Solution counting via incidence geometry

Po-Lam Yung
Australian National University

13 June 2024

Two questions

Let S be a finite subset of \mathbb{Z}^{2}.
Main case of interest: $S=[0, N]^{2} \cap \mathbb{Z}^{2}$.

Question 1: Diophantine equations

How many (integer) solutions $\left(\vec{n}_{1}, \overrightarrow{n_{2}}, \overrightarrow{n_{3}}, \overrightarrow{n_{4}}\right) \in S^{4}$ are there, so that

$$
\left\{\begin{array}{l}
\vec{n}_{1}+\vec{n}_{3}=\vec{n}_{2}+\vec{n}_{4} \\
\left|\vec{n}_{1}\right|^{2}+\left|\vec{n}_{3}\right|^{2}=\left|\vec{n}_{2}\right|^{2}+\left|\vec{n}_{4}\right|^{2}
\end{array} ?\right.
$$

Clearly $\vec{n}_{1}=\vec{n}_{2} \in S$ and $\vec{n}_{3}=\vec{n}_{4} \in S$ gives $(\# S)^{2}$ solutions. Can there be many more?

Question 2: Counting rectangles

How many rectangles can you form with vertices in S ?

Let's try...

Rewrite the system as

$$
\left\{\begin{array}{l}
\vec{n}_{1}-\vec{n}_{2}=\vec{n}_{4}-\vec{n}_{3} \\
\left|\vec{n}_{1}\right|^{2}-\left|\vec{n}_{2}\right|^{2}=\left|\vec{n}_{4}\right|^{2}-\left|\vec{n}_{3}\right|^{2}
\end{array}\right.
$$

The first equation says $\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}, \vec{n}_{4}\right)$ form a parallelogram.
The second equation can be rewritten as

$$
\left(\vec{n}_{1}-\vec{n}_{2}\right) \cdot\left(\vec{n}_{1}+\vec{n}_{2}\right)=\left(\vec{n}_{4}-\vec{n}_{3}\right) \cdot\left(\vec{n}_{4}+\vec{n}_{3}\right)
$$

which under the first equation is the same as

$$
\left(\vec{n}_{1}-\vec{n}_{2}\right) \cdot\left(\vec{n}_{1}+\vec{n}_{2}-\vec{n}_{3}-\vec{n}_{4}\right)=0
$$

i.e.

$$
\left(\vec{n}_{1}-\vec{n}_{2}\right) \cdot 2\left(\vec{n}_{2}-\vec{n}_{3}\right)=0 .
$$

Hence the second equation says the parallelogram $\left(\overrightarrow{n_{1}}, \overrightarrow{n_{2}}, \overrightarrow{n_{3}}, \overrightarrow{n_{4}}\right)$ has a right angle at \vec{n}_{2}, i.e. it is a rectangle.

Summary: The conditions

$$
\left\{\begin{array}{l}
\vec{n}_{1}-\vec{n}_{2}=\vec{n}_{4}-\vec{n}_{3} \\
\left|\vec{n}_{1}\right|^{2}-\left|\vec{n}_{2}\right|^{2}=\left|\vec{n}_{4}\right|^{2}-\left|\vec{n}_{3}\right|^{2}
\end{array}\right.
$$

is the same as saying that ($\left.\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}, \vec{n}_{4}\right)$ forms a rectangle!
Questions 1 and 2 are equivalent.
We now investigate Question 2.
For most of the discussion, we can relax our assumption from $S \subset \mathbb{Z}^{2}$ to $S \subset \mathbb{R}^{2}$.

Counting rectangles in \mathbb{R}^{2} : Trivial bounds

Let S be a set of m points in \mathbb{R}^{2}.
The number of rectangles in S is $\leq m^{4}$. (Of course.)
The number of rectangles in S is $\leq m^{3}$. (Three vertices of a rectangle determine the fourth.)

One should be able to do better since once the first two vertices of a rectangle are picked, the third point is not arbitrary.

But Euclidean geometry must be brought into play: in a toy model over a finite field, a set of m points can form as many as $m^{2.5}$ rectangles!

In other words, need to exploit that \mathbb{R}^{2} is not $\mathbb{F}_{q}^{2} \cdots$

Counting r-rich lines

Let S be a finite subset of \mathbb{R}^{2}, and $r \geq 2$.
An r-rich line through S is a line in \mathbb{R}^{2} that passes through at least r points from S.

