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Two questions

Let S be a finite subset of Z2.

Main case of interest: S = [0, N]? N Z2.



Question 1: Diophantine equations

How many (integer) solutions (71, M2, 3, i) € S* are there, so that

m—+n=m+nm
|Af? + 3] = M + |m)?

Clearly iy = i, € S and i3 = i, € S gives (#5)? solutions. Can there
be many more?



Question 2: Counting rectangles

How many rectangles can you form with vertices in S7




Let's try...

Rewrite the system as

i — iy = i — 7
|12 — |m? = | A — |m3)2.

The first equation says (71, M2, 13, i) form a parallelogram.
The second equation can be rewritten as

(M — m) - (M + M) = (Ay — M) - (g + 3)
which under the first equation is the same as

(M —m)-(Mm+m—n3—M)=0

(, — ) - 2(fs — ii3) = 0.

Hence the second equation says the parallelogram (i, i, i3, fy) has a
right angle at 1, i.e. it is a rectangle.



Summary: The conditions

— — — —

ng — Ny = nNg — N3
M| — [Wf* = |fa|? — [ 3]

is the same as saying that (77, M, 3, ) forms a rectangle!
Questions 1 and 2 are equivalent.
We now investigate Question 2.

For most of the discussion, we can relax our assumption from S C Z? to
S CR?



Counting rectangles in R?: Trivial bounds

Let S be a set of m points in R?.
The number of rectangles in S is < m*. (Of course.)

The number of rectangles in S is < m3. (Three vertices of a rectangle
determine the fourth.)

One should be able to do better since once the first two vertices of a
rectangle are picked, the third point is not arbitrary.

But Euclidean geometry must be brought into play: in a toy model over a
finite field, a set of m points can form as many as m>> rectangles!

In other words, need to exploit that R? is not Fi



Counting r-rich lines
Let S be a finite subset of R?, and r > 2.

An r-rich line through S is a line in R? that passes through at least r
points from S.

How many r-rich lines are there?



If the points of S are in general position, then no 3-rich lines through S.

So the question is: can we have a lot of r-rich lines through a set S of m
points?

It is possible to have ©* many r-rich lines through S: e.g. Each of these
lines has exactly r points from S.

r=7 m=#S

2 many r-rich lines
r



If r < y/m we can arrange the m points from S in an v/m x \/m lattice
grid to get lots of r-rich lines:

m=16%r=3
lines through a red dot of slope a/b where 1 < a < b <5 are 3-rich.



Generally speaking, lines through most points through a \/m x /m

m

square lattice with slope a/b where 1 <a < b < 4 are r-rich.

There are m base points and ~ (@)2 slopes. But two base points can
give the same line. If a line passes through exactly r points from the
lattice, then it is counted r times. One can find out how much double
counting there is for each line.

2 - .
It turns out there are ~ m(ﬁ)z% = " many r-rich lines through an

v/'m x \/m lattice grid.

Summary: For a set of m points S in the plane, there can be as many as

D many r-rich lines through S. If r < /m there can even be as many as

2 . 2 .
% many r-rich lines through S (note 75 > 2 if r < \/m).



The Szemeredi-Trotter theorem

The above examples capture the extreme scenarios in the plane R?.

Theorem (Szemeredi-Trotter 1983): For any set of m points S C R?, if
r > 2, there are at most < % + T—: many r-rich lines through S.

The theorem is false if R? is replaced by F2, where Fy is a finite field.
You can have more r-rich lines in IF%.

The proof of the theorem uses crucially the topology of R?.

One proof uses Euler's theorem: V — E + F = 2. Another uses the
polynomial ham sandwich theorem: Given N open subsets of R? with
finite volume, there exist a polynomial p € R[x, y] with degree < /N
whose zero set bisects all N open subsets. (The case N =2 is a fun
exercise.) The topology of R? enters.



Back to counting rectangles
How many rectangles can you form with vertices among a set of m points
in R2?

Theorem (Pach-Sharir 1992): For any set of m points S C R?, there are
at most < m? log m many rectangles with vertices in S.

This is a smaller bound than the case of Fi (one can have an example
with > m?% many rectangles).

The proof must use something about R?: in this case, the
Szemeredi- Trotter theorem! (So ultimately it is topology of R? at work.)

Herr and Kwak has given a new proof of this result of Pach-Sharir, and
their proof gives something more general.

Below | would like to illustrate some beautiful ideas from Herr and Kwak.



The mass of a vertex in a rectangle

Fix a finite set S C R?.
A non-degenerate rectange in S is one that has four distinct vertices in S.

If R is a non-degenerate rectangle in S and 7' is a vertex of R, we
compute the mass of 7in R by:

» First extend the two sides of R that intersect at A to form two
(infinite) lines £ and ¢'.

» Then the mass of 7in R is defined to be max{#(SN¥),#(SN¥)}.

The mass of any vertex in a non-degenerate rectangle is € [2, #5S].



Special case 1
Suppose S C R? is a finite subset of m points, and Q = Q(S) be the set

of non-degenerate rectangles in S.

For a € N and 22 < m, let Q, be the set of all rectangles in S for which
the heaviest vertex has mass € [22,2771).

ThenQ=|:|Qa=( |_| Qa)U( |_| Qa)'

22 \/m VML Lm
Lemma 1: For 27 < /m, we have #Q, < m?.

Since there are < log m many such a's, this gives

#( |_| Qa> < m?log m.
22&/m



Proof of Lemma 1.

Let 2? < \/m. Let R be a rectangle in Q,.

This means the heaviest vertex of R (say /1) has mass € [27,27+1).
i1 lies on a 22-rich line of S.

Since 22 < \/m, Szemeredi- Trotter theorem says that the number of
2%-rich lines in S is < 77 + 33 233 o~ 233.

