Solution counting via incidence geometry

Po-Lam Yung

Australian National University

13 June 2024

Two questions

Let S be a finite subset of \mathbb{Z}^2 .

Main case of interest: $S = [0, N]^2 \cap \mathbb{Z}^2$.

Question 1: Diophantine equations

How many (integer) solutions $(\vec{n_1}, \vec{n_2}, \vec{n_3}, \vec{n_4}) \in S^4$ are there, so that

$$\begin{cases} \vec{n_1} + \vec{n_3} = \vec{n_2} + \vec{n_4} \\ |\vec{n_1}|^2 + |\vec{n_3}|^2 = |\vec{n_2}|^2 + |\vec{n_4}|^2 \end{cases}$$
?

Clearly $\vec{n_1} = \vec{n_2} \in S$ and $\vec{n_3} = \vec{n_4} \in S$ gives $(\#S)^2$ solutions. Can there be many more?

Question 2: Counting rectangles

How many rectangles can you form with vertices in S?

Let's try...

Rewrite the system as

$$\begin{cases} \vec{n_1} - \vec{n_2} = \vec{n_4} - \vec{n_3} \\ |\vec{n_1}|^2 - |\vec{n_2}|^2 = |\vec{n_4}|^2 - |\vec{n_3}|^2. \end{cases}$$

The first equation says $(\vec{n}_1, \vec{n}_2, \vec{n}_3, \vec{n}_4)$ form a parallelogram.

The second equation can be rewritten as

$$(\vec{n_1} - \vec{n_2}) \cdot (\vec{n_1} + \vec{n_2}) = (\vec{n_4} - \vec{n_3}) \cdot (\vec{n_4} + \vec{n_3})$$

which under the first equation is the same as

$$(\vec{n_1} - \vec{n_2}) \cdot (\vec{n_1} + \vec{n_2} - \vec{n_3} - \vec{n_4}) = 0$$

i.e.

$$(\vec{n}_1 - \vec{n}_2) \cdot 2(\vec{n}_2 - \vec{n}_3) = 0.$$

Hence the second equation says the parallelogram $(\vec{n_1}, \vec{n_2}, \vec{n_3}, \vec{n_4})$ has a right angle at $\vec{n_2}$, i.e. it is a rectangle.

Summary: The conditions

$$\begin{cases} \vec{n}_1 - \vec{n}_2 = \vec{n}_4 - \vec{n}_3 \\ |\vec{n}_1|^2 - |\vec{n}_2|^2 = |\vec{n}_4|^2 - |\vec{n}_3|^2. \end{cases}$$

is the same as saying that $(\vec{n_1}, \vec{n_2}, \vec{n_3}, \vec{n_4})$ forms a rectangle!

Questions 1 and 2 are equivalent.

We now investigate Question 2.

For most of the discussion, we can relax our assumption from $S\subset\mathbb{Z}^2$ to $S\subset\mathbb{R}^2.$

Counting rectangles in \mathbb{R}^2 : Trivial bounds

Let S be a set of m points in \mathbb{R}^2 .

The number of rectangles in S is $\leq m^4$. (Of course.)

The number of rectangles in S is $\leq m^3$. (Three vertices of a rectangle determine the fourth.)

One should be able to do better since once the first two vertices of a rectangle are picked, the third point is not arbitrary.

But Euclidean geometry must be brought into play: in a toy model over a finite field, a set of m points can form as many as $m^{2.5}$ rectangles!

In other words, need to exploit that \mathbb{R}^2 is not \mathbb{F}^2_{q} ...

Counting r-rich lines

Let S be a finite subset of \mathbb{R}^2 , and $r \geq 2$.

An *r*-rich line through S is a line in \mathbb{R}^2 that passes through at least *r* points from S.

How many *r*-rich lines are there?

If the points of S are in general position, then no 3-rich lines through S.

So the question is: can we have a lot of r-rich lines through a set S of m points?

It is possible to have $\frac{m}{r}$ many *r*-rich lines through *S*: e.g. Each of these lines has exactly *r* points from *S*.

 $\frac{m}{r}$ many *r*-rich lines

If $r \ll \sqrt{m}$ we can arrange the *m* points from *S* in an $\sqrt{m} \times \sqrt{m}$ lattice grid to get lots of *r*-rich lines:

 $m = 16^2$, r = 3lines through a red dot of slope a/b where $1 \le a \le b \le 5$ are 3-rich.

Generally speaking, lines through most points through a $\sqrt{m} \times \sqrt{m}$ square lattice with slope a/b where $1 \le a \le b \le \frac{\sqrt{m}}{r}$ are *r*-rich.

There are *m* base points and $\simeq (\frac{\sqrt{m}}{r})^2$ slopes. But two base points can give the same line. If a line passes through exactly *r* points from the lattice, then it is counted *r* times. One can find out how much double counting there is for each line.

