.99)

Proof. The proof is almost identical to that given for Ballot pavings. The
necessary modification is indicated in Figure 8.12, where we see that b’s
generated by µ’s in Equation (8.96) cancel exactly with b’s generated by b̂j ’s
in Equation (8.99).

µ

−b

+

−
b

These cancel

−bi

−b̂j

Figure 8.12: b’s generated by µ’s cancel exactly with − b’s generated by
− bj ’s.

8.2.2 Laurent polynomials

Motzkin polynomials simplify in the same way that Ballot polynomials did,
under an analogous classical change of variables.



8.2. DISENTANGLING MOTZKIN PAVINGS 203

Theorem 63. Let {Mk(µ)}k≥0 be the family of standard uniform Viennot
Motzkin paving polynomials and let {M̃k(ρ)}k≥0 be the corresponding family
of standard uniform Motzkin Laurent paving polynomials, under change of
variables

µ 7→ ρ+ b+ λρ−1. (8.100)

Then the closed form expression for uniform Viennot Ballot paving polyno-
mials:

Mk(µ) =
(µ− b+

√
(µ− b)2 − 4λ)k+1 − (µ− b−

√
(µ− b)2 − 4λ)k+1

2k+1
√

(µ− b)2 − 4λ
(8.101)

becomes closed form expression for uniform Laurent Ballot paving polyno-
mials:

M̃k(ρ) =
ρk+1 − λk+1ρ−(k+1)

ρ− λρ−1
. (8.102)

Notice that Equation (8.102) is also identical with Equation (8.42) for
Ballot paths – the shift in variable obliterates b entirely. Also as with Ballot
pavings, this Theorem may be used in conjugation with the combinatorics
of pavings to obtain explicitly rational Laurent paving polynomials for dec-
orations weightings containing any finite number of decorations.

8.2.3 The ‘disentangling’ variable

The disentangling variable for Motzkin pavings obeys the same considera-
tions as did the one for Ballot pavings, and is a natural generalization of
that transformation. Geometrically, we see

Well known that ...

det(I − xTL) satisfies 3-term recurrence in L.

1 −x 0 0
−λ1x 1 −x 0

0 −λ2x 1 −x
0 0 −λ3x 1

(19)

Det

Cof

CT

[
Py′(1/x)P (y+1)

L−y (1/x)

xt+1PL+1(1/x)

]

Pk(µ) =
(µ +

√
µ2 − 4λ)k+1 − (µ−

√
µ2 − 4λ)k+1

2k+1
√

µ2 − 4λ

– 3-term recurrence

⇒ orthogonal polynomials

Use combinatorics – derive recurrences,
– solve recurrences.

+1

−1

19

Well known that ...

det(I − xTL) satisfies 3-term recurrence in L.

1 −x 0 0
−λ1x 1 −x 0

0 −λ2x 1 −x
0 0 −λ3x 1

(19)

Det

Cof

CT

[
Py′(1/x)P (y+1)

L−y (1/x)

xt+1PL+1(1/x)

]

Pk(µ) =
(µ +

√
µ2 − 4λ)k+1 − (µ−

√
µ2 − 4λ)k+1

2k+1
√

µ2 − 4λ

– 3-term recurrence

⇒ orthogonal polynomials

Use combinatorics – derive recurrences,
– solve recurrences.

+1

−1

19

λ
=⇒ µ !→ ρ+1 + b + λρ−1b

Algebraically, characteristic equation

z2 − (µ− b)z + λ = 0 (8.103)

implies
µ = z + b+ λz−1. (8.104)

Replacing z with ρ in Equation (8.104), and substituting back into Equa-
tion (8.103) gives

z2 − (ρ+ ρ−1)z + λ = 0, (8.105)

which is identical to the corresponding equation, (8.59), for Ballot paths.
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8.2.4 Viennot and Laurent pavings: complexity

Essentially the same considerations hold for ordinary and Laurent Motzkin
pavings as did for Viennot and Laurent Ballot pavings. The main practical
difference is that to use Viennot Motzkin pavings directly, one pays an even
higher exponential price than for Viennot Ballot pavings, as shown by the
following lemma, which quotes the classically fast growth of Pell numbers;
and as illustrated in the subsequent example.

Lemma 64. Let Rk be the set of Viennot Motzkin pavings on path graph
Pk. Then the number of Viennot Motzkin pavings of Pk is

|Rk| =

(
2 +
√

2
4

)(
1 +
√

2
)k

+

(
2−
√

2
4

)(
1−
√

2
)k
. (8.106)

The first few terms in the sequence are 1, 2, 5, 12, 29, 70, . . .. Asymptotically,

|Rk| ∼
(

1 +
√

2
)k
. (8.107)

Expression (8.106) gives the sequence of Pell numbers.

Proof. The proof follows from the paving recurrence:

Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ)

which implies that
|Rk+1| = 2|Rk|+ |Rk−1| (8.108)

subject to |R1| = 1, |R2| = 2; the solution of which is the Pell numbers.

Note that

Pell numbers ∼ (2.41421...)k,
Fibonacci numbers ∼ (1.61803...)k;

so that the penalty for going to Motzkin from Ballot paths, when directly
listing all Viennot pavings, is quite severe.

A Laurent paving example

Fix λ and b. We consider the family of Viennot paving polynomials defined
by the usual Viennot Motzkin recurrence

Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ), (8.109)
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µ
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−λ3
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−b

µ µ µ

µ µ µ
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µ µ
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µ µ−b

µµ

µ µ−b−b

µµ −b
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−b

−b

−b

−b

−b

−b

−b

−b

−b

−b0

−b0

−b0

−b0
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−b0

−b0
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−λ
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−λ

−λ
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−λ3

−λ3

± ± ± ±

± ± ±

± ±

±

−b̂0

−b̂0

−λ̂3

−λ̂3

Laurent Pavings

P̃4(ρ) =
(
ρ4 + λρ2 + λ2 + λ3ρ−2 + λ4ρ−4

)

−b̂0

(
ρ3 + λρ + λ2ρ−1 + λ3ρ−3

)

−λ̂3

(
ρ2 + λ + λ2ρ−2

)

+b̂0λ̂3

(
ρ + λρ−1

)

−b−b0

−b−b0

−b −b−b0 −b

−λ

−λ

−λ3

P4(µ) = µ4 − (b0 + 3b)µ3 + (3b0b + 3b2 − 2λ− λ3)µ2

+(b0λ + b0λ3 + bλ3 + 3bλ− 3b0b
2 − b3)µ

+λλ3 − b2λ− b0bλ− b0bλ3 + b0b
3

Viennot Pavings

Figure 8.13: An example with two decorations, b0 and λ3; against back-
ground weights b on monomers and λ on dimers.
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where we have decorations

λ3 6= λ, (8.110)
λk = λ otherwise, (8.111)
b0 6= b, (8.112)
bk = b otherwise. (8.113)

Then Viennot paving polynomials {Pk(µ)}k≥0 are given by Viennot pavings,
as illustrated in the left hand side of Figure 8.13, and Laurent paving poly-
nomials {P̃k(ρ)}k≥0, by the right hand side of Figure 8.13. Note that

± ± ± ± (8.114)

strings are shorthand for summing over all plus-minus runs on the selected
vertices, not over arbitrary configurations of plus-mers and minus-mers. The
Viennot paving polynomial we obtain is

P4(µ) = µ4 − (b0 + 3b)µ3 + (3b0b+ 3b2 − 2λ− λ3)µ2

+(b0λ+ b0λ3 + bλ3 + 3bλ− 3b0b2 − b3)µ
+λλ3 − b2λ− b0bλ− b0bλ3 + b0b

3 (8.115)

Substituting for µ gives Laurent paving polynomial

P4(ρ+ b+ λρ−1) = (ρ4 + λρ2 + λ2 + λ3ρ−2 + λ4ρ
−4)

−(b0 − b)(ρ3 + λρ+ λ2ρ−1 + λ3ρ−3)
−(λ3 − λ)(ρ2 + λ+ λ2ρ−2)
+(b0 − b)(λ3 − λ)(ρ+ λρ−1) (8.116)

= P̃4(ρ). (8.117)

8.3 Partially disentangling 2-up pavings

8.3.1 Disentangling variables

The trick that works beautifully for Ballot and Motzkin pavings, of recasting
the paving polynomial in another variable, works partially for other paving
polynomials. Here, the geometric and algebraic ways we used previously to
derive the appropriate parameter, are no longer in perfect agreement.
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We consider Uniform 2-up standard paver weighting ‘1’, as given by
Definition 26. Considering the geometry of the corresponding path problem
(see Definition 25), we expect parametrization

Well known that ...

det(I − xTL) satisfies 3-term recurrence in L.

1 −x 0 0
−λ1x 1 −x 0

0 −λ2x 1 −x
0 0 −λ3x 1

(19)

Det

Cof

CT

[
Py′(1/x)P (y+1)

L−y (1/x)

xt+1PL+1(1/x)

]

Pk(µ) =
(µ +

√
µ2 − 4λ)k+1 − (µ−

√
µ2 − 4λ)k+1

2k+1
√

µ2 − 4λ

– 3-term recurrence

⇒ orthogonal polynomials

Use combinatorics – derive recurrences,
– solve recurrences.

+1

−1

19
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√
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√
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– 3-term recurrence
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+1

−1

19

λ

=⇒

+2 ... long up step

µ !→ ρ+2 + ρ+1 + λρ−1

(8.118)

On the other hand, solving characteristic equation (5.40)

z3 − µz2 + λz + λ2 = 0

for µ and relabeling gives alternative parametrization

µ 7→ r + λr−1 + λ2r−2. (8.119)

Under either of the closely related parametrizations (8.118) or (8.119), the
characteristic polynomial factorizes, though not completely. We have

• ‘Geometric parametrization’ of the characteristic equation (5.40) gives(
z − λρ−1

) (
z2 −

(
ρ+ ρ2

)
z − λρ

)
= 0 (8.120)

with roots

z = λρ−1, z =
ρ+ ρ2 ±√ρ

√
ρ3 + 2p2 + ρ+ 4λ
2

. (8.121)

• ‘Algebraic parametrization’ of the characteristic equation (5.40) gives

(z − r)
(
z2 −

(
λr−1 + λ2r−2

)
z − λ2r−1

)
= 0 (8.122)

with roots

z = r, z =
rλ+ λ2 ± λ

√
4r3 + r2 + 2λr + λ2

2r2
. (8.123)

Both sets of roots (8.121) and (8.123) are much simpler than the roots of
equation (5.40) in terms of µ, the latter expression being a cumbersome triad
of sums and differences involving square and cube roots as well as imaginary
numbers. However (8.121) and (8.123) still contain quadratic terms, so to
find an explicitly rational paving polynomial we require the following lemma.
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Lemma 65. The following combination of powers is expressible in sum form
as follows.

(α+β) (γ + δ)k+(α−β) (γ − δ)k = 2
∑
i≥0

γk−2iδ2i
(
α

(
k

2i

)
+ β

(
k

2i+ 1

)
γ−1δ

)
(8.124)

Proof. The proof is straightforward algebraic manipulation.

(α+ β) (γ + δ)k + (α− β) (γ − δ)k (8.125)

= (α+ β)

∑
i≥0

(
k

i

)
γk−1δi

+ (α− β)

∑
i≥0

(−1)i
(
k

i

)
γk−1δi

 (8.126)

= α

((
k

0

)
γk +

(
k

1

)
γk−1δ +

(
k

2

)
γk−2δ2 +

(
k

3

)
γk−3δ3 + . . .

)
+α

((
k

0

)
γk −

(
k

1

)
γk−1δ +

(
k

2

)
γk−2δ2 −

(
k

3

)
γk−3δ3 + . . .

)
+β
((

k

0

)
γk +

(
k

1

)
γk−1δ +

(
k

2

)
γk−2δ2 +

(
k

3

)
γk−3δ3 + . . .

)
+β
(
−
(
k

0

)
γk +

(
k

1

)
γk−1δ −

(
k

2

)
γk−2δ2 +

(
k

3

)
γk−3δ3 − . . .

)
(8.127)

= 2α
∑
i≥0

(
k

2i

)
γk−2iδ2i + 2β

∑
i≥0

(
k

2i+ 1

)
γk−2i−1δ2i+1 (8.128)

= 2
∑
i≥0

γk−2iδ2i
(
α

(
k

2i

)
+ β

(
k

2i+ 1

)
γ−1δ

)
. (8.129)

Parametrizations (8.121) and (8.123) are similar. A feature of algebraic
parametrization (8.123) is that there is symmetry under z ↔ r. In other
words, solving for r in terms of z gives the same functional form as solving
for z in terms of r. We choose to find paving polynomials for the algebraic
parametrization.

8.3.2 Paving polynomials

Theorem 66. Let {Pk(r)}k≥0 be the family of 2-up uniform paving polyno-
mials which satisfy

Pk = µPk − λPk−1 − λ2Pk−2 (8.130)
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subject to initial conditions

P0 = 1 (8.131)
P1 = µ (8.132)
P2 = µ2 − λ. (8.133)

under parametrization

µ 7→ r + λr−1 + λ2r−2. (8.134)

Let

z1 := r (8.135)

z2 :=
λ(r + λ)

2r2
+
λ
√

4r3 + r2 + 2λr + λ2

2r2
(8.136)

z3 :=
λ(r + λ)

2r2
− λ
√

4r3 + r2 + 2λr + λ2

2r2
(8.137)

and

a1 =
r3

r3 − λr − 2λ2
(8.138)

a2 =
−λ(r + 2λ)

2(r3 − λr − 2λ2)
+

λ
(
2r3 + r2 + 3λr + 2λ2

)
2(r3 − λr − 2λ2)

√
4r3 + r2 + 2λr + λ2

(8.139)

a3 =
−λ(r + 2λ)

2(r3 − λr − 2λ2)
−

λ
(
2r3 + r2 + 3λr + 2λ2

)
2(r3 − λr − 2λ2)

√
4r3 + r2 + 2λr + λ2

.(8.140)

Then
Pk(r) = a1z

k
1 + a2z

k
2 + a3z

k
3 . (8.141)

Furthermore, as an explicitly rational function, we have expression

Pk =
rk+3

r3 − λr − 2λ2

+
λk+1

2kr2k(r3 − λr − 2λ2))

∑
i≥0

(r + λ)k−2i(4r3 + r2 + 2λr + λ2)i ×

{
− (r + 2λ)

(
k

2i

)
+

2r3 + r2 + 3λr + 2λ2

r + λ

(
k

2i+ 1

)}
. (8.142)

Proof. Solving characteristic equation (5.40)

z3 − µz2 + λz + λ2 = 0
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under parametrization (8.134) gives roots (8.135)–(8.137). Application of
initial conditions (8.131)–(8.133) gives coefficients (8.138)–(8.140) in the
standard ansatz (8.141). It remains only to show that (8.141) may be ex-
pressed as (8.142). This requires straightforward but tedius algebra, as
follows.