How many r-rich lines are there?

If the points of S are in general position, then no 3-rich lines through S.
So the question is: can we have a lot of r-rich lines through a set S of m points?

It is possible to have $\frac{m}{r}$ many r-rich lines through S : e.g. Each of these lines has exactly r points from S.

If $r \ll \sqrt{m}$ we can arrange the m points from S in an $\sqrt{m} \times \sqrt{m}$ lattice grid to get lots of r-rich lines:

$$
m=16^{2}, r=3
$$

lines through a red dot of slope a / b where $1 \leq a \leq b \leq 5$ are 3 -rich.

Generally speaking, lines through most points through a $\sqrt{m} \times \sqrt{m}$ square lattice with slope a / b where $1 \leq a \leq b \leq \frac{\sqrt{m}}{r}$ are r-rich.

There are m base points and $\simeq\left(\frac{\sqrt{m}}{r}\right)^{2}$ slopes. But two base points can give the same line. If a line passes through exactly r points from the lattice, then it is counted r times. One can find out how much double counting there is for each line.

It turns out there are $\sim m\left(\frac{\sqrt{m}}{r}\right)^{2} \frac{1}{r}=\frac{m^{2}}{r^{3}}$ many r-rich lines through an $\sqrt{m} \times \sqrt{m}$ lattice grid.

Summary: For a set of m points S in the plane, there can be as many as $\frac{m}{r}$ many r-rich lines through S. If $r \ll \sqrt{m}$ there can even be as many as $\frac{m^{2}}{r^{3}}$ many r-rich lines through S (note $\frac{m^{2}}{r^{3}}>\frac{m}{r}$ if $r<\sqrt{m}$).

The Szemeredi-Trotter theorem

The above examples capture the extreme scenarios in the plane \mathbb{R}^{2}.
Theorem (Szemeredi-Trotter 1983): For any set of m points $S \subset \mathbb{R}^{2}$, if $r \geq 2$, there are at most $\ll \frac{m}{r}+\frac{m^{2}}{r^{3}}$ many r-rich lines through S.

The theorem is false if \mathbb{R}^{2} is replaced by \mathbb{F}_{q}^{2}, where \mathbb{F}_{q} is a finite field. You can have more r-rich lines in \mathbb{F}_{q}^{2}.

The proof of the theorem uses crucially the topology of \mathbb{R}^{2}.
One proof uses Euler's theorem: $V-E+F=2$. Another uses the polynomial ham sandwich theorem: Given N open subsets of \mathbb{R}^{2} with finite volume, there exist a polynomial $p \in \mathbb{R}[x, y]$ with degree $\ll \sqrt{N}$ whose zero set bisects all N open subsets. (The case $N=2$ is a fun exercise.) The topology of \mathbb{R}^{2} enters.

Back to counting rectangles

How many rectangles can you form with vertices among a set of m points in \mathbb{R}^{2} ?

Theorem (Pach-Sharir 1992): For any set of m points $S \subset \mathbb{R}^{2}$, there are at most $\ll m^{2} \log m$ many rectangles with vertices in S.

This is a smaller bound than the case of \mathbb{F}_{q}^{2} (one can have an example with $\gg m^{2.5}$ many rectangles).

The proof must use something about \mathbb{R}^{2} : in this case, the Szemeredi-Trotter theorem! (So ultimately it is topology of \mathbb{R}^{2} at work.)

Herr and Kwak has given a new proof of this result of Pach-Sharir, and their proof gives something more general.

Below I would like to illustrate some beautiful ideas from Herr and Kwak.

The mass of a vertex in a rectangle

Fix a finite set $S \subset \mathbb{R}^{2}$.
A non-degenerate rectange in S is one that has four distinct vertices in S.
If R is a non-degenerate rectangle in S and \vec{n} is a vertex of R, we compute the mass of \vec{n} in R by:

- First extend the two sides of R that intersect at \vec{n} to form two (infinite) lines ℓ and ℓ^{\prime}.
- Then the mass of \vec{n} in R is defined to be $\max \left\{\#(S \cap \ell), \#\left(S \cap \ell^{\prime}\right)\right\}$.

The mass of any vertex in a non-degenerate rectangle is $\in[2, \# S]$.