It turns out there are $\sim m(\frac{\sqrt{m}}{r})^2 \frac{1}{r} = \frac{m^2}{r^3}$ many *r*-rich lines through an $\sqrt{m} \times \sqrt{m}$ lattice grid.

Summary: For a set of *m* points *S* in the plane, there can be as many as $\frac{m}{r}$ many *r*-rich lines through *S*. If $r \ll \sqrt{m}$ there can even be as many as $\frac{m^2}{r^3}$ many *r*-rich lines through *S* (note $\frac{m^2}{r^3} > \frac{m}{r}$ if $r < \sqrt{m}$).

The Szemeredi-Trotter theorem

The above examples capture the extreme scenarios in the plane \mathbb{R}^2 .

Theorem (Szemeredi-Trotter 1983): For any set of *m* points $S \subset \mathbb{R}^2$, if $r \geq 2$, there are at most $\ll \frac{m}{r} + \frac{m^2}{r^3}$ many *r*-rich lines through *S*.

The theorem is false if \mathbb{R}^2 is replaced by \mathbb{F}_q^2 , where \mathbb{F}_q is a finite field. You can have more *r*-rich lines in \mathbb{F}_q^2 .

The proof of the theorem uses crucially the topology of \mathbb{R}^2 .

One proof uses Euler's theorem: V - E + F = 2. Another uses the polynomial ham sandwich theorem: Given N open subsets of \mathbb{R}^2 with finite volume, there exist a polynomial $p \in \mathbb{R}[x, y]$ with degree $\ll \sqrt{N}$ whose zero set bisects all N open subsets. (The case N = 2 is a fun exercise.) The topology of \mathbb{R}^2 enters.

Back to counting rectangles

How many rectangles can you form with vertices among a set of m points in \mathbb{R}^2 ?

Theorem (Pach-Sharir 1992): For any set of *m* points $S \subset \mathbb{R}^2$, there are at most $\ll m^2 \log m$ many rectangles with vertices in *S*.

This is a smaller bound than the case of \mathbb{F}_q^2 (one can have an example with $\gg m^{2.5}$ many rectangles).

The proof must use something about \mathbb{R}^2 : in this case, the Szemeredi-Trotter theorem! (So ultimately it is topology of \mathbb{R}^2 at work.)

Herr and Kwak has given a new proof of this result of Pach-Sharir, and their proof gives something more general.

Below I would like to illustrate some beautiful ideas from Herr and Kwak.

The mass of a vertex in a rectangle

Fix a finite set $S \subset \mathbb{R}^2$.

A non-degenerate rectange in S is one that has four distinct vertices in S.

If *R* is a non-degenerate rectangle in *S* and \vec{n} is a vertex of *R*, we compute the *mass* of \vec{n} in *R* by:

- First extend the two sides of R that intersect at \vec{n} to form two (infinite) lines ℓ and ℓ' .
- ▶ Then the mass of \vec{n} in R is defined to be max{ $\#(S \cap \ell), \#(S \cap \ell')$ }.

The mass of any vertex in a non-degenerate rectangle is $\in [2, \#S]$.

Special case 1

Suppose $S \subset \mathbb{R}^2$ is a finite subset of *m* points, and Q = Q(S) be the set of non-degenerate rectangles in *S*.

For $a \in \mathbb{N}$ and $2^a \leq m$, let \mathcal{Q}_a be the set of all rectangles in S for which the heaviest vertex has mass $\in [2^a, 2^{a+1})$.

Then
$$\mathcal{Q} = \bigsqcup_{a} \mathcal{Q}_{a} = \left(\bigsqcup_{2^{a} \ll \sqrt{m}} \mathcal{Q}_{a}\right) \bigcup \left(\bigsqcup_{\sqrt{m} \ll 2^{a} \ll m} \mathcal{Q}_{a}\right).$$

Lemma 1: For $2^a \ll \sqrt{m}$, we have $\# Q_a \ll m^2$.

Since there are $\ll \log m$ many such a's, this gives

$$\#\Big(\bigsqcup_{2^a\ll\sqrt{m}}\mathcal{Q}_a\Big)\ll m^2\log m.$$

Proof of Lemma 1.

Let $2^a \ll \sqrt{m}$. Let *R* be a rectangle in Q_a .

This means the heaviest vertex of R (say $\vec{n_1}$) has mass $\in [2^a, 2^{a+1})$.

 $\vec{n_1}$ lies on a 2^{*a*}-rich line of *S*.

Since $2^a \ll \sqrt{m}$, Szemeredi-Trotter theorem says that the number of 2^a -rich lines in S is $\ll \frac{m}{2^a} + \frac{m^2}{2^{3a}} \simeq \frac{m^2}{2^{3a}}$.

Once such a line has been fixed, there are $< 2^{a+1}$ choices for $\vec{n_1}$ along that line.