Abbreviate

A = −(r + 2λ) (8.143)
B = r3 − λr − 2λ2 (8.144)
C = 2r3 + r2 + 3λr + 2λ2 (8.145)
D = 4r3 + r2 + 2λr + λ2 (8.146)
E = r + λ (8.147)

Therefore,

a2z
k
2 + a3z

k
3 =

(
λA

2B
+

λC

2B
√
D

)(
λE

2r2
+
λ
√
D

2r2

)k

+
(
λA

2B
− λC

2B
√
D

)(
λE

2r2
− λ
√
D

2r2

)k
(8.148)

so that

2k+1r2kB
(
a2z

k
2 + a3z

k
3

)
λk+1

=
(
A+

C√
D

)(
E +

√
D
)k

+
(
A− C√

D

)(
E −

√
D
)k

(8.149)

Hence, by Lemma 65,

2k+1r2kB
(
a2z

k
2 + a3z

k
3

)
λk+1

= 2
∑
i≥0

Ek−2iDi

{
A

(
k

2i

)
+

(
C
√
D

E
√
D

)(
k

2i+ 1

)}
. (8.150)

Thus

a2z
k
2 + a3z

k
3

=
λk+1

2kr2k(r3 − λr − 2λ2))

∑
i≥0

(r + λ)k−2i(4r3 + r2 + 2λr + λ2)i ×

{
− (r + 2λ)

(
k

2i

)
+

2r3 + r2 + 3λr + 2λ2

r + λ

(
k

2i+ 1

)}
. (8.151)
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Adding in the term

a1z
k
1 =

rk+3

r3 − λr − 2λ2
(8.152)

gives Equation (8.142).

We comment that paving polynomial expression (8.142) is both explicitly
rational and much terser than the corresponding expression would be in the
original variable µ. Nonetheless, it is a much more complicated expression
that the analogue for Ballot paths, which was

k∑
i=0

λiρk−2i

and in turn was abbreviated as ratio

ρk+1 − λk+1ρ−k−1

ρ− λρ−1
.

There is further work in determining whether expression (8.142) can be
simplified more; and in particular whether it can be expressed as a sum
with fewer than O(k) terms.

We conclude this chapter by making a rudimentary reconnaissance of
Jump 2-step pavings.

8.4 Partially disentangling Jump 2-step pavings

8.4.1 Disentangling variables

Jump 2-step pavings are another natural case to try to find disentangling
variables for. On the one hand, they are more symmetrical than 2-up
pavings, so one might expect neater results. On the other hand, they are
in a sense more entangled, if one thinks about the associated digraph from
Figure 5.19 and the multiplicity of cycles thereon. It turns out that both
these features are reflected in the partially disentanglements we obtain.

We consider the trivial Uniform Jump 2-step paver weighting, as given by
Definition 46. Considering the geometry of the corresponding path problem
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(see Definition 45), we expect parametrization

Well known that ...

det(I − xTL) satisfies 3-term recurrence in L.

1 −x 0 0
−λ1x 1 −x 0

0 −λ2x 1 −x
0 0 −λ3x 1

(19)

Det

Cof

CT

[
Py′(1/x)P (y+1)

L−y (1/x)

xt+1PL+1(1/x)

]

Pk(µ) =
(µ +

√
µ2 − 4λ)k+1 − (µ−√

µ2 − 4λ)k+1

2k+1
√

µ2 − 4λ

– 3-term recurrence

⇒ orthogonal polynomials

Use combinatorics – derive recurrences,
– solve recurrences.

+1

−1

19
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−1

+2

−2

long down step
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(8.153)

On the other hand, solving characteristic equation (5.116)

z5 − (µ+ 1)z4 + (µ+ 1)z3 + (µ+ 1)z2 − (µ+ 1)z + 1 = 0

for µ and relabeling gives alternative parametrization

µ 7→ r2 − 2r + 3− 2r−1 + r−2

r − 2 + r−1
. (8.154)

Despite being quintic instead of cubic, the Jump-2 characteristic polyno-
mial (5.116) compares favourably with 2-up characteristic polynomial (5.40)
of the previous section. The Jump-2 characteristic polynomial (5.116) has
much simpler roots, and factors into two pieces even before we change vari-
ables, as

(z + 1)
(
z4 − (µ+ 2)z3 + (2µ+ 3)z2 − (µ+ 2)z + 1

)
= 0, (8.155)

which we recall gives roots (5.117)

z = −1, z =
1
4

(
2±

√
µ2 − 4µ±

√
2
√
−10− 4µ−

√
µ2 − 4µ(2 + µ) + (2 + µ)2

)
.

Under either parametrization (8.153) or (8.154), the characteristic poly-
nomial factorizes further, though still not completely. We have

• ‘Geometric parametrization’ of characteristic equation (5.116) implies

(z + 1)
(
z2 −

(
1 + ρ−1 + ρ−2

)
z + ρ−2

) (
z2 −

(
ρ2 + ρ+ 1

)
z + ρ2

)
= 0

(8.156)
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with roots

z1 = −1 (8.157)

z2,3 =
1 + ρ+ ρ2 ±

√
1 + 2ρ− ρ2 + 2ρ3 + ρ4

2
(8.158)

z4,5 =
1 + ρ+ ρ2 ±

√
1 + 2ρ− ρ2 + 2ρ3 + ρ4

2ρ2
. (8.159)

• ‘Algebraic parametrization’ of characteristic equation (5.116) implies

(z + 1) (z − r)
(
z − r−1

)(
z2 −

(
2r − 3 + 2r−1

r − 2 + r−1

)
z + 1

)
= 0

(8.160)
with roots

z1 = −1 (8.161)

z2,3 = r±1 (8.162)

z4,5 =
2r − 3 + 2r−1 ±

√
4r − 7 + 4r−1

2(r − 2 + r−1)
. (8.163)

Note that equations (8.160) and (8.163) have been written in such a
fashion as to emphasize the

r ↔ r−1 (8.164)

symmetry. For computational purposes when utilizing a computer
algebra system, it may be better to work in ratios of positive powers
of r, only.

Both the ‘geometric’ and ‘algebraic’ parametrizations result in quadratic
roots. Thus Lemma 65 could be used, as in the previous section, to give
an explicitly rational paving polynomial. As with 2-up pavings, the answer
is not nearly so aesthetically pleasing as it was for Ballot/Motzkin pavings.
There is room for further work in determining whether yet greater simplifica-
tion is possible. In this vein we note that roots z4 and z5 in Equation (8.163)
are inverses of each other. Also, it would be interesting to find a geometric
interpretation of the ‘algebraic’ parametrization.
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Part III

More Paths
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Chapter 9

Generating functions and
Recurrences

The difficulty in lattice path enumeration problems increases rapidly with
the introduction of weights which vary with height. Whilst techniques to
solve the unweighted versions of various enumerations were developed in
the nineteen hundreds and even the late eighteen hundreds (see Chapter 1),
the corresponding weighted problems, for arbitrary weightings, have resisted
until much more recently. For example, the problem of counting Ballot-like
paths in a strip with a single independent weight associated with each wall
was posed in 1971 [37] and only solved in 2006 [15], [25]; the solution of
which we describe in Chapter 10.

The heart of the difficulty is that the recurrence relation which defines
the desired weight polynomial is

1. a partial difference equation with boundary conditions,

2. with in general, non-constant coefficients.

For instance weight polynomials for Ballot paths with distinct weights for
downsteps from each distinct height have recurrence relation:

Bt(y) = Bt−1(y − 1) + λy+1Bt−1(y + 1) (9.1)

with boundary conditions Bt(0) = λ1Bt−1(1), Bt(L) = Bt−1(L − 1), and
initial condition Bt(0) = δy,0. Three combinatorial approaches to finding
generating functions for such paths are

1. Transfer matrices interpreted as adjacency matrices of digraphs give
generating functions.

217
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2. Generating functions may be derived from single variable constant
coefficient recurrences, and conversely.

3. ‘Heaps’ give generating functions.

The transfer matrix method of Item 1 is classic, and we briefly review it.
The original material of this chapter is contained in Item 2, and relates to
another well-known result: the algebraic derivation of generating functions
from constant coefficient recurrences or constant coefficient recurrences from
generating functions. The original contribution we make is the discovery of
a purely combinatorial method for finding constant coefficient recurrences
directly. Finally for completeness we mention Item 3, and refer the reader
to the extensive literature on the combinatorial objects known as ‘Heaps’
[105] for a third combinatorial derivation of generating functions.

9.1 Transfer Matrices

Let T = (Ti,j)0≤i,j≤L be a transfer matrix, where the (i, j)th entry is the
weight of a step from height i to height j. For example, the transfer matrix
for paths in a strip of height L and satisfying recurrence relation (9.1) is

TL =



0 1 0 0 0 . . . 0
λ1 0 1 0 0 . . . 0

0 λ2 0 1 0
...

0 0 λ3 0 1
. . .

0 0 0 λ4 0
. . . 0

...
...

. . . . . . . . . 1
0 0 . . . 0 λL 0


. (9.2)

The weight function which we ultimately want for paths of length t, starting
at height y′ and ending at height y, is

gy′,y;L(t) =
(
T tL
)
|y′,y (9.3)

Then the path length generating function, by definition, is

Gy′,y;L(x) =
∑
n≥0

(TnL )
∣∣
y′,y

xn. (9.4)

For small x, this series may be written

Gy′,y;L(x) = (I − xTL)−1
∣∣
y′,y

. (9.5)
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We note in passing that an expression of the form ‘(I − xT )−1’ is called
a resolvent (of T ), and that these are well-studied objects [69]. Here we
need the elementary result expressing the inverse of a matrix in terms of its
cofactors and determinant, to conclude another classic result:

Lemma 67. The path length generating function, Gy′,y;L(x), for paths start-
ing at height y′, ending at height y, confined to a strip of height L and
described by transfer matrix TL as in Equation 9.2, is

Gy′,y;L(x) =
cofy,y′(I − xTL)

det(I − xTL)
. (9.6)

This is still of limited practical use, without a means to find cofactors and
determinants as functions of TL for general L. Here a classic combinatorial
result comes to the rescue.

9.1.1 Determinants and cofactors as sums over cycles and
paths in digraphs

We start by describing determinants and cofactors combinatorially for an
arbitrary matrix, say ‘M ’, and will later consider M of the form ‘I − xT ’.
We begin with classic theorem

Theorem 68. Let D be a psuedo-digraph with n vertices and arc weights
Mi,j and M its weighted adjacency matrix, then

detM =
∑
c∈C

(−1)Ne(c)
∏

Mi,j∈A(c)

Mi,j , (9.7)

where C is the set of all spanning sets of cycles of D, Ne is the number of
even length cycles in c and A(c) the arc set of C.

The theorem states that the determinant of a matrix is a sum over
weighted cycles on the digraph for which that matrix is the adjacency ma-
trix. For a proof see for instance [12] or [7]. The basic idea of the proof is to
start with the definition of a determinant as a sum over products given by
permutations – it turns out that cycles on the digraph give precisely those
permutations for which the summand does not vanish. The detail in the
proof is in keeping careful track of the signs.

Another classic but less often stated result gives the (i, j)th cofactor of
M as a sum over weighted cycles, together with a path from the ith to the
jth vertex, in the digraph whose adjacency matrix is M .
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Corollary 69. Let D be a psuedo-digraph with n vertices and arc weights
Mi,j and M its weighted adjacency matrix, then

cofy,y′M =
∑
c∈C

(−1)Ne(c)
∏

Mi,j∈A(c)

Mi,j , (9.8)

where C is the set of all spanning walks, w, on D such that

• w is a cycle; or

• w is a path from y to y′.

Further, Ne is the number of even length cycles in c and A(c) the arc set of
C.

A proof of a generalization of Corollary 69 may be found in [12]. We
sketch the core idea here, without carrying out the detail of keeping track
of the signs.

Sketch proof. Let M be a matrix entries Mi,j which are arc weights for some
digraph D. Then the (y, y′)th cofactor is the (signed) determinant of that
matrix which is obtained by deleting the yth row and the y′th column from
M , as in Equation 9.9.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M1,1 . . . M1,y′−1 M1,y′ M1,y′+1 . . . M1,n
...

...
...

...
...

. . .
...

My−1,1 . . . My−1,y′−1 My−1,y′ My−1,y′+1 . . . My−1,n

My,1 . . . My,y′−1 My,y′ My,y′+1 . . . My,n

My+1,1 . . . My+1,y′−1 My+1,y′ My+1,y′+1 . . . My+1,n
...

...
...

...
...

. . .
...

Mn,1 . . . Mn,y′−1 Mn,y′ Mn,y′+1 . . . Mn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cofy,y′M =

(9.9)
But this determinant is a weighted sum over products such that each product
contains exactly one element from each row of the new matrix, and exactly
one element from each column of the new matrix. In graphical terms this
means one ‘out’ arc from each of the vertices labeled {1, 2, ...y−1, y+1, ..., n}
and one ‘in’ arc from each of the vertices labeled {1, 2, ...y′− 1, y′+ 1, ..., n}.
These constraints correspond to either paths from y′ to y; or cycles.
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Example 4. We give an example of Theorem 68 and Corollary 69. Let the
digraph D be

12

3

a

b c

4

5
d

e

f

g

h

(9.10)

Then its adjacency matrix is

T =


0 a 0 0 0
h 0 b 0 0
c 0 0 d 0
0 0 0 0 e
g 0 f 0 0

 (9.11)

with determinant equal to

detT = abdeg − adefh (9.12)

summing over (signed) spanning cycles of the digraph.

12

3

a

b c

4

5
d

e

f

g

h

12

3

a

b c

4

5
d

e

f

g

h

or

(9.13)

Then to find the (4, 5)th cofactor, for instance, remove arcs out of vertex 4
as well as arcs into vertex 5, and sum over spanning walks such that each
walk is either a path from ‘5’ to ‘4’, or a cycle.

12

3

a

b c

4

5
d

f

g

h

12

3

a

b c

4

5
d

f

g

h

or

(9.14)

Hence the cofactor is
cof4,5T = abdg − adfh. (9.15)
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It is now a small modification of Theorem 68 and Corollary 69 to give
determinants and cofactors for matrices of the form ‘I − xT ’. The following
classical corollary is of key importance in finding generating functions.

Corollary 70. Let D be a psuedo-digraph with n vertices and arc weights
Ti,j and T its weighted adjacency matrix. Then

det(I − xT ) =
∑
c∈C

(−1)Ne(c)
∏

Ti,j∈A(c)

(−xTi,j) (9.16)

where C is the set of all sets of cycles on D. Note, the set of cycles need not
be a spanning set. Further, Ne is the number of even length cycles in c and
A(c) the arc set of C. Also,

cofy,y′(I − xT ) =
∑
c∈C′

(−1)Ne(c)
∏

Ti,j∈A(c)

(−xTi,j), (9.17)

where C′ is the set of sets of walks on D such that

• precisely one walk is a path from y to y′, and

• all other walks are cycles.

Note, the set of walks need not be a spanning set on the vertices. Further,
Ne is the number of even length cycles in c and A(c) the arc set of C′.

The idea of the proof of this classic result is illustrated in Example 5.

Example 5. [Continuation of Example 4] Now let M = I − xT , i.e.