Once such a line has been fixed, there are < 2211 choices for along
that line.

To determine a rectangle R in Q, we need to pick two more vertices
from S so that their mass in R is < 22%1,

There are < 2311 choices for each of these two vertices.

Altogether, #9Q, < 2’”—3§2"+123+12"Jrl < m?, as desired.
(Argument fails without red condition.)



Special case 2

Suppose S C R? is a finite subset of m points. A line is said to be very
heavy if it is Cy/m-rich line where C is a large absolute constant.

Lemma 2: Suppose additionally that through every point of S there is at
most one very heavy line. Then #rectangles in S < m? log m.

Proof. Using Lemma 1, we only need to count the number of very heavy
rectangles, namely those whose heaviest vertex has mass > Cy/m.

Let R be such a very heavy rectangle. The number of possible choices of
the heaviest vertex of R is (trivially) < m.

Once the heaviest vertex i is fixed, since there is only one very heavy
line through this vertex, the orientation of R is fixed.

Hence R is determined by the choice of the opposite vertex i3 to the
heaviest vertex iy, for which there are < m many choices.

The number of very heavy rectangles is thus < m?.



General case

By choosing a sufficiently large absolute constant C one can prove:

Lemma 3: Let S C R? be a finite set of points. Then there exists a
subset S; of S, such that through every point of S; there is at most one
line that contains > C+/#5; many points of 51, and #(5\ $1) < #75

In other words, we only need to remove less than half of the points of S,
to obtain a set S; C S satisfying the additional hypothesis in Lemma 2.



Proof of Lemma 3: Let S’ be the set of points in S that lie on at least
two distinct lines with > C\/#TS points of S.

Then

#S' < #(Cy/ #25—rich lines in S)? < (C#iS)Z < #75
2

where we used Szemeredi-Trotter in the second inequality and C
sufficiently large for the last.

Let S; ;=S\ S’. Then #5; > #75 and through any 7 € Sy, there is at
most one line that contains > C\/#TS points of S.

In particular, since #5; > #75 through any i € S;, there is at most one
line that contains > C+/#5; points of S;.

Finally #(S\ S1) = #S' < £2 as desired.



lterating Lemma 3

Given S C R?, Lemma 3 gives a subset S; C S that satisfies the
additional hypothesis in Lemma 2, with #(5\ $1) < #

Now apply Lemma 3 again to S\ 5;. This gives a subset S, C S\ 5y,
such that S, satisfies the additional hypothesis in Lemma 2, with

Iterating this process, we obtain:
Lemma 3'. For any finite set of m points S C R?, there exists a

decomposition S = [ |;5; ; so that each §; satisfies the hypothesis in
Lemma 2, and B

#S; <H#(S\(S1U---USj_1)) <2V I#S  forall j.

We are now ready to prove the theorem of Pach and Sharir.



Theorem. For any set of m points S C R?, there are at most < m? log m
many rectangles with vertices in S.

Proof. For € R?, let (i) = (,|A]?). The notation is convenient
because four points 3, i, A3, iy form a rectangle in R? if and only if

p(m) + () = ¢(M2) + (7). (*)

For £y, By, B3, Ey C R?, let Q(Ey, By, E3, E4) be the number of tuples
(A1, Mo, M3, M) so that (*) is satisfied and a; € E; for all i.

Then from Lemma 3', we have S = |_|j21 Sj, so

#Q(5) = Z #Q(5> Si» S Si)-

J1:2:43:Ja>1
Claim: It is well-known that for any set Ey, B, Ez, E; C R?,

4
#Q(Ey, B, E5, By) < [ [ #Q(E)Y*.

i=1



From
#9Q(S) = Z #Q(*S}lvs}zvs}ws}'x;)'

J1sJ2:J3:Ja>1

and

4
#Q(Sjw szv Sj37 514 H 1/4

we obtain

s)< (S #ars)v)"

j>1

Lemma 2 implies
#Q(S) < (#5)) log(#5;) < 2207 (#5)? log(#5)
for each j.

The two bounds together give the Pach-Sharir bound

#Q(S) < (#5)” log(#5).



Finally we come back to an easy proof of the claim (I learned this from
Bryce Kerr).

For any set Ei, E,, E3, E, C R?, by Cauchy-Schwarz,

#Q(E1, B2, E3, E4)
= > #{(A, is) € By x Es: (i) + (i) = W}

wER3
#{(ﬁz, f74) € E; x E4: (p(ﬁz) + (P(ﬁ4) = VV}
< Q(Ey, E1, B3, B3)Y2Q(E, B, B4, E4)Y2.

—

Similarly, by rewriting the system (*) as (1) — ¢(2) = p(fs) — p(3),

#O(E1, B>, B3, B)) < Q(E1, Bs, B>, E1)Y?Q(Es, Eu, By, E3)Y/2.

Together we get #Q(Ey, b, B3, E2) < [[5_, #Q(E)Y/*.



More general exponential sum estimates

Herr and Kwak actually proved a stronger result:

Theorem” (Herr-Kwak 2024). Let S C Z? be a finite set. For every

choice of coefficients {bz}7cs, and every interval J C [0, 1] of length
1

W, one has

sz*e 7ox + |2t)

nes

< || bl e2-
L4([0,1]2 x J, dxdt) 17

In particular, by breaking [0, 1] into the union of log(#S) many intervals
of length m, we obtain a sharp discrete Strichartz estimate (power

1/4 cannot be lowered):

HZbae i x+ |i’t)

nes

< [log(#S8)]"*| bzl -

L4([0,1]3, dxdt)

Decoupling only gives a bound with constant (#5)¢ for any £ > 0.



