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Two questions

Let S be a finite subset of Z2.

Main case of interest: S = [0,N]2 ∩ Z2.



Question 1: Diophantine equations

How many (integer) solutions (n⃗1, n⃗2, n⃗3, n⃗4) ∈ S4 are there, so that

{
n⃗1 + n⃗3 = n⃗2 + n⃗4

|n⃗1|2 + |n⃗3|2 = |n⃗2|2 + |n⃗4|2
?

Clearly n⃗1 = n⃗2 ∈ S and n⃗3 = n⃗4 ∈ S gives (#S)2 solutions. Can there
be many more?



Question 2: Counting rectangles

How many rectangles can you form with vertices in S?



Let’s try...

Rewrite the system as{
n⃗1 − n⃗2 = n⃗4 − n⃗3

|n⃗1|2 − |n⃗2|2 = |n⃗4|2 − |n⃗3|2.

The first equation says (n⃗1, n⃗2, n⃗3, n⃗4) form a parallelogram.

The second equation can be rewritten as

(n⃗1 − n⃗2) · (n⃗1 + n⃗2) = (n⃗4 − n⃗3) · (n⃗4 + n⃗3)

which under the first equation is the same as

(n⃗1 − n⃗2) · (n⃗1 + n⃗2 − n⃗3 − n⃗4) = 0

i.e.
(n⃗1 − n⃗2) · 2(n⃗2 − n⃗3) = 0.

Hence the second equation says the parallelogram (n⃗1, n⃗2, n⃗3, n⃗4) has a
right angle at n⃗2, i.e. it is a rectangle.



Summary: The conditions{
n⃗1 − n⃗2 = n⃗4 − n⃗3

|n⃗1|2 − |n⃗2|2 = |n⃗4|2 − |n⃗3|2.

is the same as saying that (n⃗1, n⃗2, n⃗3, n⃗4) forms a rectangle!

Questions 1 and 2 are equivalent.

We now investigate Question 2.

For most of the discussion, we can relax our assumption from S ⊂ Z2 to
S ⊂ R2.



Counting rectangles in R2: Trivial bounds

Let S be a set of m points in R2.

The number of rectangles in S is ≤ m4. (Of course.)

The number of rectangles in S is ≤ m3. (Three vertices of a rectangle
determine the fourth.)

One should be able to do better since once the first two vertices of a
rectangle are picked, the third point is not arbitrary.

But Euclidean geometry must be brought into play: in a toy model over a
finite field, a set of m points can form as many as m2.5 rectangles!

In other words, need to exploit that R2 is not F2
q...



Counting r -rich lines
Let S be a finite subset of R2, and r ≥ 2.

An r -rich line through S is a line in R2 that passes through at least r
points from S .

How many r -rich lines are there?



If the points of S are in general position, then no 3-rich lines through S .

So the question is: can we have a lot of r -rich lines through a set S of m
points?

It is possible to have m
r many r -rich lines through S : e.g. Each of these

lines has exactly r points from S .

r = 7, m = #S

m
r many r -rich lines



If r ≪
√
m we can arrange the m points from S in an

√
m ×

√
m lattice

grid to get lots of r -rich lines:

m = 162, r = 3
lines through a red dot of slope a/b where 1 ≤ a ≤ b ≤ 5 are 3-rich.



Generally speaking, lines through most points through a
√
m ×

√
m

square lattice with slope a/b where 1 ≤ a ≤ b ≤
√
m
r are r -rich.

There are m base points and ≃ (
√
m
r )2 slopes. But two base points can

give the same line. If a line passes through exactly r points from the
lattice, then it is counted r times. One can find out how much double
counting there is for each line.

It turns out there are ∼ m(
√
m
r )2 1

r = m2

r3 many r -rich lines through an√
m ×

√
m lattice grid.

Summary: For a set of m points S in the plane, there can be as many as
m
r many r -rich lines through S . If r ≪

√
m there can even be as many as

m2

r3 many r -rich lines through S (note m2

r3 > m
r if r <

√
m).



The Szemeredi-Trotter theorem

The above examples capture the extreme scenarios in the plane R2.

Theorem (Szemeredi-Trotter 1983): For any set of m points S ⊂ R2, if

r ≥ 2, there are at most ≪ m
r + m2

r3 many r -rich lines through S .

The theorem is false if R2 is replaced by F2
q, where Fq is a finite field.

You can have more r -rich lines in F2
q.

The proof of the theorem uses crucially the topology of R2.

One proof uses Euler’s theorem: V − E + F = 2. Another uses the
polynomial ham sandwich theorem: Given N open subsets of R2 with
finite volume, there exist a polynomial p ∈ R[x , y ] with degree ≪

√
N

whose zero set bisects all N open subsets. (The case N = 2 is a fun
exercise.) The topology of R2 enters.