M =


1 − ax 0 0 0
− hx 1 − bx 0 0
− cx 0 1 − dx 0

0 0 0 1 − ex
− gx 0 − fx 0 1

 (9.18)

This new matrix has a similar digraph to the original ‘T ’, but now with a
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loop at each vertex, and modified weights on the arcs, viz:

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx
−ex

−fx

−gx

(9.19)

The loops increase the possibilites for sets of spanning cycles. We have

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx
−ex

−fx

−gx

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx
−ex

−fx

−gx

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx
−ex

−fx

−gx

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx
−ex

−fx

−gx

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx
−ex

−fx

−gx

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx
−ex

−fx

−gx

(9.20)
which gives

det(I − xT ) = −abdegx5 + adefhx5 − defx3 − abcx3 − ahx2 + 1. (9.21)

We notice that this is the same as if we had taken a sum over all cycles
on the original graph, but relaxed the constraint that the cycles be spanning.
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For the (4, 5)th cofactor we obtain

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx

−fx

−gx

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx

−fx

−gx

1
2

3

4

5

−ax

−hx
−bx

−cx

−dx

−fx

−gx

(9.22)
which gives

cof4,5(I − xT ) = abdgx4 − adfhx4 + dfx2. (9.23)

We notice that this is the same as if we had taken the sum over all sets of
walks (not necessarily spanning) on the original graph, minus the arc from
‘4’ to ‘5’, such that there is exactly one walk from ‘5’ to ‘4’, and all other
walks are cycles.

9.1.2 In terms of eigenvalues

The ‘x’ of our path length generating function, Equations (9.4)–(9.6), is
closely related to the eigenvalues of the transfer matrix. Rewriting the
determinants and cofactors in the form

det(I − xTL) = xL+1 det
(

1
x
I − TL

)
(9.24)

cofy,y′(I − xTL) = xLcofy,y′
(

1
x
I − TL

)
(9.25)

gives the path length generating function in the form

Gy′,y;L(x) =
cofy,y′

((
1
x

)
I − TL

)
x det

((
1
x

)
I − TL

) . (9.26)

Thus the reciprocal of x,

µ :=
1
x
, (9.27)

is an eigenvalue of TL whenever

det(µI − TL) = 0. (9.28)

It is a small modification of Corollary 70 to get determinants and cofactors
directly in terms of µ. We have
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Corollary 71. Let D be a psuedo-digraph with n vertices and arc weights
Ti,j and T its weighted adjacency matrix. Then

det(µI − T ) =
∑
c∈C

(−1)Ne(c)
∏

Ti,j∈A(c)

(−Ti,j)µ|u| (9.29)

where C is the set of all sets of cycles on D. Note, the set of cycles need
not be a spanning set. Further, Ne is the number of even length cycles in c,
A(c) the arc set of C and |u| the number of uncovered vertices in c. Also,

cofy,y′(µI − T ) =
∑
c∈C′

(−1)Ne(c)
∏

Ti,j∈A(c)

(−Ti,j)µ|u|, (9.30)

where C′ is the set of sets of walks on D such that

• precisely one walk is a path from y to y′, and

• all other walks are cycles.

Note, the set of walks need not be a spanning set on the vertices. Further,
Ne is the number of even length cycles in c, A(c) the arc set of C′ and |u|
the number of uncovered vertices in c.

We give an example of Corollary 71 which is a continuation of Examples 4
and 5.

Example 6 (Continuation of Examples 4 and 5). Now let M ′ = µI − T ,
i.e.

M ′ =


µ − a 0 0 0
− h µ − b 0 0
− c 0 µ − d 0
0 0 0 µ − e
− g 0 − f 0 µ

 (9.31)

The corresponding adjacency digraph is similar to those of Examples 4 and
5, but now there is a loop at each vertex carrying weight µ, and arcs weights
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are the negative of those in the original digraph, viz:

1
2

3

4

5

−a

−b
−c

−d
−e

−f

−g

−h

µ

µ

µ
µ

µ

(9.32)

Sets of spanning cycles are

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

−d
−e

−b
−g

−a

−d
−e

−f

−h

−a µµ

−f

−e
−d

µ

µ

µ

µ

µ

µ

µ

µ

−h

−a

µ

µ

−c
−b

−a

(9.33)
This gives

det(µI − T ) = µ5 − ahµ3 − abcµ2 − defµ2 + adefh− abdeg. (9.34)

Compare this with Equation (9.21). Also notice that the result is the same
as if we had taken a sum over all cycles on the original graph, but relaxed
the constraint that the cycles be spanning and instead pick up a factor of µ
for each vertex not visited. (See Figure 9.1.) For the (4, 5)th cofactor we
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obtain

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

−d

−b

−a

−g

−d

−f

−h

−a

−d

−f

µµ

(9.35)
This gives

cof4,5(µI − T ) = dfµ2 − adfh+ abdg. (9.36)

Compare this with Equation (9.23). Also notice that the result is the same
as if we had taken the sum over all sets of walks (not necessarily spanning)
on the original graph, minus the arc from ‘4’ to ‘5’, such that there is exactly
one walk from ‘5’ to ‘4’, and all other walks are cycles; and again, picked
up a factor of µ for each vertex not visited.

Finally we illustrate the determinant calculation of Equation (9.34) again,
in Figure 9.1, without spanning cycles or loops.

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

−d
−e

−b
−g

−a

−d
−e

−f

−h

−a

−f

−e
−d

−h

−a

µ

−c
−b

−a

µ

µ

µ

µ
µ

µ

µ

µµ

µµ

Figure 9.1: We repeat the determinant calculation of Equation (9.34), this
time discarding loops, allowing non-spanning cycles and giving
non-visited vertices a weight of µ.
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9.1.3 Generating Functions for Ballot and Motzkin Paths

The most important consequence of Corollary 71 for specific lattice path
problems of interest is the application to Ballot and Motzkin paths, given by
classic Theorem 72 below. This theorem relies upon Viennot’s representation
of sums over cycles as sums over pavings. The practical usefulness of the
theorem comes with a capacity to find closed-form expressions for the paving
polynomials, which we developed in Part II, Chapters 5 and 6, building upon
the observation of Richard Brak that breaking and recombining pavings gives
a combinatorial route to the closed-form expressions required.

Theorem 72. Let TL be a finite tridiagonal matrix, of order L + 1, of the
form

TL =


b0 1 0 . . .
λ1 b1 1
0 λ2 b2
...

. . .

 , (9.37)

with all λi’s non-zero. Let

Y ′ = min{y′, y}, Y = max{y′, y}. (9.38)

Then

1. det(I − xTL) = xL+1PL+1(1/x)

2. cof y,y′(I − xTL) = xLhy′,yPY ′(1/x)P (Y+1)
L−Y (1/x)

so that the path length generating function

Gy′,y;L(x) =
∑
n≥0

(TnL )
∣∣
y′,y

xn (9.39)

is given by

Gy′,y;L(x) =
hy′,yPY ′(1/x)P (Y+1)

L−Y (1/x)
xPL+1(1/x)

, (9.40)

where the factor hy′,y = 1 for y′ ≤ y, and is otherwise the product

hy′,y =
∏

y<l≤y′
λl. (9.41)

The Pk’s are paving polynomials, satisfying recurrence relation

Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ), (9.42)



9.2. CONSTANT COEFFICIENT RECURRENCES FOR PATHS 229

subject to normalization

P0(µ) = 1, P1(µ) = µ− b0. (9.43)

The P
(s)
k ’s are similar polynomials except with shifted coefficients, so that

P
(s)
0 (µ) = 1, P (s)

1 (x) = µ−bj and P (s)
k+1(µ) = (µ−bk+s)P

(s)
k (µ)−λk+sP

(s)
k−1(µ).

When all bk’s are zero, these are Ballot polynomials. Otherwise, we have
Motzkin polynomials. Note that both Ballot and Motzkin polynomials are
orthogonal polynomials.

9.2 Constant coefficient recurrences for paths

The following well-known theorem relates rational generating functions to
constant coefficient recurrences (see for instance [63] and [99]).

Theorem 73. (i) Let {bt}t≥0 be a sequence of complex numbers with rational
generating function ∑

t≥0

btx
t =

A(x)
B(x)

, (9.44)

with deg(A(x)) < deg(B(x)) and

B(x) = 1 + c1x+ c2x
2 + · · ·+ cdx

d. (9.45)

Then the sequence {bt}t≥0 satisfies dth order recurrence

0 = bt+d + c1bt+d−1 + c2bt+d−2 + · · ·+ cdbt, (9.46)

for all t ≥ 0.
(ii) Let {bt}t≥0 be a sequence of complex numbers satisfying dth order

constant coefficient recurrence

0 = bt+d + c1bt+d−1 + c2bt+d−2 + · · ·+ cdbt, (9.47)

for all t ≥ 0. Then the sequence {bt}t≥0 has rational generating function∑
t≥0

btx
t =

A(x)
B(x)

, (9.48)

with

A(x) = b0 + (b1 + c1b0)x+ · · ·+ (bd−1 + c1bd−2 + · · ·+ cd−1b0)xd−1 (9.49)

and
B(x) = 1 + c1x+ c2x

2 + · · ·+ cdx
d. (9.50)
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From Part (i) of Theorem 73, together with the generating functions of
the previous section, we can find constant coefficient recurrences. Instead we
use a new method to find constant coefficient recurrences combinatorially,
and Part (ii) of Theorem 73, to give a new combinatorial route to generating
functions.

9.2.1 Ballot-like Paths

For Ballot-like paths, we have a new proof for a variant of Theorem 72 –
this version (stated in terms of weight polynomials rather than transfer ma-
trices) specifies the single variable constant coefficient recurrence on weight
polynomials explicitly in a new way.

Theorem 74. Let Bt(y′, y; {λi}i=1,..,L;L) be the weight polynomial for Ballot-
like paths of length t, beginning at height y′, ending at height y, confined to
a strip of height L; and weighted as follows:

w(upstep) = 1 (9.51)
w(downstep from height ‘y’ to height ‘y − 1’) = λy. (9.52)

For any fixed y′, y and L abbreviate

bt := Bt(y′, y; {λi}i=1,..,L;L). (9.53)

Then the path length generating function for the bt’s is

∞∑
t=0

btx
t =

A(x)
B(x)

, (9.54)

where A(x), B(x) are polynomials in x, with deg(A(x)) < deg(B(x)). The
denominator polynomial B(x) is

B(x) =
L+1∑
i=0

cix
i (9.55)

where the coefficient ci’s are also coefficients in recurrence

0 =
L∑
i=0

cibt+L+1−i (9.56)

and are obtainable equivalently either as
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1. coefficients in Ballot paving polynomial

PL+1(µ) =
L+1∑
i=0

ciµ
L+1−i, (9.57)

as defined as a sum over pavings/cycles in Definition 54 and satisfying
recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ) (9.58)

with initial conditions

P0(µ) = 1, P1(µ) = µ; (9.59)

or as

2. sums over weighted walks on a ‘skewed binomial box lattice’. This
lattice is Z× Z≥0 with step set

S = (0,−2) (South) (9.60)
E = (1,−1) (southEast). (9.61)

Steps have weights

w(‘S’ step from height y to height y − 2) = −1/λy (9.62)
w(‘E’ step from height y to height y − 1) = 1/λy (9.63)

The weight of a walk is the product of the weights of the steps in the
walk, i.e.

w(α) =
∏
s∈S

w(s) (9.64)

where S is the set of arcs in α, and the ci’s are

ci =

(
L∏
i=1

λi

) ∑
α∈Ai

w(α), (9.65)

where Ai is the set of paths from vertex (t, L+ 1) to (t+L+ 1− i, 0).

Comment 12. Note that in the notation of Theorem 74 (and Theorem 72),
the denominator polynomial B(x) is

B(x) = xL+1PL+1(1/x) (9.66)

and that polynomials in x and µ respectively:

xL+1PL+1(1/x) and PL+1(µ) (9.67)

have the same coefficients but with their order reversed.
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Before presenting the proof we give the unweighted case as a corollary,
and illustrate the principle behind the proof in this simpler context.

Corollary 75. Let notation be as in Theorem 74 and let

λy = 1 (9.68)

for all y (i.e. these are unweighted Ballot-like paths). Then the coefficients
of recurrence(9.56) are signed binomial coefficients:

ci = (−1)i
(
L+ 1− i

i

)
. (9.69)

For example, the first few instances of Corollary 75 are given in the
following table.

L Recurrence Paving Polynomial

1 0 =
(
2
0

)
bt −

(
1
1

)
bt−2 P2(µ) = µ2 − 1

2 0 =
(
3
0

)
bt −

(
2
1

)
bt−2 P3(µ) = µ3 − 2µ

3 0 =
(
4
0

)
bt −

(
3
1

)
bt−2 +

(
2
2

)
bt−4 P4(µ) = µ4 − 3µ2 + 1

4 0 =
(
5
0

)
bt −

(
4
1

)
bt−2 +

(
3
2

)
bt−4 P5(µ) = µ5 − 4µ3 + 3µ

5 0 =
(
6
0

)
bt −

(
5
1

)
bt−2 +

(
4
2

)
bt−4 −

(
3
3

)
bt−6 P6(µ) = µ6 − 5µ4 + 6µ2 − 1

The derivation of Corollary 75 and Theorem 74 is inspired by the Euclidean
algorithm, being based on a repeated back-substitution. We illustrate the
principal for the un-weighted case before giving the general proof in the next
subsection.

Consider Figure 9.2. Vertices are labelled by the number of paths which
may reach that vertex, starting at the origin. Vertices above the upper wall
are labelled ‘0’ because paths are not allowed to cross the wall. Consider the
triple of circled vertices. They exhibit the relation illustrated in the right
half of the figure. So we write

0 = 4− 4. (9.70)
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L = 4

1

1

1

1

1 1

2

2

3

4

4

5

5

9

13

13

14

14

27

41

41

40

40

81

0 0 0

α

β

γ

For vertex triples

the rule ‘γ − β = α’ holds.

Figure 9.2: Vertex grid entries count ways from the origin to each vertex.

But then each of the 13’s is the uppermost vertex in similar triples. Back
substituting all the way down to the base line, we get

0 = 4− 4 (9.71)
= (13− 9)− (9− 5) (9.72)
= 13− 2(9) + 5 (9.73)
= (27− 14)− 2(14− 5) + 5 (9.74)
= 27− 3(14) + 3(5) (9.75)
= (41− 14)− 3(14) + 3(5) (9.76)
= 41− 4(14) + 3(5) (9.77)
= 1(41)− 4(14) + 3(5) (9.78)

The recurrence relation obtained is the same independently of which ‘0’ was
the starting point. In a strip of height L = 4, Ballot-like paths that start
and end on the baseline satisfy recurrence

0 = at − 4at−2 + 3at−4, (9.79)

for t ≥ 6. The general form of the recurrence coefficients can be seen by
considering the process of back substitution pictorially as counting a class of
walks from a zero above the upper wall down to the baseline. The algebraic
rule ‘α = γ − β’, for vertex triples

α

β

γ
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becomes in geometric terms a choice between a South step and a southEast
step

α

β

γ

with a negative sign associated with each South step. Figures 9.3 show
the walks that give the coefficients to 41, 14 and 5 respectively in Equa-
tion (9.78).