To determine a rectangle R in Q_a we need to pick two more vertices from S so that their mass in R is $< 2^{a+1}$.

There are $< 2^{a+1}$ choices for each of these two vertices.

Altogether, $\#Q_a \ll \frac{m^2}{2^{3a}}2^{a+1}2^{a+1}2^{a+1} \ll m^2$, as desired. (Argument fails without red condition.)

Special case 2

Suppose $S \subset \mathbb{R}^2$ is a finite subset of *m* points. A line is said to be very heavy if it is $C\sqrt{m}$ -rich line where *C* is a large absolute constant.

Lemma 2: Suppose additionally that through every point of S there is at most one very heavy line. Then #rectangles in $S \ll m^2 \log m$.

Proof. Using Lemma 1, we only need to count the number of very heavy rectangles, namely those whose heaviest vertex has mass $\geq C\sqrt{m}$.

Let R be such a very heavy rectangle. The number of possible choices of the heaviest vertex of R is (trivially) $\leq m$.

Once the heaviest vertex $\vec{n_1}$ is fixed, since there is only one very heavy line through this vertex, the orientation of R is fixed.

Hence *R* is determined by the choice of the opposite vertex \vec{n}_3 to the heaviest vertex \vec{n}_1 , for which there are $\leq m$ many choices.

The number of very heavy rectangles is thus $\leq m^2$.

By choosing a sufficiently large absolute constant C one can prove:

Lemma 3: Let $S \subset \mathbb{R}^2$ be a finite set of points. Then there exists a subset S_1 of S, such that through every point of S_1 there is at most one line that contains $\geq C\sqrt{\#S_1}$ many points of S_1 , and $\#(S \setminus S_1) \leq \frac{\#S}{2}$.

In other words, we only need to remove less than half of the points of S, to obtain a set $S_1 \subset S$ satisfying the additional hypothesis in Lemma 2.

Proof of Lemma 3: Let S' be the set of points in S that lie on at least two distinct lines with $\geq C\sqrt{\frac{\#S}{2}}$ points of S.

Then

$$\#S' \le \#(C\sqrt{\frac{\#S}{2}}\text{-rich lines in }S)^2 \ll \left(\frac{\#S}{C\sqrt{\frac{\#S}{2}}}\right)^2 \le \frac{\#S}{2}$$

where we used Szemeredi-Trotter in the second inequality and C sufficiently large for the last.

Let $S_1 := S \setminus S'$. Then $\#S_1 \ge \frac{\#S}{2}$, and through any $\vec{n} \in S_1$, there is at most one line that contains $\ge C \sqrt{\frac{\#S}{2}}$ points of S.

In particular, since $\#S_1 \ge \frac{\#S}{2}$, through any $\vec{n} \in S_1$, there is at most one line that contains $\ge C\sqrt{\#S_1}$ points of S_1 .

Finally $\#(S \setminus S_1) = \#S' \le \frac{\#S}{2}$ as desired.

Iterating Lemma 3

Given $S \subset \mathbb{R}^2$, Lemma 3 gives a subset $S_1 \subset S$ that satisfies the additional hypothesis in Lemma 2, with $\#(S \setminus S_1) \leq \frac{\#S}{2}$.

Now apply Lemma 3 again to $S \setminus S_1$. This gives a subset $S_2 \subset S \setminus S_1$, such that S_2 satisfies the additional hypothesis in Lemma 2, with

$$\#(S \setminus (S_1 \sqcup S_2)) \leq \frac{\#(S \setminus S_1)}{2} \leq \frac{\#S}{4}$$

Iterating this process, we obtain:

Lemma 3'. For any finite set of m points $S \subset \mathbb{R}^2$, there exists a decomposition $S = \bigsqcup_{j \ge 1} S_j$ so that each S_j satisfies the hypothesis in Lemma 2, and

$$\#S_j \leq \#(S \setminus (S_1 \sqcup \cdots \sqcup S_{j-1})) \leq 2^{1-j} \#S$$
 for all j .

We are now ready to prove the theorem of Pach and Sharir.

Theorem. For any set of *m* points $S \subset \mathbb{R}^2$, there are at most $\ll m^2 \log m$ many rectangles with vertices in *S*.

Proof. For $\vec{n} \in \mathbb{R}^2$, let $\varphi(\vec{n}) = (\vec{n}, |\vec{n}|^2)$. The notation is convenient because four points $\vec{n}_1, \vec{n}_2, \vec{n}_3, \vec{n}_4$ form a rectangle in \mathbb{R}^2 if and only if

$$\varphi(\vec{n}_1) + \varphi(\vec{n}_3) = \varphi(\vec{n}_2) + \varphi(\vec{n}_4). \tag{(*)}$$

For $E_1, E_2, E_3, E_4 \subset \mathbb{R}^2$, let $\mathcal{Q}(E_1, E_2, E_3, E_4)$ be the number of tuples $(\vec{n}_1, \vec{n}_2, \vec{n}_3, \vec{n}_4)$ so that (*) is satisfied and $\vec{n}_i \in E_i$ for all *i*.