Back to counting rectangles

How many rectangles can you form with vertices among a set of m points
in R2?

Theorem (Pach-Sharir 1992): For any set of m points S ⊂ R2, there are
at most ≪ m2 logm many rectangles with vertices in S .

This is a smaller bound than the case of F2
q (one can have an example

with ≫ m2.5 many rectangles).

The proof must use something about R2: in this case, the
Szemeredi-Trotter theorem! (So ultimately it is topology of R2 at work.)

Herr and Kwak has given a new proof of this result of Pach-Sharir, and
their proof gives something more general.

Below I would like to illustrate some beautiful ideas from Herr and Kwak.



The mass of a vertex in a rectangle

Fix a finite set S ⊂ R2.

A non-degenerate rectange in S is one that has four distinct vertices in S .

If R is a non-degenerate rectangle in S and n⃗ is a vertex of R, we
compute the mass of n⃗ in R by:

▶ First extend the two sides of R that intersect at n⃗ to form two
(infinite) lines ℓ and ℓ′.

▶ Then the mass of n⃗ in R is defined to be max{#(S ∩ ℓ),#(S ∩ ℓ′)}.

The mass of any vertex in a non-degenerate rectangle is ∈ [2,#S ].



Special case 1

Suppose S ⊂ R2 is a finite subset of m points, and Q = Q(S) be the set
of non-degenerate rectangles in S .

For a ∈ N and 2a ≤ m, let Qa be the set of all rectangles in S for which
the heaviest vertex has mass ∈ [2a, 2a+1).

Then Q =
⊔
a

Qa =
( ⊔

2a≪
√
m

Qa

)⋃( ⊔
√
m≪2a≪m

Qa

)
.

Lemma 1: For 2a ≪
√
m, we have #Qa ≪ m2.

Since there are ≪ logm many such a’s, this gives

#
( ⊔

2a≪
√
m

Qa

)
≪ m2 logm.



Proof of Lemma 1.

Let 2a ≪
√
m. Let R be a rectangle in Qa.

This means the heaviest vertex of R (say n⃗1) has mass ∈ [2a, 2a+1).

n⃗1 lies on a 2a-rich line of S .

Since 2a ≪
√
m, Szemeredi-Trotter theorem says that the number of

2a-rich lines in S is ≪ m
2a +

m2

23a ≃ m2

23a .

Once such a line has been fixed, there are < 2a+1 choices for n⃗1 along
that line.

To determine a rectangle R in Qa we need to pick two more vertices
from S so that their mass in R is < 2a+1.

There are < 2a+1 choices for each of these two vertices.

Altogether, #Qa ≪ m2

23a 2
a+12a+12a+1 ≪ m2, as desired.

(Argument fails without red condition.)



Special case 2

Suppose S ⊂ R2 is a finite subset of m points. A line is said to be very
heavy if it is C

√
m-rich line where C is a large absolute constant.

Lemma 2: Suppose additionally that through every point of S there is at
most one very heavy line. Then #rectangles in S ≪ m2 logm.

Proof. Using Lemma 1, we only need to count the number of very heavy
rectangles, namely those whose heaviest vertex has mass ≥ C

√
m.

Let R be such a very heavy rectangle. The number of possible choices of
the heaviest vertex of R is (trivially) ≤ m.

Once the heaviest vertex n⃗1 is fixed, since there is only one very heavy
line through this vertex, the orientation of R is fixed.

Hence R is determined by the choice of the opposite vertex n⃗3 to the
heaviest vertex n⃗1, for which there are ≤ m many choices.

The number of very heavy rectangles is thus ≤ m2.



General case

By choosing a sufficiently large absolute constant C one can prove:

Lemma 3: Let S ⊂ R2 be a finite set of points. Then there exists a
subset S1 of S , such that through every point of S1 there is at most one
line that contains ≥ C

√
#S1 many points of S1, and #(S \ S1) ≤ #S

2 .

In other words, we only need to remove less than half of the points of S ,
to obtain a set S1 ⊂ S satisfying the additional hypothesis in Lemma 2.



Proof of Lemma 3: Let S ′ be the set of points in S that lie on at least

two distinct lines with ≥ C
√

#S
2 points of S .

Then

#S ′ ≤ #(C

√
#S

2
-rich lines in S)2 ≪

( #S

C
√

#S
2

)2

≤ #S

2

where we used Szemeredi-Trotter in the second inequality and C
sufficiently large for the last.

Let S1 := S \ S ′. Then #S1 ≥ #S
2 , and through any n⃗ ∈ S1, there is at

most one line that contains ≥ C
√

#S
2 points of S .

In particular, since #S1 ≥ #S
2 , through any n⃗ ∈ S1, there is at most one

line that contains ≥ C
√
#S1 points of S1.