L = 4

1

1

1

1

1 1

2

2

3

4

4

5

5

9

13

13

14

14

27

41

41

40

40

81

0 0 0

L = 4

1

1

1

1

1 1

2

2

3

4

4

5

5

9

13

13

14

14

27

41

41

40

40

81

0 0 0

L = 4

1

1

1

1

1 1

2

2

3

4

4

5

5

9

13

13

14

14

27

41

41

40

40

81

0 0 0

Figure 9.3: There are
(
5
0

)
walks from ‘0’ (circled) to the baseline vertex

marked ‘41’,
(
4
1

)
to the baseline vertex marked ‘14’ and

(
3
2

)
to

the baseline vertex marked ‘5’.

Combinatorial proof of the Single-variable Constant Coefficient
Recurrence for decorated Ballot-like paths

Proof of Theorem 74. Let notation be as in Theorem 74. Fix L. We prove
the recurrence – the generating function then follows from Theorem 73. We
first prove the result for paths beginning and ending at height zero.
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Assume y′ = 0. Under this assumption, define new abbreviation

Bt,y := Bt(y′, y; {λi}i=1,..,L;L). (9.80)

Then the Bt,y’s may be illustrated on a grid as in Figure 9.4. The defining

Bt−1,1Bt−3,1Bt−5,1

Bt−2,2Bt−4,2

Bt−3,3

00

Bt−L+1,L−1Bt−L−1,L−1

B1,1 B3,1 B5,1

B2,2 B4,2

B3,3

BL+1,L−1BL−1,L−1

0 00

B0,0 B2,0 B4,0 B6,0 Bt−6,0 Bt−4,0 Bt−2,0 Bt,0

Bt−L,LBt−L−2,LBL+2,LBL,Ly=L

Figure 9.4: A grid showing the Bt,y for paths which start at height y′ = 0.

recurrence (9.1) on the Bt,y’s is illustrated geometrically in Figure 9.5. The
general weight λk on downsteps from height k is also shown.

Bs−1,k

Bs−1,k−2

λk

Bs,k−1 = Bs−1,k−2 + λkBs−1,k

Figure 9.5: The general defining recurrence on Bt,y’s is shown.

Rearranging the defining recurrence on Bt,y’s gives Figure 9.6. Thus
propagating the recurrence through decreasing heights is the same as prop-
agating walks down through ‘skewed’ binomial boxes, picking up a factor
of 1/λk for south east steps (abbreviated ‘E’), and − 1/λk for south steps
(abbreviated ‘S’). Figures 9.8–9.9 of Example 7 illustrate.

Thus the coefficient of Bt−2j,0 is given by the sum of those weighted
paths which start at ‘0’ in position (t− L− 1, L+ 1) and end at the vertex
labeled ‘Bt−2j,0’ in position (t − 2j, 0). This process gives a recurrence of
the form of Equation (9.92) in Example 7. In particular, the coefficient of
‘Bt,0’ is

∏L
i=1

1
λi

, being the weight of the sole path from (t − L − 1, L + 1)
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Bs−1,k−2

Bs,k−1

λk

Bs−1,k =
1
λk

(Bs,k−1 −Bs−1,k−2)

Figure 9.6: The general defining recurrence on Bt,y’s, rearranged.

to (t, 0). Also, coefficients to Bt−2j,0’s are sums of products of 1
λi

’s, with at
most L− j terms in the product.

Since the recurrence obtained by counting ‘skewed’ binomial box paths
is of the form

0 = right hand side, (9.81)

multiplying by the factor
L∏
i=1

λi (9.82)

gives a new valid recurrence, which by the considerations of the previous
paragraph, is rational in the λi’s. See Example 7, Equation (9.94). This
new recurrence may be obtained directly from pavings, via the following
bijection with ‘skewed’ binomial paths. Start with paths. A path down a
‘skewed’ binomial box from ‘0’ to ‘Bt−2j,0’ consists of L+ 1− j steps; where
j of these are S steps and the rest are E steps. The path is determined by
the position of the S steps in the sequence of S’s and E’s.

For each S step from height k + 1 to height k − 1, place a dimer be-
tween heights k and k− 1 in the paving. Since we place dimers in positions
corresponding to the lower half of an S step, they can never be contiguous.
Hence the result is a valid paving with j pavers.

The weight of the paving is equal to

L∏
i=1

λi

times the weight of the path, since the paving contains occurrences of λi for
precisely those i which are not present in the path weighting. To check this
notice that the weights in the path come from the upper half of S steps,
and from E steps, whereas the weights in the paving come from the lower
half of S steps. These sets are disjoint. Furthermore, signs match up since
S steps and dimers both have a negative weight.
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−1

0

−1
λ2

1
λ3

1
λ4

1
λL−1

−λL

−λ1

Bt−2j,0

Figure 9.7: The bijection between weighted paths down a ‘skewed’ binomial
box, and pavings.
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To reverse the mapping and go from the paving to the path, construct
a path as a sequence of L − j occurrences of S’s and E’s, where j is the
number of dimers present and each dimer gives an ‘S’ with each non-paved
edge giving an ‘E’. The corresponding path must have j downsteps so will
be a valid path from ‘0’ to ‘Bt−2j,0’. The position of the arcs determines the
weighting, which by considerations as in the previous paragraph, must have
weight equal to

L∏
i=1

1
λi

times the weight of the paving. See Example 7, Figure (9.11).
We now need to show that the same recurrence holds for paths ending at

heights greater than zero. We have already proven, for some specified ci’s,
that

0 =
dL/2e∑
i=0

ciBt−2i,0. (9.83)

Now since

Bt−1,1 =
1
λ1
Bt,0, (9.84)

we have that

0 =
dL/2e∑
i=0

ci
1
λ1
Bt−2i−1,1, (9.85)

Multiplying Equation (9.85) by λ1 shows that the desired recurrence holds
for paths ending at height one, also. From this the result for arbitrary
heights may be shown inductively, since

Bt−1,y+1 =
1

λy+1
(Bt,y −Bt−1,y−1) (9.86)

and a linear combination of sequences each satisfying the same linear recur-
rence, together satisfies the same recurrence. Finally we note that nowhere
did we use the assumption that y′ = 0, so that the proof holds for paths
with arbitrary starting and ending heights within [0, L].

Example 7. An example of Theorem 74 with general downstep weighting
is given for L = 3.
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L = 3

0

Bt−3,3

Bt−4,2 Bt−2,2

Bt−3,1 Bt−1,1

Bt−4,0 Bt−2,0 Bt,0

λ1 λ1

λ2 λ2

λ4

λ3

:= 1

Figure 9.8: An example, for L = 3, of a grid for Ballot-like paths, with
general downstep weighting.

0 = Bt−3,3 −Bt−4,2 (9.87)

=
(

1
λ3

)
(Bt−2,2 −Bt−3,1)−

(
1
λ2

)
(Bt−3,1 −Bt−4,0) (9.88)

=
(

1
λ3

)
Bt−2,2 −

(
1
λ3

+
1
λ2

)
Bt−3,1 +

(
1
λ2

)
Bt−4,0 (9.89)

=
(

1
λ3

)(
1
λ2

)
(Bt−1,1 −Bt−2,0)−

(
1
λ3

+
1
λ2

)(
1
λ1

)
(Bt−2,0)

+
(

1
λ2

)
Bt−4,0 (9.90)

=
(

1
λ3λ2

)
Bt−1,1 −

(
1

λ3λ2
+

1
λ3λ1

+
1

λ2λ1

)
Bt−2,0 +

(
1
λ2

)
Bt−4,0

(9.91)

=
(

1
λ3λ2λ1

)
Bt,0 −

(
1

λ3λ2
+

1
λ3λ1

+
1

λ2λ1

)
Bt−2,0 +

(
1
λ2

)
Bt−4,0.

(9.92)

The coefficients of each of the Bt−2j,0 come from traversing all binomial
paths from ‘0’ to ‘Bt−2j,0’ within the binomial boxes shown in Figure 9.9,
where ‘E’ steps have weight ‘ 1

λk
’, and ‘S’ steps have weight ‘ − 1

λk
’, for k

the height at the top of the step, as shown. Multiplying Equation (9.92) by

L∏
i=1

λi = λ1λ2λ3 (9.93)

gives
0 = Bt,0 − (λ1 + λ2 + λ3)Bt−2,0 + λ1λ3Bt−4,0. (9.94)
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This neater recurrence is given directly by pavings, as in Figure 9.10. A
bijection between the weighted paths and the weighted pavings is illustrated
in Figure 9.11.

1
λ3

1
λ2

1
λ1

1
λ3

1
λ2

1
λ1

1 1−1

−1
λ3

−1
λ2

−1

−1
λ2

0 0 0

Bt,0 Bt−2,0 Bt−4,0

Figure 9.9: Coefficients in Equation (9.92) come from paths down binomial
boxes, drawn ‘skewed’.

−λ1 −λ1

−λ2

−λ3 −λ3

0 = Bt,0 − (λ1 + λ2 + λ3) Bt−2,0 +λ1λ3Bt−4,0

Figure 9.10: Coefficients in Equation (9.94) come from pavings.
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1
λ3

1

−1
λ2

0

Bt−2,0

,

1
λ3

1
λ1

1−1

−1
λ3

−1
λ2

0

Bt−2,0

,

1
λ3

1
λ2

1
λ1

1−1

−1
λ3

−1
λ2

0

Bt−2,0

−λ1

1
λ2

−λ2

−λ3

1
λ3

1
λ2

1
λ1

1

0

Bt,0

−1

−1
λ2

0

Bt−4,0

−λ3

−λ1

,

Figure 9.11: The bijection between weighted paths down a ‘skewed’ bino-
mial box and ballot pavings of a path graph is shown for L = 3.

9.2.2 Motzkin-like Paths

Motzkin-like paths have weight polynomials which satisfy a theorem giving
classical generating function and constant coefficient recurrence similar to
that shown to hold for Ballot-like paths in Theorem 74, with, again, a proof
based upon a new combinatorial construction and characterization of the
recurrence.

Theorem 76. Let Bt(y′, y; {λi}i=1,..,L, {bj}j=0,..,L;L) be the weight polyno-
mial for Motzkin-like paths of length t, beginning at height y′, ending at
height y, confined to a strip of height L; and weighted as follows:

w(upstep) = 1 (9.95)
w(across step from height ‘y’ to height ‘y’) = by (9.96)

w(downstep from height ‘y’ to height ‘y − 1’) = λy. (9.97)

For any fixed y′, y and L abbreviate

mt := Bt(y′, y; {λi}i=1,..,L, {bj}j=0,..,L;L). (9.98)
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Then the path length generating function for the mt’s is

∞∑
t=0

mtx
t =

A(x)
B(x)

, (9.99)

where A(x), B(x) are polynomials in x, with deg(A(x)) < deg(B(x)). The
denominator polynomial B(x) is

B(x) =
L+1∑
i=0

cix
i (9.100)

where the coefficient ci’s are also coefficients in recurrence

0 =
L∑
i=0

cimt+L+1−i (9.101)

and are obtainable equivalently either as

1. coefficients in Motzkin paving polynomial

PL+1(µ) =
L+1∑
i=0

ciµ
L+1−i, (9.102)

as defined as a sum over pavings/cycles in Definition 55 and satisfying
recurrence

Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ) (9.103)

with initial conditions

P0(µ) = 1, P1(µ) = µ− b0; (9.104)

or as

2. sums over weighted walks on a lattice with underlying vertex set Z×Z≥0

and step set

H = (0,−1) (Half south) (9.105)
S = (0,−2) (South) (9.106)
E = (1,−1) (southEast). (9.107)
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Steps have weights

w(‘H’ step from height ‘y’ to height ‘y − 1’) =
−by−1

λy
(9.108)

w(‘S’ step from height ‘y’ to height ‘y − 2’) =
−1
λy

(9.109)

w(‘E’ step from height ‘y’ to height ‘y − 1’) =
1
λy

(9.110)

subject to the convention that λL+1 := 1. The weight of a walk is the
product of the weights of the steps in the walk, i.e.

w(α) =
∏
s∈S

w(s) (9.111)

where S is the set of arcs in α, and the ci’s are

ci =

(
L∏
i=1

λi

) ∑
α∈Ai

w(α), (9.112)

where Ai is the set of paths from vertex (t, L+ 1) to (t+L+ 1− i, 0).

Proof. The proof is very similar to that for Theorem 74, and we only show
the key differences. We have

Bt,y = Bt−1,y−1 + byBt−1,y + λy+1Bt−1,y+1. (9.113)

Pictorially, this is

α

β

γ

λy+1

by δ = λy+1α + byβ + γ

with α = Bt−1,y+1, β = Bt−1,y, γ = Bt−1,y−1 and δ = Bt,y. Rearranging
gives
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β

γ

δ

α =
1

λy+1
(δ − byβ − γ)

Starting at Bt−L−1,L+1 := 0, and repeatedly back-substituting may be ac-
complished visually by walking down through a weighted ‘skewed’ directed
graph, which has arcs and arc weights as in the Theorem. Thus we obtain
coefficients, ci, in a recurrence of the form

0 = c0Bt,0 + c1Bt−1,0 + . . .+ cLBt−L,0. (9.114)

Multiplying said recurrence by

L∑
i=1

λi (9.115)

rationalizes the coefficients to give a new recurrence. The coefficients of this
new recurrence may also be obtained directly via pavings. The connection
between the paving and path derivation is given by a bijection between the
path and paving pictures, as shown in Figure 9.12.

−b0

−bL

−λL−2

−b0

λ1

1
λL−3

−bL

1
λL

−1
λL−1

Figure 9.12: The bijection between paths and Motzkin pavings.
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Finally, since each row in the grid of Bt,y’s is a linear combination of
other rows, the recurrence holds for any fixed value of y in 0 ≤ y ≤ L.

Example 8. We give an example of Theorem 76 strip height L = 2. A grid
showing positions that a Motzkin-like path in the strip may obtain is shown
in Figure 9.13. The recurrence obtained using the walks is

L = 2

Bt−1,1Bt−3,1 Bt−2,1

0

Bt−3,0 Bt−2,0 Bt−1,0 Bt,0
b0 b0 b0 b0

b1 b1 b1

λ1 λ1 λ1 λ1

Bt−3,2 Bt−2,2
λ2 λ2 λ2

b2 b2

λ3 := 1

Figure 9.13: An example, for L = 2, of a grid for Motzkin-like paths, with
general downstep weighting.

Bt,0 Bt−1,0 Bt−2,0 Bt−3,0

1

1
λ2

1
λ1

1

1
λ2

1
λ2

1
λ1

−b1

λ2

−b2

−b0

λ1

−b0

λ1

−b1

λ2
−1
λ2

−b2

−1−1

1
1
λ2

1
λ1

−b1

λ2 −b0

λ1

−b1

λ2

−b2

−1
λ2

Figure 9.14: Walks down each of the four weighted digraphs give the coef-
ficients of the Bt−j,0’s in the constant coefficient recurrence.