Special case 1

Suppose $S \subset \mathbb{R}^{2}$ is a finite subset of m points, and $\mathcal{Q}=\mathcal{Q}(S)$ be the set of non-degenerate rectangles in S.

For $a \in \mathbb{N}$ and $2^{a} \leq m$, let \mathcal{Q}_{a} be the set of all rectangles in S for which the heaviest vertex has mass $\in\left[2^{a}, 2^{a+1}\right)$.

Then $\mathcal{Q}=\bigsqcup_{a} \mathcal{Q}_{a}=\left(\bigsqcup_{2^{a} \ll \sqrt{m}} \mathcal{Q}_{a}\right) \bigcup\left(\underset{\sqrt{m} \ll 2^{a} \ll m}{\bigsqcup_{a}} \mathcal{Q}_{a}\right)$.
Lemma 1: For $2^{a} \ll \sqrt{m}$, we have $\# \mathcal{Q}_{a} \ll m^{2}$.
Since there are $\ll \log m$ many such a's, this gives

$$
\#\left(\bigsqcup_{2^{a} \ll \sqrt{m}} \mathcal{Q}_{a}\right) \ll m^{2} \log m .
$$

Proof of Lemma 1.

Let $2^{a} \ll \sqrt{m}$. Let R be a rectangle in \mathcal{Q}_{a}.
This means the heaviest vertex of R (say $\left.\vec{n}_{1}\right)$ has mass $\in\left[2^{a}, 2^{a+1}\right)$.
\vec{n}_{1} lies on a 2^{a}-rich line of S.
Since $2^{a} \ll \sqrt{m}$, Szemeredi-Trotter theorem says that the number of 2^{a}-rich lines in S is $<\frac{m}{2^{a}}+\frac{m^{2}}{2^{3 a}} \simeq \frac{m^{2}}{2^{3 a}}$.

Once such a line has been fixed, there are $<2^{a+1}$ choices for \vec{n}_{1} along that line.

To determine a rectangle R in \mathcal{Q}_{a} we need to pick two more vertices from S so that their mass in R is $<2^{a+1}$.

There are $<2^{a+1}$ choices for each of these two vertices.
Altogether, $\# \mathcal{Q}_{a} \ll \frac{m^{2}}{2^{3 a}} 2^{a+1} 2^{a+1} 2^{a+1} \ll m^{2}$, as desired.
(Argument fails without red condition.)

Special case 2

Suppose $S \subset \mathbb{R}^{2}$ is a finite subset of m points. A line is said to be very heavy if it is $C \sqrt{m}$-rich line where C is a large absolute constant.

Lemma 2: Suppose additionally that through every point of S there is at most one very heavy line. Then \#rectangles in $S \ll m^{2} \log m$.

Proof. Using Lemma 1, we only need to count the number of very heavy rectangles, namely those whose heaviest vertex has mass $\geq C \sqrt{m}$.

Let R be such a very heavy rectangle. The number of possible choices of the heaviest vertex of R is (trivially) $\leq m$.

Once the heaviest vertex \vec{n}_{1} is fixed, since there is only one very heavy line through this vertex, the orientation of R is fixed.

Hence R is determined by the choice of the opposite vertex \vec{n}_{3} to the heaviest vertex \vec{n}_{1}, for which there are $\leq m$ many choices.

The number of very heavy rectangles is thus $\leq m^{2}$.

General case

By choosing a sufficiently large absolute constant C one can prove:
Lemma 3: Let $S \subset \mathbb{R}^{2}$ be a finite set of points. Then there exists a subset S_{1} of S, such that through every point of S_{1} there is at most one line that contains $\geq C \sqrt{\# S_{1}}$ many points of S_{1}, and $\#\left(S \backslash S_{1}\right) \leq \frac{\# S}{2}$.

In other words, we only need to remove less than half of the points of S, to obtain a set $S_{1} \subset S$ satisfying the additional hypothesis in Lemma 2.

Proof of Lemma 3: Let S^{\prime} be the set of points in S that lie on at least two distinct lines with $\geq C \sqrt{\frac{\# S}{2}}$ points of S.

Then

$$
\# S^{\prime} \leq \#\left(C \sqrt{\frac{\# S}{2}} \text {-rich lines in } S\right)^{2} \ll\left(\frac{\# S}{C \sqrt{\frac{\# S}{2}}}\right)^{2} \leq \frac{\# S}{2}
$$

where we used Szemeredi-Trotter in the second inequality and C sufficiently large for the last.