Then from Lemma 3', we have $S = \bigsqcup_{j \ge 1} S_j$, so

$$\#\mathcal{Q}(\mathcal{S}) = \sum_{j_1, j_2, j_3, j_4 \geq 1} \#\mathcal{Q}(\mathcal{S}_{j_1}, \mathcal{S}_{j_2}, \mathcal{S}_{j_3}, \mathcal{S}_{j_4}).$$

Claim: It is well-known that for any set $E_1, E_2, E_3, E_4 \subset \mathbb{R}^2$,

$$\#\mathcal{Q}(E_1, E_2, E_3, E_4) \leq \prod_{i=1}^4 \#\mathcal{Q}(E_i)^{1/4}$$

From

$$\# \mathcal{Q}(S) = \sum_{j_1, j_2, j_3, j_4 \ge 1} \# \mathcal{Q}(S_{j_1}, S_{j_2}, S_{j_3}, S_{j_4}).$$

and

$$\#\mathcal{Q}(S_{j_1}, S_{j_2}, S_{j_3}, S_{j_4}) \leq \prod_{i=1}^4 \#\mathcal{Q}(S_{j_i})^{1/4},$$

we obtain

$$\#\mathcal{Q}(S) \leq \Big(\sum_{j\geq 1} \#\mathcal{Q}(S_j)^{1/4}\Big)^4.$$

Lemma 2 implies

$$\#\mathcal{Q}(S_j) \ll (\#S_j)^2 \log(\#S_j) \ll 2^{2(1-j)} (\#S)^2 \log(\#S)$$

for each j.

The two bounds together give the Pach-Sharir bound

$$\#\mathcal{Q}(S) \ll (\#S)^2 \log(\#S).$$

Finally we come back to an easy proof of the claim (I learned this from Bryce Kerr).

For any set $E_1, E_2, E_3, E_4 \subset \mathbb{R}^2$, by Cauchy-Schwarz,

$$\begin{split} & \#\mathcal{Q}(E_1, E_2, E_3, E_4) \\ &= \sum_{\vec{w} \in \mathbb{R}^3} \#\{(\vec{n}_1, \vec{n}_3) \in E_1 \times E_3 \colon \varphi(\vec{n}_1) + \varphi(\vec{n}_3) = \vec{w}\} \\ & \quad \cdot \#\{(\vec{n}_2, \vec{n}_4) \in E_2 \times E_4 \colon \varphi(\vec{n}_2) + \varphi(\vec{n}_4) = \vec{w}\} \\ & \leq \mathcal{Q}(E_1, E_1, E_3, E_3)^{1/2} \mathcal{Q}(E_2, E_2, E_4, E_4)^{1/2}. \end{split}$$

Similarly, by rewriting the system (*) as $\varphi(\vec{n}_1) - \varphi(\vec{n}_2) = \varphi(\vec{n}_4) - \varphi(\vec{n}_3)$, $\# Q(E_1, E_2, E_3, E_4) \le Q(E_1, E_2, E_2, E_1)^{1/2} Q(E_3, E_4, E_4, E_3)^{1/2}$.

Together we get $\#Q(E_1, E_2, E_3, E_4) \leq \prod_{i=1}^4 \#Q(E_i)^{1/4}$.

More general exponential sum estimates

Herr and Kwak actually proved a stronger result:

Theorem" (Herr-Kwak 2024). Let $S \subset \mathbb{Z}^2$ be a finite set. For every choice of coefficients $\{b_{\vec{n}}\}_{\vec{n} \in S}$, and every interval $J \subset [0, 1]$ of length $\frac{1}{\log(\#S)}$, one has

$$\left\|\sum_{\vec{n}\in S} b_{\vec{n}} e(\vec{n}\cdot x + |\vec{n}|^2 t)\right\|_{L^4([0,1]^2 \times J, d \times dt)} \ll \|b_{\vec{n}}\|_{\ell^2}.$$

In particular, by breaking [0,1] into the union of log(#S) many intervals of length $\frac{1}{log(\#S)}$, we obtain a sharp discrete Strichartz estimate (power 1/4 cannot be lowered):

$$\Big\|\sum_{\vec{n}\in S} b_{\vec{n}} e(\vec{n}\cdot x + |\vec{n}|^2 t)\Big\|_{L^4([0,1]^3, d\times dt)} \ll [\log(\#S)]^{1/4} \|b_{\vec{n}}\|_{\ell^2}.$$

Decoupling only gives a bound with constant $(\#S)^{\varepsilon}$ for any $\varepsilon > 0$.