0 =
1

λ1λ2
Bt,0 −

(
b0
λ1λ2

+
b1
λ1λ2

+
b2
λ1λ2

)
Bt−1,0

+
(
b0b1
λ1λ2

+
b0b2
λ1λ2

+
b1b2
λ1λ2

− 1
λ2
− 1
λ1

)
Bt−2,0

−
(
b0b1b2
λ1λ2

− b0
λ1
− b2
λ2

)
Bt−3,0. (9.116)
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Bt−3,0

−b0

λ1

−1

−b0

−λ2

Bt−3,0

−b0

λ1

−b1

λ2

−b2

−b0

−b1

−b2

Bt−3,0

−1
λ2

−b2

−b2

−λ1

Bt−2,0

−1

1
λ1

−λ2

Bt−2,0

1
λ1

−b1

λ2

−b2

−b1

−b2

Bt−2,0

1
λ2

−b0

λ1

−b2

−b2

−b0

Bt−2,0

1

−1
λ2

−λ1

Bt−2,0

1

−b0

λ1

−b1

λ2

−b0

−b1

−b2

Bt−1,0

1
λ2

1
λ1

−b2

Bt−1,0

1

1
λ1

−b1

λ2

−b1

Bt−1,0

1

1
λ2

−b0

λ1

−b0

Bt,0

1

1
λ2

1
λ1

Figure 9.15: The coefficients for constant coefficient recurrences on Motzkin
paths in a strip of height 2 may be obtained either via paths
or via pavings, as indicated in the bijection.
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Multiplying Equation (9.116) by

L∑
i=1

λi = λ1λ2 (9.117)

gives the recurrence one would obtain directly using pavings, being

0 = Bt,0 − (b0 + b1 + b2)Bt−1,0 + (b0b1 + b0b2 + b1b2 − λ1 − λ2)Bt−2,0

− (b0b1b2 − b0λ2 − b2λ1)Bt−3,0. (9.118)

The term-by-term bijection is shown in Figure 9.15.

9.2.3 2-Up Paths

The combinatorial recurrence constructions of Theorem 74 for Ballot paths
and Theorem 76 for Motzkin paths extend naturally to 2-up paths. We have

Theorem 77. Let Bt(y′, y; {λi}i=1,..,L;L) be the weight polynomial for 2-up
paths of length t, beginning at height y′, ending at height y, confined to a
strip of height L; and weighted as follows:

w(short upstep from height ‘y’ to height ‘y + 1’) = 1 (9.119)
w(long upstep from height ‘y’ to height ‘y + 2’) = 1 (9.120)
w(downstep from height ‘y’ to height ‘y − 1’) = λy (9.121)

For any fixed y′, y and L abbreviate

ut := Bt(y′, y; {λi}i=1,..,L;L). (9.122)

Then the path length generating function for the ut’s is
∞∑
t=0

utx
t =

A(x)
B(x)

, (9.123)

where A(x), B(x) are polynomials in x, with deg(A(x)) < deg(B(x)). The
denominator polynomial B(x) is

B(x) =
L+1∑
i=0

cix
i (9.124)

where the coefficient ci’s are also coefficients in recurrence

0 =
∑
i

ciut+L+1−i (9.125)

and are obtainable equivalently either as
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1. coefficients in 2-up paving polynomial

PL+1(µ) =
L+1∑
i=0

ciµ
L+1−i, (9.126)

as defined as a sum over pavings/cycles in Definition 58 and satisfying
recurrence

Pk+1(µ) = µPk(µ)− λkPk−1(µ)− λk−1λkPk−2(µ) (9.127)

with initial conditions

P0(µ) = 1, P1(µ) = µ, P2(µ) = µ2 − λ1 (9.128)

or as

2. sums over weighted walks on a lattice with underlying vertex set Z×Z≥0

and step set

S = (0,−2) (South) (9.129)
T = (0,−3) (Tall south) (9.130)
E = (1,−1) (southEast). (9.131)

Steps have weights

w(‘S’ step from height ‘y’ to height ‘y − 2’) =
−1
λy

(9.132)

w(‘T ’ step from height ‘y’ to height ‘y − 3’) =
−1
λy

(9.133)

w(‘E’ step from height ‘y’ to height ‘y − 1’) =
1
λy

(9.134)

subject to the convention that λL+1 := 1. The weight of a walk is the
product of the weights of the steps in the walk, i.e.

w(α) =
∏
s∈S

w(s) (9.135)

where S is the set of arcs in α, and the ci’s are

ci =

(
L∏
i=1

λi

) ∑
α∈Ai

w(α), (9.136)

where Ai is the set of paths from vertex (t, L+ 1) to (t+L+ 1− i, 0).
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Theorem 77 is derived in a similar way to Theorems 74 and 76. We
illustrate with an example. As with Ballot and Motzkin paths, we begin by
illustrating how paths at time t depend on paths at time t− 1:

α

β

γ

λy+1

δ = λy+1α + β + γ

(9.137)

with α = Bt−1(y + 1), β = Bt−1(y), γ = Bt−1(y − 1) and δ = Bt(y). Next,
we rearrange Equation (9.137) to get Equation (9.138), and a new picture
illustrating this relation:

β

γ

δ

α =
1

λy+1
(δ − β − γ)

(9.138)

This new picture gives points at height y + 1 in terms of points at height y
and y − 1, on a grid illustrated in Figure 9.16.

Take all paths from the rightmost ‘0’ above the upper wall in Figure 9.16
to the baseline, with allowed steps of the form (1,−1), (0,−2) and (0,−3),
weighted respectively 1/λy, − 1/λy and − 1/λy for steps down from height
y. The step set and weights are given by the illustration of Equation (9.138).
The resulting set of paths is displayed in Figure 9.17.

Collecting the results from the paths in Figure 9.17 gives recurrence on
2-up weight polynomials in a strip of height L = 3 to be

0 =
1

λ1λ2λ3
Bt,0−

(
1

λ1λ2
+

1
λ1λ3

+
1

λ2λ3

)
Bt−2,0−

(
1
λ1

+
1
λ3

)
Bt−3,0+

1
λ2
Bt−4,0.

(9.139)
Multiplying by

L∑
i=1

λi = λ1λ2λ3 (9.140)
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Bt,0Bt−2,0 Bt−1,0Bt−3,0Bt−4,0

Bt−4,1

Bt−4,2

Bt−4,3 Bt−3,3

Bt−3,2

Bt−3,1 Bt−2,1

Bt−2,2

Bt−1,1

0

B0,0 B1,0 B2,0

B1,1

B1,2

B2,1

B2,2

B2,3

0

L = 3

Figure 9.16: A grid for 2-up lattice paths in a strip of height L = 3; show-
ing weight polynomials at each point labeled Bt,y, with lines
indicating how each point is accessible via steps from the left.

gives 4-term recurrence

0 = Bt,0 − (λ3 + λ2 + λ1)Bt−2,0 − (λ2λ3 + λ1λ2)Bt−3,0 + λ1λ3Bt−4,0,
(9.141)

as may be read off the pavings in Figure 9.17.
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Bt,0

Bt−2,0

Bt−3,0

Bt−4,0

Bt−3,0

Bt−2,0 Bt−2,0

1

1
λ3

1
λ2

1
λ1

1
λ1

1
λ2

−1
1

−1
λ3

1
λ1

−1
λ2

1
λ3

1

−1

1
λ1

1

−1
λ3

−1
λ2

−1

−λ3

−λ2

−λ1

−λ2λ3

−λ1λ2

−λ1

−λ3

,

, ,

Figure 9.17: The set of all paths from a point at height y = L+1 to the base-
line, taking steps drawn from the set defined by the illustration
of Equation (9.138).
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Chapter 10

A new ‘Constant Term’

Now that we have generating functions, we want their coefficients, the path
weight polynomials. We utilize a new twist on a very old technique. Given
a generating function

G(x) :=
∑
i≥0

aix
i, (10.1)

the classic and ancient form of ‘Constant Term’ is to note that for desired
coefficient an,

an = CT
[
G(x)
xn

]
, (10.2)

where CT represents the constant term in the Laurent expansion of G(x)
around x = 0. Whilst true, Equation (10.2) is not very useful unless we can
both

1. write down a closed form expression for G(x); and

2. extract the constant term of the series.

This chapter presents a new way of achieving Item 2, since we have
already satisfied Item 1 for many path problems of interest by the methods
of Chapter 9 incorporating the earlier work on pavings in Part II.

The point of the method is that the generic alternatives, listed on page 25
of the introduction, all have drawbacks which make them difficult or impos-
sible to apply to the weight polynomials we have evaluated in this Chapter.
In particular

1. The first few terms of the series expansion of the generating function
is usually quite complicated, making the method of proposing and
verifying an Ansatz difficult.

253
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2. It may not be clear how to manipulate the generating function into a
form in which the Lagrange Inversion Theorem applies.

3. We are rarely lucky enough that the generating function in the original
generating variable is in an explicitly rational form so that we could
geometrically expand.

4. Taylor series expansion of the argument of the traditional constant
term expression (10.2) involves finding nth derivatives, for arbitrary n.
This is likely to be intractable in practice.

5. Treating the constant term as a shifted residue, and calculating the
Cauchy integral is also onerous, though more likely to succeed than
Taylor expansion.

10.1 Derivation of a new CT

Consider Method 3 above, that of geometrically expanding a CT argument
which is explicitly rational. What we would like to do, given a generating
function which is not explicitly rational, is to change variables so that it is.
But simply substituting one variable for another destroys the constant term
of a series.

The key tool in the derivation of a new CT is a theorem which gives
us the capacity to modify the argument of the traditional CT (utilizing a
change of variables) in such a manner as to preserve the constant term of
the Laurent expansion of the series. This key result, Theorem 78, depends
upon the following lemmas.

Now the theorem which will allow a change of variables inside

CT[. . .]

is as follows.

Theorem 78. Let f(z) be a rational function and let z(ρ) = 1/(aρ+b+cρ−1)
be a change of variables; a, c 6= 0. Then

Res [f(z), {z, 0}] = Res
[
f(z(ρ))

dz

dρ
, {ρ, 0}

]
. (10.3)

Proof. To prove the theorem first we expand the left hand in terms of a
Laurent series which we show must exist. Then we do the same for the right
hand side, to conclude that the two evaluations are equal.
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Left hand side:

Since f is rational, f has only isolated singularities. Thus there exists a
Laurent series L(z) for f(z) which converges in the annulus 0 < |z| < r; for
some r > 0. Let

L(z) =
m∑
k=1

bkz
−k +

∞∑
k=0

akz
k. (10.4)

Recall that the residue of f(z) at the point 0 is the coefficient of z−1 in the
Laurent series L(z). Thus the left hand side of equation (10.3) is

Res [f(z), {z, 0}] = coeff of z−1

[ ∞∑
k=1

bkz
−k +

m∑
k=0

akz
k

]
(10.5)

= b1. (10.6)

Right hand side:

Observe that for any fixed a, b, c; by choosing sufficiently small ρ, its inverse
ρ−1 may be made sufficiently large that∣∣∣∣ 1

aρ+ b+ cρ−1

∣∣∣∣ < r. (10.7)

Thus, there exists r′ > 0 such that within the annulus 0 < |ρ| < r′,

f(z(ρ)) = L

(
1

aρ+ b+ cρ−1

)
(10.8)

=
m∑
k=1

bk
(
aρ+ b+ cρ−1

)k +
∞∑
k=0

ak

(
1

aρ+ b+ cρ−1

)k
. (10.9)

Hence, within the same annulus 0 < |ρ| < r′, we also have the equality

f(z(ρ))
dz

dρ
=

(
m∑
k=1

bk
(
aρ+ b+ cρ−1

)k) dz

dρ︸ ︷︷ ︸
(P1)

+

( ∞∑
k=0

ak

(
1

aρ+ b+ cρ−1

)k)
dz

dρ︸ ︷︷ ︸,
(P2)

(10.10)
where

dz

dρ
=

cρ−2 − a
(aρ+ b+ cρ−1)2

. (10.11)
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The right hand side of Equation (10.10) as it stands specifies a function of
ρ as a mixture of series and closed-form expressions. We aim to take each
piece of this mixture and find a Laurent series for it.

We break the first piece into two further parts before proceeding, defining

(P1) :=

(
m∑
k=2

bk
(
aρ+ b+ cρ−1

)k) dz

dρ︸ ︷︷ ︸
(P1a)

+ b1
(
aρ+ b+ cρ−1

) dz
dρ︸ ︷︷ ︸

(P1b)

(10.12)

Right hand side: Part (P1a)
Now, substituting for dz

dρ gives

(P1a) =

(
m∑
k=2

bk
(
aρ+ b+ cρ−1

)k)( cρ−2 − a
(aρ+ b+ cρ−1)2

)
(10.13)

=
m∑
k=2

bk
(
aρ+ b+ cρ−1

)k−2 (
cρ−2 − a

)
(10.14)

Since the right hand side of Equation (10.14) is a finite sum, it is the unique
Laurent series for (P1a), and thus we may calculate the residue of (P1a) by
picking out the coefficient of ρ−1. Furthermore, since the sum is finite, we
may carry out this aim for one value of k at a time, and then add them up
to get the total residue for (P1a).