Let $S_{1}:=S \backslash S^{\prime}$. Then $\# S_{1} \geq \frac{\# S}{2}$, and through any $\vec{n} \in S_{1}$, there is at most one line that contains $\geq C \sqrt{\frac{\# S}{2}}$ points of S.

In particular, since $\# S_{1} \geq \frac{\# S}{2}$, through any $\vec{n} \in S_{1}$, there is at most one line that contains $\geq C \sqrt{\# S_{1}}$ points of S_{1}.

Finally $\#\left(S \backslash S_{1}\right)=\# S^{\prime} \leq \frac{\# S}{2}$ as desired.

Iterating Lemma 3

Given $S \subset \mathbb{R}^{2}$, Lemma 3 gives a subset $S_{1} \subset S$ that satisfies the additional hypothesis in Lemma 2, with $\#\left(S \backslash S_{1}\right) \leq \frac{\# S}{2}$.

Now apply Lemma 3 again to $S \backslash S_{1}$. This gives a subset $S_{2} \subset S \backslash S_{1}$, such that S_{2} satisfies the additional hypothesis in Lemma 2, with

$$
\#\left(S \backslash\left(S_{1} \sqcup S_{2}\right)\right) \leq \frac{\#\left(S \backslash S_{1}\right)}{2} \leq \frac{\# S}{4}
$$

Iterating this process, we obtain:
Lemma 3'. For any finite set of m points $S \subset \mathbb{R}^{2}$, there exists a decomposition $S=\bigsqcup_{j \geq 1} S_{j}$ so that each S_{j} satisfies the hypothesis in Lemma 2, and

$$
\# S_{j} \leq \#\left(S \backslash\left(S_{1} \sqcup \cdots \sqcup S_{j-1}\right)\right) \leq 2^{1-j} \# S \quad \text { for all } j
$$

We are now ready to prove the theorem of Pach and Sharir.

Theorem. For any set of m points $S \subset \mathbb{R}^{2}$, there are at most $\ll m^{2} \log m$ many rectangles with vertices in S.

Proof. For $\vec{n} \in \mathbb{R}^{2}$, let $\varphi(\vec{n})=\left(\vec{n},|\vec{n}|^{2}\right)$. The notation is convenient because four points $\overrightarrow{n_{1}}, \overrightarrow{n_{2}}, \overrightarrow{n_{3}}, \overrightarrow{n_{4}}$ form a rectangle in \mathbb{R}^{2} if and only if

$$
\begin{equation*}
\varphi\left(\vec{n}_{1}\right)+\varphi\left(\vec{n}_{3}\right)=\varphi\left(\vec{n}_{2}\right)+\varphi\left(\vec{n}_{4}\right) . \tag{}
\end{equation*}
$$

For $E_{1}, E_{2}, E_{3}, E_{4} \subset \mathbb{R}^{2}$, let $\mathcal{Q}\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ be the number of tuples $\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}, \vec{n}_{4}\right)$ so that $\left(^{*}\right)$ is satisfied and $\vec{n}_{i} \in E_{i}$ for all i.

Then from Lemma 3', we have $S=\bigsqcup_{j \geq 1} S_{j}$, so

$$
\# \mathcal{Q}(S)=\sum_{j_{1}, j_{2}, j_{3}, j_{4} \geq 1} \# \mathcal{Q}\left(S_{j_{1}}, S_{j_{2}}, S_{j_{3}}, S_{j_{4}}\right) .
$$

Claim: It is well-known that for any set $E_{1}, E_{2}, E_{3}, E_{4} \subset \mathbb{R}^{2}$,

$$
\# \mathcal{Q}\left(E_{1}, E_{2}, E_{3}, E_{4}\right) \leq \prod_{i=1}^{4} \# \mathcal{Q}\left(E_{i}\right)^{1 / 4}
$$

From

$$
\# \mathcal{Q}(S)=\sum_{j_{1}, j_{2}, j_{3}, j_{4} \geq 1} \# \mathcal{Q}\left(S_{j_{1}}, S_{j_{2}}, S_{j_{3}}, S_{j_{4}}\right) .
$$

and

$$
\# \mathcal{Q}\left(S_{j_{1}}, S_{j_{2}}, S_{j_{3}}, S_{j_{4}}\right) \leq \prod_{i=1}^{4} \# \mathcal{Q}\left(S_{j_{i}}\right)^{1 / 4}
$$

we obtain

$$
\# \mathcal{Q}(S) \leq\left(\sum_{j \geq 1} \# \mathcal{Q}\left(S_{j}\right)^{1 / 4}\right)^{4}
$$