Finally #(S \ S1) = #S ′ ≤ #S
2 as desired.



Iterating Lemma 3

Given S ⊂ R2, Lemma 3 gives a subset S1 ⊂ S that satisfies the
additional hypothesis in Lemma 2, with #(S \ S1) ≤ #S

2 .

Now apply Lemma 3 again to S \ S1. This gives a subset S2 ⊂ S \ S1,
such that S2 satisfies the additional hypothesis in Lemma 2, with

#(S \ (S1 ⊔ S2)) ≤
#(S \ S1)

2
≤ #S

4
.

Iterating this process, we obtain:

Lemma 3’. For any finite set of m points S ⊂ R2, there exists a
decomposition S =

⊔
j≥1 Sj so that each Sj satisfies the hypothesis in

Lemma 2, and

#Sj ≤ #(S \ (S1 ⊔ · · · ⊔ Sj−1)) ≤ 21−j#S for all j .

We are now ready to prove the theorem of Pach and Sharir.



Theorem. For any set of m points S ⊂ R2, there are at most ≪ m2 logm
many rectangles with vertices in S .

Proof. For n⃗ ∈ R2, let φ(n⃗) = (n⃗, |n⃗|2). The notation is convenient
because four points n⃗1, n⃗2, n⃗3, n⃗4 form a rectangle in R2 if and only if

φ(n⃗1) + φ(n⃗3) = φ(n⃗2) + φ(n⃗4). (*)

For E1,E2,E3,E4 ⊂ R2, let Q(E1,E2,E3,E4) be the number of tuples
(n⃗1, n⃗2, n⃗3, n⃗4) so that (*) is satisfied and n⃗i ∈ Ei for all i .

Then from Lemma 3’, we have S =
⊔

j≥1 Sj , so

#Q(S) =
∑

j1,j2,j3,j4≥1

#Q(Sj1 ,Sj2 ,Sj3 ,Sj4).

Claim: It is well-known that for any set E1,E2,E3,E4 ⊂ R2,

#Q(E1,E2,E3,E4) ≤
4∏

i=1

#Q(Ei )
1/4.



From
#Q(S) =

∑
j1,j2,j3,j4≥1

#Q(Sj1 ,Sj2 ,Sj3 ,Sj4).

and

#Q(Sj1 ,Sj2 ,Sj3 ,Sj4) ≤
4∏

i=1

#Q(Sji )
1/4,

we obtain

#Q(S) ≤
(∑

j≥1

#Q(Sj)
1/4

)4

.

Lemma 2 implies

#Q(Sj) ≪ (#Sj)
2 log(#Sj) ≪ 22(1−j)(#S)2 log(#S)

for each j .

The two bounds together give the Pach-Sharir bound

#Q(S) ≪ (#S)2 log(#S).



Finally we come back to an easy proof of the claim (I learned this from
Bryce Kerr).

For any set E1,E2,E3,E4 ⊂ R2, by Cauchy-Schwarz,

#Q(E1,E2,E3,E4)

=
∑
w⃗∈R3

#{(n⃗1, n⃗3) ∈ E1 × E3 : φ(n⃗1) + φ(n⃗3) = w⃗}

·#{(n⃗2, n⃗4) ∈ E2 × E4 : φ(n⃗2) + φ(n⃗4) = w⃗}
≤Q(E1,E1,E3,E3)

1/2Q(E2,E2,E4,E4)
1/2.

Similarly, by rewriting the system (*) as φ(n⃗1)− φ(n⃗2) = φ(n⃗4)− φ(n⃗3),

#Q(E1,E2,E3,E4) ≤ Q(E1,E2,E2,E1)
1/2Q(E3,E4,E4,E3)

1/2.

Together we get #Q(E1,E2,E3,E4) ≤
∏4

i=1 #Q(Ei )
1/4.



More general exponential sum estimates

Herr and Kwak actually proved a stronger result:

Theorem” (Herr-Kwak 2024). Let S ⊂ Z2 be a finite set. For every
choice of coefficients {bn⃗}n⃗∈S , and every interval J ⊂ [0, 1] of length

1
log(#S) , one has∥∥∥∑

n⃗∈S

bn⃗e(n⃗ · x + |n⃗|2t)
∥∥∥
L4([0,1]2×J,dxdt)

≪ ∥bn⃗∥ℓ2 .

In particular, by breaking [0, 1] into the union of log(#S) many intervals
of length 1

log(#S) , we obtain a sharp discrete Strichartz estimate (power

1/4 cannot be lowered):∥∥∥∑
n⃗∈S

bn⃗e(n⃗ · x + |n⃗|2t)
∥∥∥
L4([0,1]3,dxdt)

≪ [log(#S)]1/4∥bn⃗∥ℓ2 .

Decoupling only gives a bound with constant (#S)ε for any ε > 0.