Thus, we want (for each k ≥ 2) the coefficient of ρ−1 in

(
aρ+ b+ cρ−1

)k−2 (
cρ−2 − a

)
(10.15)

=
k−2∑
j=0

(
k − 2
j

)
bk−2−j (aρ+ cρ−1

)j (
cρ−2 − a

)
(10.16)

Again, finiteness means that it is sufficient to know (for each 0 ≤ j ≤ k− 2)
what happens to the (

aρ+ cρ−1
)j (

cρ−2 − a
)

(10.17)

For j even, all powers of ρ in the expansion of expression (10.17) will be
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even, hence the coefficient of ρ−1 is zero. So let j be odd. Then

(aρ+ cρ−1)j(cρ−2 − a) (10.18)

=

(
· · ·+

(
j
bjc
2

)
adje/2cbjc/2ρ+

(
j
dje
2

)
abjc/2cdje/2ρ−1 + · · ·

)
(cρ−2 − a) (10.19)

= · · ·+
(
j
bjc
2

)
adje/2cdje/2ρ−1 −

(
j
dje
2

)
adje/2cdje/2ρ−1 + · · · (10.20)

= an expression with no ρ−1 term,

since
( j
bjc
2

)
=
( j
dje
2

)
. We conclude that

Res [(P1a), {ρ, 0}] = 0. (10.21)

Right hand side: Part (P1b)
Substituting for dz

dρ in (P1b) gives

(P1b) = b1
(
ap+ b+ cρ−1

)( cρ−2 − a
(aρ+ b+ cρ−1)2

)
(10.22)

=
b1(cρ−2 − a)
aρ+ b+ cρ−1

(10.23)

= b1ρ
−1 − (b/c)b1 + (b1(b2 − 2ac)/c2)ρ+ · · · , (10.24)

for sufficiently small ρ. Thus we have immediately that

Res [(P1b), {ρ, 0}] = b1. (10.25)

Right hand side: Part (P2)

(P2) =

( ∞∑
k=0

ak

(
1

aρ+ b+ cρ−1

)k) dz

dρ
(10.26)

=

( ∞∑
k=0

ak

(
1

aρ+ b+ cρ−1

)k)( cρ−2 − a
(aρ+ b+ cρ−1)2

)
(10.27)

= (cρ−2 − a)
∞∑
k=0

ak

(
1

(aρ+ b+ cρ−1)k+2

)
(10.28)

= (cρ−2 − a)
∞∑
k=0

ak

ρk+2
∞∑
j=0

dj,kρ
j

 , (10.29)
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where dj,k is given by the finite sum

dj,k :=
bj/2c∑
i=0

(
j − i+ k + 1

k + 1

)(
j − i
i

)
(−1)i+jaibj−2ici−j−k−2. (10.30)

We aim to find the residue of (P2), and to this end we would like to swap
the order of the sums in Equation (10.29). For this operation to be valid we
require uniform convergence of the series

S(ρ) :=
∞∑
k=0

ak

(
1

(aρ+ b+ cρ−1)k+2

)
(10.31)

from Equation (10.28). It turns out to be easier to show uniform convergence
of a related function with the same residue:

Θ(ρ) :=

{∑∞
k=0 ak

(
1

(aρ+b+cρ−1)k+2

)
|ρ| < r′′,

0 |ρ| ≥ r′′;
(10.32)

for choice of r′′ > 0 given in Lemma 79 below. The function Θ(ρ) has the
same residue at zero as does the series (10.31) because it has the same Taylor
series expansion around zero. By Lemma 79, Θ(ρ) is uniformly convergent.
Hence, within the disc |ρ| < r′′, we may interchange the order of sums as
follows:

Θ(ρ) =
∞∑
k=0

ak

(
1

(aρ+ b+ cρ−1)k+2

)
(10.33)

=
∞∑
k=0

ak

ρk+2
∞∑
j=0

dj,kρ
j

 (10.34)

=
∞∑
j=0

∞∑
k=0

akdj,kρ
j+k+2. (10.35)

We see that the least power of ρ occurring in expression (10.35) is ‘2’. Thus
the least power of ρ occurring in the product

(cρ−2 − a)Θ(ρ) (10.36)

is ‘0’. Hence expression (10.36) has no ‘ρ−1’ term, and so has residue zero
at zero. We have

Res[(P2), {ρ, 0}] ≡ Res[(cρ−2 − a)S(ρ), {ρ, 0}] (10.37)
= Res[(cρ−2 − a)Θ(ρ), {ρ, 0}] (10.38)
= 0. (10.39)
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Combining the three calculations, we have

Res
[
f(z(ρ))

dz

dp
, {ρ, 0}

]
= Res [(P1a) + (P1b) + (P2), {ρ, 0}] (10.40)

= Res [(P1a), {ρ, 0}] + Res [(P1b), {ρ, 0}]
+Res [(P2), {ρ, 0}] (10.41)

= 0 + b1 + 0 (10.42)
= b1, (10.43)

which agrees with Equation (10.6).

Lemma 79. Let the series

S(ρ) =
∞∑
k=0

ak

(
1

(aρ+ b+ cρ−1)k+2

)
, (10.44)

as defined in the proof of Theorem 78, be convergent in a disc of the form
|p| < r′. Then there exists a real number r′′ > 0 such that the function

Θ(ρ) :=

{
S(ρ) |ρ| < r′′,

0 |ρ| ≥ r′′;
(10.45)

is uniformly convergent in a disc of the form |ρ| < r′′.

Proof. It is sufficient, due to a Theorem of Weierstrauss (quoted in [109]),
to show that ∣∣∣∣ak ( 1

(aρ+ b+ cρ−1)k+2

)∣∣∣∣ < Mk (10.46)

for positive Mk independent of ρ such that∑
k

Mk (10.47)

converges. Choose n ∈ N such that n > 2 and

1
n
< r′. (10.48)

Now let

|ρ| < r′′ := min
{
r′,

|c|
n+ |b|+ 1

,
1

|a|(n+ |b|+ 1)

}
. (10.49)
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Then
|c||ρ−1| > n+ |b|+ 1 (10.50)

and

|a||ρ| <
1

n+ |b|+ 1
(10.51)

< 1, (10.52)

since n+ |b|+ 1 > 1. Thus

− |a||ρ| > −1. (10.53)

Now, by the reverse triangle inequality,

|aρ+ b+ cρ−1| ≥ |c||ρ−1| − |b| − |a||ρ| (10.54)
> n+ |b|+ 1− |b| − 1 (10.55)
= n. (10.56)

Hence ∣∣∣∣ 1
aρ+ b+ cρ−1

∣∣∣∣ < 1
n

(10.57)

for |ρ| < r′′. Write

Mk =
|ak|
nk+2

. (10.58)

Then by Equation (10.57),∣∣∣∣ak ( 1
(aρ+ b+ cρ−1)k+2

)∣∣∣∣ < Mk, (10.59)

for all k ≥ 0. We also know from the definition of the ak’s in Theorem 78
that

∞∑
k=0

akz
k (10.60)

converges in a disc of the form |z| < r, hence by the ratio test

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = λ, (10.61)

for some fixed
λ ≤ 1. (10.62)
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Applying the ratio test to the sum over Mk’s gives

lim
k→∞

∣∣∣∣Mk+1

Mk

∣∣∣∣ = lim
k→∞

∣∣∣∣ak+1n
k+2

aknk+3

∣∣∣∣ (10.63)

=
λ

n
(10.64)

< 1, (10.65)

hence the series (10.47), with Mk’s defined by Equation (10.58), converges
by the ratio test.

10.2 A new CT for Ballot and Motzkin Paths

The residue result Theorem 78, applied to the Ballot/Motzkin path length
generating function Theorem 72, with the earlier work on pavings brought to
bear, gives us a powerful new tool for tackling decorated lattice paths which
have resisted enumeration for decades. We have general Ballot/Motzkin
result

Theorem 80. Let Bt(y′, y; {λi}i=1,..,L, {bj}j=0,1,..,L;L) be the path weight
polynomial for Motzkin-like paths of length t, beginning at height y′, ending
at height y, confined to a strip of height L; and weighted as follows:

w(upstep) = 1 (10.66)
w(across step from height ‘y’ to height ‘y’) = by (10.67)

w(downstep from height ‘y’ to height ‘y − 1’) = λy; (10.68)

so that the transfer matrix for the paths is an order L + 1 matrix of the
form (9.37):

TL =


b0 1 0 . . .
λ1 b1 1
0 λ2 b2
...

. . .

 .

Note that in the special case of weightings for which bj = 0 for all j, the
paths are Ballot-like. Abbreviate

Bt(y′, y;L) := Bt(y′, y; {λi}i=1,..,L, {bj}j=0,1,..,L;L). (10.69)

Then

Bt(y′, y;L) = CT

[(
ρ+ b+ λρ−1

)t(hy′,yP̃Y ′(ρ)P̃ (Y+1)
L−Y (ρ)

P̃L+1(ρ)

)(
λρ−1 − ρ

)
, {ρ, 0}

]
.

(10.70)
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where CT[. . .] means the constant term of the Laurent expansion of the
argument around zero.

The factor hy′,y = 1 for y′ ≤ y, and is otherwise the product

hy′,y =
∏

y<l≤y′
λl. (10.71)

The P̃ ’s are Laurent Motzkin (or Ballot) paving polynomials defined by

P̃
(j)
k (ρ) := P

(j)
k (µ(p)) (10.72)

with
µ(ρ) := ρ+ b+ λρ−1 (10.73)

for constant ‘background weights’ b and λ. Finally the Pk’s are Motzkin (or
Ballot) paving polynomials, satisfying recurrence relation

Pk+1(µ) = (µ− bk)Pk(µ)− λkPk−1(µ), (10.74)

subject to normalization

P0(µ) = 1, P1(µ) = µ− b0. (10.75)

The P
(s)
k ’s satisfy the same relations except with shifted coefficients, so

that P (s)
0 (µ) = 1, P (s)

1 (x) = µ − bj and P
(s)
k+1(µ) = (µ − bk+s)P

(s)
k (µ) −

λk+sP
(s)
k−1(µ).

Proof. We start with the classic CT of equation (10.2), and the Motzkin
generating function of Theorem 72.

Bt(y′, y;L) = CT

[
hy′,yPY ′(1/x)P (Y+1)

L−Y (1/x)
xt+1PL+1(1/x)

]
. (10.76)

Since a residue is the coefficient of the −1th term in a Laurent series, shifting
Equation (10.76) by a factor of x gives

Bt(y′, y;L) = Res

[
hy′,yPY ′(1/x)P (Y+1)

L−Y (1/x)
xt+2PL+1(1/x)

, {x, 0}

]
. (10.77)

The variable change

x(ρ) :=
1

ρ+ b+ λρ−1
, (10.78)
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gives derivative
dx

dρ
=

λp−2 − 1
(ρ+ b+ λρ−1)2

(10.79)

so that an application of Theorem 78 yields

Bt(y′, y;L) = Res

[(
ρ+ b+ λρ−1

)t(hy′,yP̃Y ′(ρ)P̃ (Y+1)
L−Y (ρ)

P̃L+1(ρ)

)(
λρ−2 − 1

)
, {ρ, 0}

]
.

(10.80)
Finally, shifting the argument by a factor of ρ gives the result as a constant

term.

10.3 Decorated Path Enumerations

One of the long unsolved problems that Theorem 80 makes accessible to us
is that posed by DiMazio and Rubin in 1971, in [37]. This is the problem
of paths in a strip with a Ballot-like step set, with just two independent
decorations: one a ‘return’ weight on steps from height ‘1’ to the lower wall
at height ‘0’, and the other a ‘departing’ weight on steps from height L on
the upper wall to height L− 1 below.

The problem is a natural one to consider as a model of polymers between
two surfaces with which they interact. The solution to the enumeration
problem has also been shown, subsequently to DiMazio and Rubin asking
the question, to have application in the calculation of the stationary state
of a stochastic process in traffic modeling, [41].

In the intervening years between 1971 and now, work on the problem
produced a partial result by Brak, Essam and Owczarek [16]. The solution
was obtained when the wall weights are not independent, but instead satisfy
relation

κ+ ω = κω. (10.81)

This relationship implies the advantage that the orthogonal polynomial in
the denominator of the generating function factorizes nicely, which makes
computations more tractable. However the assumption diminishes the use-
fulness of the result in both the polymer modeling context and the traffic
flow application.

Here we present the general solution for independent weights κ and ω.
First we have the theorem stated in the form of a constant term.



264 CHAPTER 10. A NEW ‘CONSTANT TERM’

Theorem 81. Let W2r(κ, ω;L) be the weight polynomial for Dyck paths of
length 2r confined to a strip of height L, and with weights

w(downstep from height ‘1’ to height ‘0’) = κ, (10.82)
w(downstep from height ‘L’ to height ‘L− 1’) = ω; (10.83)

and all other weights equal to ‘1’. Then

W2r(κ, ω;L) = CT
[
(ρ+ ρ−1)2r(1− ρ2)

AρL −Bρ−L

ACρL −BDρ−L

]
(10.84)

where

A = ρ2 − ω̂ (10.85)
B = 1− ω̂ρ2 (10.86)
C = ρ2 − κ̂ (10.87)
D = 1− κ̂ρ2 (10.88)

for κ̂ := κ− 1 and ω̂ := ω − 1.

Proof. The Theorem follows from Theorem 80 and Theorem 43 with back-
ground weights λ = 1, b = 0.

Next we give the explicit expansion in terms of binomials.

Theorem 82. Let W2r(κ, ω;L) be as in Theorem 81. Then

W2r(0, 0;κ, ω;L) =
∑
m≥1

∑
p1,p2≥0

m∑
s1,s2=0

(−1)s1+s2 κ̂s2+p2ω̂s1+p1

(10.89)

×
(
m

s1

)(
m+ p1 − 1

p1

)
×
[
Cr;k+1

(
m− 1
s2

)(
m+ p2 − 1

p2

)

−Cr;k
(
m

s2

)(
m+ p2

p2

)]
where k = r + s1 + s2 − p1 − p2 − (L + 2)m, Cn;x =

(
2n
n−x
)
−
(

2n
n−x−1

)
and

κ̂ = κ− 1, ω̂ = ω − 1.
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Proof. Expanding and rearranging gives

AρL −Bρ−L

ACρL −BDρ−L
=

B −Aρ2L

BD −ACρ2L
(10.90)

=
(
B −Aρ2L

BD

)∑
m≥0

(
AC

BD

)m
ρ2mL (10.91)

=
∑
m≥0

AmCm

BmDm
ρ2mL −

∑
m≥0

Am+1Cm

Bm+1Dm+1
ρ2mL+2L(10.92)

=
1
D

+
∑
m≥1

AmCm

BmDm
ρ2mL −

∑
m≥1

AmCm−1

BmDm
ρ2mL (10.93)

Expansion of Am and Cm give finite sums over s1 and s2 respectively.
Expansion of Bm and Dm from the denominators give infinite sums over p1

and p2 respectively. Together with the sum on m in Equation 10.93 this
makes five sums. A sixth sum appears in the expansion

(
ρ+ ρ−1

)2r =
2r∑
i=0

(
2r
i

)
ρ2r−2i (10.94)

This sixth sum disappears from the final answer when we choose i to give ρ
with zero exponent, i.e. the constant term.

An extension of the DiMazio/Rubin problem is the decorated weighted
path enumeration problem for which there are two weights near each wall.
This may be relevant to a physical polymer model in which a single weight
near each wall is too crude an approximation to a situation in which attrac-
tion between polymer and wall varies significantly over small distances near
the wall.

The CT method of Theorem 80 also gives a solution to this problem.
We have, in terms of the constant term,

Theorem 83. Let W2r(κ1, κ2ω1, ω2;L) be the weight polynomial for Dyck
paths of length 2r confined to a strip of height L, and with weights

w(downstep from height ‘L’ to height ‘L− 1’) = ω1, (10.95)
w(downstep from height ‘L− 1’ to height ‘L− 2’) = ω2, (10.96)

w(downstep from height ‘2’ to height ‘1’) = κ2, (10.97)
w(downstep from height ‘1’ to height ‘0’) = κ1, (10.98)
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and all other weights equal to ‘1’. Then

W2r(κ1, κ2, ω1, ω2;L) = CT
[
(ρ+ ρ−1)2r

(
ABρL −ABρ−L

CBρL − C Bρ−L

)
(ρ−1 − ρ)

]
(10.99)

where

A = 1− κ̂2ρ
−2 (10.100)

A = 1− κ̂2ρ
2 (10.101)

B = ρ− (ω̂1 + ω̂2)ρ−1 − ω̂2ρ
−3 (10.102)

B = ρ−1 − (ω̂1 + ω̂2)ρ− ω̂2ρ
3 (10.103)

C = ρ− (κ̂1 + κ̂2)ρ−1 − κ̂2ρ
−3 (10.104)

C = ρ−1 − (κ̂1 + κ̂2)ρ− κ̂2ρ
3 (10.105)

for κ̂ := κ− 1 and ω̂ := ω − 1.