Lemma 2 implies

$$
\# \mathcal{Q}\left(S_{j}\right) \ll\left(\# S_{j}\right)^{2} \log \left(\# S_{j}\right) \ll 2^{2(1-j)}(\# S)^{2} \log (\# S)
$$

for each j.
The two bounds together give the Pach-Sharir bound

$$
\# \mathcal{Q}(S) \ll(\# S)^{2} \log (\# S)
$$

Finally we come back to an easy proof of the claim (I learned this from Bryce Kerr).

For any set $E_{1}, E_{2}, E_{3}, E_{4} \subset \mathbb{R}^{2}$, by Cauchy-Schwarz,

$$
\begin{aligned}
& \# \mathcal{Q}\left(E_{1}, E_{2}, E_{3}, E_{4}\right) \\
&= \sum_{\vec{w} \in \mathbb{R}^{3}} \#\left\{\left(\vec{n}_{1}, \vec{n}_{3}\right) \in E_{1} \times E_{3}: \varphi\left(\vec{n}_{1}\right)+\varphi\left(\vec{n}_{3}\right)=\vec{w}\right\} \\
& \quad \cdot \#\left\{\left(\vec{n}_{2}, \vec{n}_{4}\right) \in E_{2} \times E_{4}: \varphi\left(\vec{n}_{2}\right)+\varphi\left(\vec{n}_{4}\right)=\vec{w}\right\} \\
& \leq \mathcal{Q}\left(E_{1}, E_{1}, E_{3}, E_{3}\right)^{1 / 2} \mathcal{Q}\left(E_{2}, E_{2}, E_{4}, E_{4}\right)^{1 / 2} .
\end{aligned}
$$

Similarly, by rewriting the system $\left(^{*}\right)$ as $\varphi\left(\vec{n}_{1}\right)-\varphi\left(\vec{n}_{2}\right)=\varphi\left(\vec{n}_{4}\right)-\varphi\left(\vec{n}_{3}\right)$,

$$
\# \mathcal{Q}\left(E_{1}, E_{2}, E_{3}, E_{4}\right) \leq \mathcal{Q}\left(E_{1}, E_{2}, E_{2}, E_{1}\right)^{1 / 2} \mathcal{Q}\left(E_{3}, E_{4}, E_{4}, E_{3}\right)^{1 / 2}
$$

Together we get $\# \mathcal{Q}\left(E_{1}, E_{2}, E_{3}, E_{4}\right) \leq \prod_{i=1}^{4} \# \mathcal{Q}\left(E_{i}\right)^{1 / 4}$.

More general exponential sum estimates

Herr and Kwak actually proved a stronger result:
Theorem" (Herr-Kwak 2024). Let $S \subset \mathbb{Z}^{2}$ be a finite set. For every choice of coefficients $\left\{b_{\vec{n}}\right\}_{\vec{n} \in S}$, and every interval $J \subset[0,1]$ of length $\frac{1}{\log (\# S)}$, one has

$$
\left\|\sum_{\vec{n} \in S} b_{\vec{n}} e\left(\vec{n} \cdot x+|\vec{n}|^{2} t\right)\right\|_{L^{4}\left([0,1]^{2} \times J, d x d t\right)} \ll\left\|b_{\vec{n}}\right\|_{\ell^{2}}
$$

In particular, by breaking $[0,1]$ into the union of $\log (\# S)$ many intervals of length $\frac{1}{\log (\# S)}$, we obtain a sharp discrete Strichartz estimate (power $1 / 4$ cannot be lowered):

$$
\left\|\sum_{\vec{n} \in S} b_{\vec{n}} e\left(\vec{n} \cdot x+|\vec{n}|^{2} t\right)\right\|_{L^{4}\left([0,1]^{3}, d x d t\right)} \ll[\log (\# S)]^{1 / 4}\left\|b_{\vec{n}}\right\|_{\ell^{2}} .
$$

Decoupling only gives a bound with constant $(\# S)^{\varepsilon}$ for any $\varepsilon>0$.