Proof. Start with Theorem 58 with background weight λ = 1; and two
weights per wall. We have denominator Laurent polynomial(
ρ− ρ−1

)
P̃L+1(ρ) =

(
D̃κ

3 (ρ)− ρ−1D̃κ
2

)(
D̃ω

3 (ρ)− ρ−1D̃ω
2

)
ρL−4

−
(
D̃κ

3 (ρ)− ρD̃κ
2

)(
D̃ω

3 (ρ)− ρD̃ω
2

)
ρ−L+4 (10.106)

which equals

=
(
ρ− (κ̂1 + κ̂2)ρ−1 − κ̂2ρ

−3
) (
ρ− (ω̂1 + ω̂2)ρ−1 − ω̂2ρ

−3
)
ρL

−
(
ρ−1 − (κ̂1 + κ̂2)ρ− κ̂2ρ

3
) (
ρ−1 − (ω̂1 + ω̂2)ρ− ω̂2ρ

3
)
ρ−L.(10.107)

To find the shifted numerator Laurent polynomial without having to redo
the calculation from the beginning, take Equation (10.107), replace κ̂2 by
zero, replace κ̂1 by κ̂2 and send L 7→ L− 1. Thus we have(

ρ− ρ−1
)
P̃

(1)
L (ρ) =

(
1− κ̂2ρ

−2
) (
ρ− (ω̂1 + ω̂2)ρ−1 − ω̂2ρ

−3
)
ρL

−
(
1− κ̂2ρ

2
) (
ρ−1 − (ω̂1 + ω̂2)ρ− ω̂2ρ

3
)
ρ−L(10.108)

The other numerator Laurent polynomial is P̃0(ρ) := 1, hence

P̃0(ρ)P̃ (1)
L (ρ)

P̃L+1(ρ)
=
ABρL −ABρ−L

CBρL − C Bρ−L
(10.109)

for A, A, B, B, C, C, as stated in the theorem. Now the result follows from
Theorem 80, with background weights λ = 1, b = 0.

The explicit expansion of the argument of (10.99) gives the following
result.
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Theorem 84. Let W2r(κ1, κ2ω1, ω2;L) be as in Theorem 83. Then

W2r(κ1, κ2, ω1, ω2;L) (10.110)

=
∑
i≥0

i∑
j=0

(
2r
u

)(
i

j

)
(κ̂1 + κ̂2)j κ̂i−j2

(
κ̂2

(
2r

u0 + 2

)
− (κ̂2 + 1)

(
2r

u0 + 1

)
+
(

2r
u0

))

+
∑
m≥1

m∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
s1
i1

)(
m

s2

)(
s2
i2

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
(−1)s1+s2+i1+i2 κ̂i1+j12 (κ̂1 + κ̂2)m+v1−1−s1−j1 ω̂i2+j22 (ω̂1 + ω̂2)m+v2−s2−j2 ×{(

m

s1

)(
v1 +m

m

)
(κ̂1 + κ̂2)

(
κ̂2

(
2r

u1 + 2

)
− (κ̂1 + 1)

(
2r

u1 + 1

)
+
(

2r
u1

))
−
(
m− 1
s1

)(
v1 +m− 1
m− 1

)(
κ̂2

(
2r

u1 − 1

)
− (κ̂1 + 1)

(
2r
u1

)
+
(

2r
u1 + 1

))}
, (10.111)

for u0 = r+ 2i− j and u1 = r+mL+ v1 + v2 + s1 + s2 + j1 + j2− 2i1− 2i2.

Proof.

P̃0(ρ)P̃ (1)
L (ρ)

P̃L+1(ρ)
=

ABρL −ABρ−L

CBρL − C Bρ−L
(10.112)

=
AB −ABρ2L

C B − CBρ2L
(10.113)

=
AB −ABρ2L

C B

∑
m≥0

(
CB

C B

)m
ρ2mL (10.114)

= A
∑
m≥0

(
CmBm

C
m+1

B
m

)
ρ2mL −A

∑
m≥0

(
CmBm+1

C
m+1

B
m+1

)
ρ2(m+1)L

(10.115)

=
A

C︸︷︷︸
(T1)

+A
∑
m≥1

(
CmBm

C
m+1

B
m

)
ρ2mL

︸ ︷︷ ︸
(T2)

−A
∑
m≥1

(
Cm−1Bm

C
m
B
m

)
ρ2mL

︸ ︷︷ ︸
(T3)

(10.116)

Now, we want

CT
[
(ρ+ ρ−1)2r

(
(T1) + (T2) + (T3)

)
(ρ−1 − ρ)

]
(10.117)

We split the calculation up according to the three terms.



268 CHAPTER 10. A NEW ‘CONSTANT TERM’

1. Considering the first piece, we have:

A

C
=

1− κ̂2ρ
2

ρ−1 − (κ̂1 + κ̂2) ρ− κ̂2ρ3
(10.118)

=
ρ− κ̂2ρ

3

1− [(κ̂1 + κ̂2) + κ̂2ρ2] ρ2
(10.119)

=
(
ρ− κ̂2ρ

3
)∑
i≥0

[
(κ̂1 + κ̂2) + κ̂2ρ

2
]i
ρ2i (10.120)

=
(
ρ− κ̂2ρ

3
)∑
i≥0

i∑
j=0

(
i

j

)
(κ̂1 + κ̂2)j κ̂i−j2 ρ4i−2j . (10.121)

We want the following constant term:

CT

(ρ+ ρ−1)2r(ρ−1 − ρ)(−κ̂2ρ
3 + ρ)

∑
i≥0

i∑
j=0

(
i

j

)
(κ̂1 + κ̂2)j κ̂i−j2 ρ4i−2j



= CT

[
2r∑
u=0

∑
i≥0

i∑
j=0

(
2r
u

)(
i

j

)
(κ̂1 + κ̂2)j κ̂i−j2 ρ2r−2u+4i−2j ×

(
κ̂2ρ

4 − (κ̂2 + 1)ρ2 + 1
)]

(10.122)

To find the constant term, solve

• 2r − 2u+ 4i− 2j+4 = 0 ⇐⇒

u = r + 2i− j + 2 (10.123)

• 2r − 2u+ 4i− 2j+2 = 0 ⇐⇒

u = r + 2i− j + 1 (10.124)

• 2r − 2u+ 4i− 2j+0 = 0 ⇐⇒

u = r + 2i− j (10.125)
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so that

CT
[
(ρ+ ρ−1)2r

(
(T1)

)
(ρ− ρ−1)

]

=
∑
i≥0

i∑
j=0

(
i

j

)
(κ̂1 + κ̂2)j κ̂i−j2

(
κ̂2

(
2r

u0 + 2

)
− (κ̂2 + 1)

(
2r

u0 + 1

)
+
(

2r
u0

))
,

(10.126)
where u0 = r + 2i− j.

2. Considering the second piece, we have:

CmBm

C
m+1

B
m =

(
ρ− (κ̂1 + κ̂2)ρ−1 − κ̂2ρ

−3
)m (

ρ− (ω̂1 + ω̂2)ρ−1 − ω̂2ρ
−3
)m

(ρ−1 − (κ̂1 + κ̂2)ρ− κ̂2ρ3)m+1 (ρ−1 − (ω̂1 + ω̂2)ρ− ω̂2ρ3)m

=
ρ
((
ρ2 − κ̂2ρ

−2
)
− (κ̂1 + κ̂2)

)m ((
ρ2 − ω̂2ρ

−2
)
− (ω̂1 + ω̂2)

)m
(1− [(κ̂1 + κ̂2)ρ2 + κ̂2ρ4])m+1 (1− [(ω̂1 + ω̂2)ρ2 + ω̂2ρ4])m

(10.127)

General facts

(a− b)m =
m∑
s=0

(
m

s

)
(−1)m−sasbm−s, (10.128)

1
(1− x)m

=
∑
v≥0

(
v +m− 1
m− 1

)
xv (10.129)

imply that Equation (10.127) becomes

CmBm

C
m+1

B
m = ρ

(
m∑

s1=0

(
m

s1

)(
ρ2 − κ̂2ρ

−2
)s1 (−1)m−s1(κ̂1 + κ̂2)m−s1

)
×(

m∑
s2=0

(
m

s2

)(
ρ2 − ω̂2ρ

−2
)s2 (−1)m−s2(ω̂1 + ω̂2)m−s2

)
×∑

v1≥0

(
v1 +m

m

)[
(κ̂1 + κ̂2)ρ2 + κ̂2ρ

4
]v1×

∑
v2≥0

(
v2 +m− 1
m− 1

)[
(ω̂1 + ω̂2)ρ2 + ω̂2ρ

4
]v2 . (10.130)
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We also have

(
ρ2 − κ̂2ρ

−2
)s1 =

s1∑
i1=0

(
s1
i1

)
(−1)i1 κ̂i12 ρ

2s1−4i1 , (10.131)

(
ρ2 − ω̂2ρ

−2
)s2 =

s2∑
i2=0

(
s2
i2

)
(−1)i2ω̂i22 ρ

2s2−4i2 , (10.132)

[
(κ̂1 + κ̂2)ρ2 + κ̂2ρ

4
]v1 =

v1∑
j1=0

(
v1
j1

)
κ̂j12 (κ̂1 + κ̂2)v1−j1ρ2v1+2j1 ,

(10.133)[
(ω̂1 + ω̂2)ρ2 + ω̂2ρ

4
]v2 =

v2∑
j2=0

(
v2
j2

)
ω̂j22 (ω̂1 + ω̂2)v2−j2ρ2v2+2j2 .

(10.134)

Thus

CmBm

C
m+1

B
m =

m∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
m

s1

)(
s1
i1

)(
m

s2

)(
s2
i2

)
×

(
v1 +m

m

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
(−1)s1+s2+i1+i2 ×

κ̂i1+j12 (κ̂1 + κ̂2)m+v1−s1−j1 ω̂i2+j22 (ω̂1 + ω̂2)m+v2−s2−j2 ×
ρ2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1. (10.135)

Now we want

CT

(ρ+ ρ−1)2r(ρ−1 − ρ)A
∑
m≥1

(
CmBm

C
m+1

B
m

)
ρ2mL

 (10.136)

which equals

CT

( 2r∑
u=0

(
2r
u

)
ρ2r−2u

)(
κ̂2ρ

3 − (κ̂2 + 1)ρ+ ρ−1
)∑

m≥1

(
CmBm

C
m+1

B
m

)
ρ2mL


(10.137)
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which in turn is

CT
[( 2r∑

u=0

∑
m≥1

m∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
2r
u

)(
m

s1

)
×(

s1
i1

)(
m

s2

)(
s2
i2

)(
v1 +m

m

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
×

(−1)s1+s2+i1+i2 ×
κ̂i1+j1

2 (κ̂1 + κ̂2)m+v1−s1−j1 ω̂i2+j2
2 (ω̂1 + ω̂2)m+v2−s2−j2 ×

ρ2r−2u+2mL+2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1

)
×

(
κ̂2ρ

3 − (κ̂2 + 1)ρ+ ρ−1
) ]

(10.138)

There are three pieces to this (second) term in the expansion, which
correspond to the cases

• 2r−2u+2mL+2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1+3 = 0
⇐⇒

u = r+mL+ v1 + v2 + s1 + s2 + j1 + j2− 2i1− 2i2 + 2 (10.139)

• 2r−2u+2mL+2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1+1 = 0
⇐⇒

u = r+mL+ v1 + v2 + s1 + s2 + j1 + j2− 2i1− 2i2 + 1 (10.140)

• 2r−2u+2mL+2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1−1 = 0
⇐⇒

u = r +mL+ v1 + v2 + s1 + s2 + j1 + j2 − 2i1 − 2i2 (10.141)

Thus we have, for the CT expansion of the second term,

CT
[
(ρ+ ρ−1)2r

(
(T2)

)
(ρ− ρ−1)

]
=
∑
m≥1

m∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
m

s1

)(
s1
i1

)(
m

s2

)(
s2
i2

)
×(

v1 +m

m

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
(−1)s1+s2+i1+i2 ×

κ̂i1+j1
2 (κ̂1 + κ̂2)m+v1−s1−j1 ω̂i2+j2

2 (ω̂1 + ω̂2)m+v2−s2−j2 ×(
κ̂2

(
2r

u1 + 2

)
− (κ̂2 + 1)

(
2r

u1 + 1

)
+
(

2r
u1

))
, (10.142)
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where u1 = r +mL+ v1 + v2 + s1 + s2 + j1 + j2 − 2i1 − 2i2.

3. The expansion of the third term is very similar to that of the second.
We have:

Cm−1Bm

C
m
B
m =

ρ
((
ρ2 − κ̂2ρ

−2
)
− (κ̂1 + κ̂2)

)m−1 ((
ρ2 − ω̂2ρ

−2
)
− (ω̂1 + ω̂2)

)m
(1− [(κ̂1 + κ̂2)ρ2 + κ̂2ρ4])m (1− [(ω̂1 + ω̂2)ρ2 + ω̂2ρ4])m

.

(10.143)

Utilizing facts (10.128) and (10.129) again, Equation (10.143) be-
comes

Cm−1Bm

C
m
B
m = ρ

(
m−1∑
s1=0

(
m− 1
s1

)(
ρ2 − κ̂2ρ

−2
)s1(−1)m−1−s1(κ̂1 + κ̂2)m−1−s1

)
×(

m∑
s2=0

(
m

s2

)(
ρ2 − ω̂2ρ

−2
)s2 (−1)m−s2(ω̂1 + ω̂2)m−s2

)
×∑

v1≥0

(
v1 +m− 1
m− 1

)[
(κ̂1 + κ̂2)ρ2 + κ̂2ρ

4
]v1×

∑
v2≥0

(
v2 +m− 1
m− 1

)[
(ω̂1 + ω̂2)ρ2 + ω̂2ρ

4
]v2 . (10.144)

Thus

Cm−1Bm

C
m
B
m =

m−1∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
m− 1
s1

)(
s1
i1

)
×(

m

s2

)(
s2
i2

)(
v1 +m− 1
m− 1

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
×

(−1)s1+s2+1+i1+i2 κ̂i1+j1
2 (κ̂1 + κ̂2)v1+m−1−s1−j1 ×

ω̂i2+j2
2 (ω̂1 + ω̂2)v2+m−s2−j2 ×
ρ2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1. (10.145)

Now we want

CT

(ρ+ ρ−1)2r(ρ−1 − ρ)(−A)
∑
m≥1

(
Cm−1Bm

C
m
B
m

)
ρ2mL

 (10.146)
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which equals

CT

[(
2r∑
u=0

(
2r
u

)
ρ2r−2u

)(
κ̂2ρ
−3 − (κ̂2 + 1)ρ−1 + ρ

)
×∑

m≥1

(
Cm−1Bm

C
m
B
m

)
ρ2mL

](10.147)

which in turn is

CT
[( 2r∑

u=0

∑
m≥1

m−1∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
2r
u

)(
m− 1
s1

)
×(

s1
i1

)(
m

s2

)(
s2
i2

)(
v1 +m− 1
m− 1

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
×

(−1)s1+s2+1+i1+i2 ×
κ̂i1+j1

2 (κ̂1 + κ̂2)v1+m−1−s1−j1 ω̂i2+j2
2 (ω̂1 + ω̂2)v2+m−s2−j2 ×

ρ2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1

)
×

(
κ̂2ρ
−3 − (κ̂2 + 1)ρ−1 + ρ

) ]
(10.148)

There are three pieces to this (third) term in the expansion.

• 2r−2u+2mL+2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1−3 = 0
⇐⇒

u = r+mL+ v1 + v2 + s1 + s2 + j1 + j2− 2i1− 2i2− 1 (10.149)

• 2r−2u+2mL+2v1 +2v2 +2s1 +2s2 +2j1 +2j2−4i1−4i2−1 = 0
⇐⇒

u = r+mL+ v1 + v2 + s1 + s2 + j1 + j2− 2i1− 2i2 + 1 (10.150)

• 2r−2u+2mL+2v1+2v2+2s1+2s2+2j1+2j2−4i1−4i2+1+1 = 0
⇐⇒

u = r +mL+ v1 + v2 + s1 + s2 + j1 + j2 − 2i1 − 2i2 (10.151)
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Thus we have, for the CT expansion of the third term,

CT
[
(ρ+ ρ−1)2r

(
(T3)

)
(ρ− ρ−1)

]

=
∑
m≥1

m−1∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
m− 1
s1

)(
s1
i1

)(
m

s2

)
×(

s2
i2

)(
v1 +m− 1
m− 1

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
(−1)s1+s2+1+i1+i2 ×

κ̂i1+j1
2 (κ̂1 + κ̂2)m+v1−1−s1−j1 ω̂i2+j2

2 (ω̂1 + ω̂2)m+v2−s2−j2 ×(
κ̂2

(
2r

u1 − 1

)
− (κ̂2 + 1)

(
2r
u1

)
+
(

2r
u1 + 1

))
,

(10.152)

for u1 defined as before to be u1 = r +mL+ v1 + v2 + s1 + s2 + j1 +
j2 − 2i1 − 2i2.

Putting the three terms back together gives

CT
[
(ρ+ ρ−1)2r

(
(T1) + (T2) + (T3)

)
(ρ− ρ−1)

]
=

∑
i≥0

i∑
j=0

(
2r
u

)(
i

j

)
(κ̂1 + κ̂2)j κ̂i−j2

(
κ̂2

(
2r

u0 + 2

)
− (κ̂2 + 1)

(
2r

u0 + 1

)
+
(

2r
u0

))

+
∑
m≥1

m∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
m

s1

)(
s1
i1

)(
m

s2

)(
s2
i2

)
×

(
v1 +m

m

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
(−1)s1+s2+i1+i2 ×

κ̂i1+j12 (κ̂1 + κ̂2)m+v1−s1−j1 ω̂i2+j22 (ω̂1 + ω̂2)m+v2−s2−j2 ×(
κ̂2

(
2r

u1 + 2

)
− (κ̂2 + 1)

(
2r

u1 + 1

)
+
(

2r
u1

))

+
∑
m≥1

m−1∑
s1=0

s1∑
i1=0

m∑
s2=0

s2∑
i2=0

∑
v1≥0

v1∑
j1=0

∑
v2≥0

v2∑
j2=0

(
m− 1
s1

)(
s1
i1

)(
m

s2

)(
s2
i2

)
×

(
v1 +m− 1
m− 1

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
(−1)s1+s2+1+i1+i2 ×

κ̂i1+j12 (κ̂1 + κ̂2)m+v1−1−s1−j1 ω̂i2+j22 (ω̂1 + ω̂2)m+v2−s2−j2 ×(
κ̂2

(
2r

u1 + 1

)
− (κ̂2 + 1)

(
2r
u1

)
+
(

2r
u1 − 1

))
(10.153)
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for u0 = r+ 2i− j and u1 = r+mL+ v1 + v2 + s1 + s2 + j1 + j2− 2i1− 2i2.
Collecting terms gives final answer

CT

[
(ρ+ ρ−1)2r

(
P̃0(ρ)P̃ (1)

L (ρ)
P̃L+1(ρ)

)
(ρ− ρ−1)

]

=
∑
i≥0

i∑
j=0

(
2r
u

)(
i

j

)
(κ̂1 + κ̂2)j κ̂i−j2

(
κ̂2

(
2r

u0 + 2

)
− (κ̂2 + 1)

(
2r

u0 + 1

)
+
(

2r
u0

))

+
∑
m≥1

m∑
s1,s2=0

s1∑
i1=0

s2∑
i2=0

∑
v1,v2≥0

v1∑
j1=0

v2∑
j2=0

(
s1
i1

)(
m

s2

)(
s2
i2

)(
v1
j1

)(
v2 +m− 1
m− 1

)(
v2
j2

)
(−1)s1+s2+i1+i2 κ̂i1+j12 (κ̂1 + κ̂2)m+v1−1−s1−j1 ω̂i2+j22 (ω̂1 + ω̂2)m+v2−s2−j2 ×{(

m

s1

)(
v1 +m

m

)
(κ̂1 + κ̂2)

(
κ̂2

(
2r

u1 + 2

)
− (κ̂2 + 1)

(
2r

u1 + 1

)
+
(

2r
u1

))
−
(
m− 1
s1

)(
v1 +m− 1
m− 1

)(
κ̂2

(
2r

u1 − 1

)
− (κ̂2 + 1)

(
2r
u1

)
+
(

2r
u1 + 1

))}
,

(10.154)

for u0 = r+2i−j and u1 = r+mL+v1 +v2 +s1 +s2 +j1 +j2−2i1−2i2.
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(ordinary) generating function, 22
(path) counting sequence, xxvi
(path) weight polynomial, xxv
l-wall weights decorated Ballot paving

polynomials, 140
n-banded weighting, 81
r-return weights decorated 2-up paving

polynomials, 148
(time) compressed digraph, 92
(time) extended digraph, 92
General decorated 2-up standard arc

weighting ‘1’, 146
General decorated 2-up standard paver

weighting ‘1’, 147
General decorated 2-up standard weight-

ing ‘1’ paving polynomials, 147
General decorated Ballot paver weights,

139

General decorated Motzkin paver weights,
143

General downstep decorated Ballot arc
weights, 138

General downstep decorated Motzkin
arc weights, 143

Involution, 16
Laurent Ballot paving , 177, 200
Laurent-weighted dimer, 177
Laurent-weighted monomer, 200
Rule 1, 64
Rule 2, 64
background weight, 176
complete set of equivalent pavings, 173
complete set of induced pavings, 173
compressed digraph underlying, 92
corner weight polynomial, 56
corner, 56
digraph underlying, 92
equilateral flat cube lattice, 162
equivalent pavings, 173
fixed point set, 16
flat cube lattice, 162
flat-mer, 200
gap (between non-vanishing dimers),

177
gap (between non-vanishing pavers),

200
general decorated Ballot paving poly-

nomials, 139
general decorated Motzkin paving poly-

nomials, 143
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general downstep weighting, 28
general weighting, 28
graph underlying, 92
isomorphic, 163
isomorphism, 164
minus-mer, 176
minus-suffixed Laurent paving poly-

nomial, 191
non-vanishing, 177, 200
peak weight polynomial, 67
peak, 67
plain monomer, 200
plus-mer, 176
plus-minus run, 177, 200
plus-suffixed Laurent paving polyno-

mial, 190
positive and negative parts, 191
short return weight decorated Jump-2

paving polynomials, 150
short return weight decorated Jump-2

paving weighting, 150
short return weight decorated Jump-

Any arc weighting, 153
short return weight decorated Jump-

Any paving polynomials, 155
short return weight decorated Jump-

Any paving weighting, 155
sign-mer, 177
signed Laurent polynomials, 190
tri-banded weighting, 78
valley, 67
vanishing, 177, 200
weight of a Laurent Ballot paving, 178,

201
2-up digraph, 102
3-up digraph, 107

Across Step, xxiv
adjacent, xxi
adjacent to, xxi

adjacent with, xxi
allowed step set, xxii
André Principle, 12
arcs, xxi
at height k, 88

background weighted digraph, xxv
bad pair, 182
bad path, 14
bad paving, 183
Ballot digraph, 96
Ballot path, xxiv
Ballot problem, xxiv
Ballot-like, xxiii
basic binomial box, 40
basic configuration (of cycles), 89
basic paths, 40
bi-banded weighting, 60
binomial box, xxiii
binomial path, xxiv
binomial words, 13
black labels, 57

Catalan numbers, 28
Catalan triangle, 75
check marks, 58
circumference, xxii
counting sequence of (path) weight

polynomials, xxvi
covering configuration (of cycles), 89
crossuncross, 132
cycle, xxii
cycle configuration, 89
cycle graph, xxii

d-up digraph, 112
dark, 61
decorated digraph, xxv
decorated paving, 89
decorated paving polynomials, 138
decoration, xxv
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digraph, xxi
dimer, 87
directed graph, xxi
doubly bad, 40
down arcs, 96, 99, 102, 107, 112, 113
Down Step, xxiii
Dyck path, xxiv

East Step, xxiii
edges, xxi
enumeration problem, xxvi

Fibonacci polynomials, 99
final height, xxiv

graph, xxi

half (number) line, xxii, 88
half plane, xxii
height, xxiv

initial height, xxiv

Jump 2-step digraph, 115
Jump 3-step digraph, 121
Jump Any-step digraph, 126

L-Jump 2-step digraphs, 115
L-Jump 3-step digraphs, 121
L-Jump Any-step digraphs, 127
lattice, xxii
lattice digraph, xxiii
Laurent Ballot paving polynomial, 177
Laurent Motzkin paving polynomial,

201
length, xxii
light, 61
linear representative of D, 164
long down arcs, 115, 121
long up arcs, 102, 107, 115, 121
loops, 99, 102, 107, 112, 113, 115,

121, 126

Lukasiewicz 2-up digraphs, 103
Lukasiewicz 3-up digraphs, 107
Lukasiewicz d-up digraphs, 112
Lukasiewicz mixed-up digraphs, 113

matching, 87
medium down arcs, 121
medium up arcs, 107, 121
Method of Images, 12
minus-plus pair, 182
mixed-up digraph, 113
monomer, 87
Motzkin digraph, 99
Motzkin path, xxiv
Motzkin polynomials, 102
Motzkin-like, xxiii, xxiv

n-mer, 87
Narayana numbers, 70
Narayana triangle, 75
negative, 41
negative set, 16
non-covered, 87
non-overlapping in R, 172
North Step, xxiii

of the form w, xxii
overlap in R, 172

path, xxii
path digraph, 88
path digraph (V,A) associated with

the path graph (V,E), 88
path graph, xxii, 88
paver, 87
paver induced on P by (Si,R), 172
paving, 87
paving (weight) polynomial, 89
paving induced on P by (S,R), 172
plain dimer, 182
plane, xxii
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point lattice, xxii
positive, 41
positive set, 16

red labels, 57
Reflection Principle, 12
resolvent, 23, 219
rigged Ballot path, xxiv

set of contributing configurations to
an n-mer, 130

short down arcs, 115, 121
short return-weight decorated Jump-

2 arc weighting, 150
short up arcs, 102, 107, 115, 121
sign reversing involution, 16
spanning (cycle) configuration on n

vertices, 130
square lattice, xxiii
Standard uniform Ballot arc weights,

96
Standard uniform Ballot paver weights,

97
standard uniform Ballot paving poly-

nomials, 97
Standard uniform Jump-2 paver weight-

ing ‘0’, 116
Standard uniform Jump-3 paver weight-

ing ‘0’, 122
Standard uniform Jump-Any paver

weighting ‘0’, 127
Standard uniform Motzkin arc weights,

100
Standard uniform Motzkin paver weights,

100
standard uniform Motzkin paving poly-

nomials, 100
standard weighting ‘0’, 115, 121, 127
standard weighting ‘0’ for L-Jump-

Any arcs, 127

state vector, 18
Stretch both, 130
Stretch bottom; add top, 130
Stretch top; add bottom, 130
strip, xxii

The trivial uniform Jump-2 arc weight-
ing, 115

The trivial uniform Jump-3 arc weight-
ing, 121

transfer matrix, 18
trimer, 87
trivial (uniform) Ballot arc weight-

ing, 96
trivial (uniform) Ballot paving poly-

nomials, 97
trivial (uniform) paver weights, 97
trivial uniform Jump-Any arc weight-

ing, 127
trivial uniform L-Jump-Any arc weight-

ing, 127

uncovered vertex, 89
undecorated digraph, xxv
undecorated paving polynomials, 138
Uniform 2-up standard arc weighting

‘1’, 103
Uniform 2-up standard arc weighting

‘2’, 104
Uniform 2-up standard arc weighting

‘3’, 105
Uniform 2-up standard paver weight-

ing ‘1’, 103
Uniform 2-up standard paver weight-

ing ‘2’, 104
Uniform 2-up standard paver weight-

ing ‘3’, 105
Uniform 2-up standard weighting ‘1’

paving polynomials, 103
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Uniform 2-up standard weighting ‘2’
paving polynomials, 104

Uniform 2-up standard weighting ‘3’
paving polynomials, 105

Uniform 3-up standard arc weighting
‘1’, 108

Uniform 3-up standard arc weighting
‘2’, 108

Uniform 3-up standard arc weighting
‘3’, 109

Uniform 3-up standard arc weighting
‘4’, 110

Uniform 3-up standard paver weight-
ing ‘1’, 108

Uniform 3-up standard paver weight-
ing ‘2’, 109

Uniform 3-up standard paver weight-
ing ‘3’, 110

Uniform 3-up standard paver weight-
ing ‘4’, 110

Uniform 3-up standard weighting ‘1’
paving polynomials, 108

Uniform 3-up standard weighting ‘2’
paving polynomials, 109

Uniform 3-up standard weighting ‘3’
paving polynomials, 110

Uniform 3-up standard weighting ‘4’
paving polynomials, 110

Uniform d-up standard weighting ‘1’
paving polynomials, 112

Uniform d-up standard arc weighting
‘1’, 112

Uniform d-up standard paver weight-
ing ‘1’, 112

uniform standard weighting ‘0’ Jump-
2 paving polynomials, 116

uniform standard weighting ‘0’ Jump-
3 paving polynomials, 122

uniform standard weighting ‘0’ Jump-
Any paving polynomials, 127

uniform weighting on a paving, 89
uniformly weighted digraph, xxv
unweighted (di)graph, xxiv
up arcs, 96, 99
Up Step, xxiii

vertices, xxi, xxii
Viennot paving polynomials, 175
Viennot pavings, 175

walk, xxi
weight function, xxiv
weight of a 0-cycle, 90
weight of a cycle configuration, 90
weight of a path, xxv
weight of a paving, 89
weight of an n-cycle, 89
weight of the paver, 88
weighted (di)graph, xxiv
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