THE BOURGAIN-GUTH ITERATION FOR PROVING RESTRICTION
ESTIMATES

PO-LAM YUNG

The following is a more detailed exposition of the iteration that Bourgain and Guth [2]
used to prove the Fourier extension estimate at exponent ¢ = 10/3 for the paraboloid in R?,
written for my own benefit. In particular, care will be taken to make precise and justify all
use of the uncertainty principle, but not much heuristics will be explained here (the original
article [2] contains a very good exposition of the heuristics already).

Let Q be the cube [—1,1]? in R?, and ®: Q — R3 be the parametrization of a compact
part of the paraboloid in R? given by ®(£) = (£,]€]?). Let E: L>®(Q) — L*(R?) be the
extension operator associated to the paraboloid in R3, i.e.

Bf(z) - /Q = *Ods, 1 e R,

Let ¢ = 10/3, and for each R > 1, let A(R) be the smallest constant for which

IEflLar) < AR Sl

for all f € L>=(Q) and all cubes B C R? of side length R. Following Bourgain and Guth
2], we will show that for any € > 0, there exists a finite constant A, such that A(R) < A.R®
for all R.

Suppose € > 0. We will determine two positive integers K; and K, both depending only
on g, with K > Kjy; as we will see shortly, it will be convenient to choose K to be a large
multiple of K7, so let’s choose K as such.

From now on, we fix a cube Br C R? of side length R > 1. Without loss of generality
we assume that R is an integer multiple of K. We partition By into essentially disjoint
cubes of side lengths K, and call the collection of resulting cubes Bx. A cube from By is
typically denoted by p; since K is a multiple of K7, every such p can be further partitioned
into a disjoint union of cubes of side lengths K. Call the collection of these resulting cubes
B, (1); then we have p = UVGBKl(u) v for every u € Bg.

We also partition @ into essentially disjoint cubes of side lengths K~! and K; ' respectively,
and call the collection of resulting cubes Pg—1 and PK;L A cube in Pg-1 is usually denoted
a; a cube in PKfl is usually denoted (. Since K is a multiple of Ky, if @ € Pg-1 and
B e PKfl, then either a and [ are essentially disjoint, or o« C . The distance between two
sets will be denoted by d; for instance, if oy, as € Pg-1, then d(aq, as) denotes the distance
between a; and as. Three cubes aq, as, a3 in Pxr—1 will be said to be transverse, if for every
& € ay, & € ap and & € ag, the unit normal vectors to the paraboloid at (&1, |£1]?), (&2, [£2]%)
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and (&3, |£3/%) form a determinant whose absolute value is > K ~2 (which holds if and only if
the area of the triangle whose vertices are £, &, & has area 2> K~2). Hence oy, as, a3 would
be transverse, if for instance max;<;<j<s d(a;, o) = d(az, ) > 10/K and the distance of
ag to the line joining the centers of oy and s is > 10/ K.

Now fix f € L>*(Q) with || f||~(g) = 1. For each cube o € Pg-1, let fo, = fxo where x4
is the characteristic function of a. Then

Ef= Y Efa
a€Pp 1

Informally, the uncertainty principle asserts that if @ € Pg-1, then Ef, is locally constant on
any cube p of side length K. To make this precise, let w(x) = W and wi (z) = 75w(E).
For any cube p of side length K and any a € Pg-1, let

Clo = / |E fol2)|wk (2, — x)dx
R3
where z, is the center of ;. Then

||Efoé||L°°(M) 5 Cu,as

d(p, 1)\ ™
IBLlimon S (1+2520) g

indeed

for every cubes u, i/ of side lengths K.

Now for p € By, let

Cuv = MaAX Cuq
s OCEPK—I s

We consider two conditions on pu:

Condition 1. There exist ay, ag, az € Pg-1, transverse to each other, with ¢, o, > K™ 2c, .
for j =1,2,3.

Condition 2. There exists a line L C R?, such that if o € Py-1 satisfy c,0 > K ¢,
then d(o, L) < 10/ K.

One can check that every p € By satisfies at least one of these two conditions: indeed, let’s
call a cube a € Py-1 important if ¢, , > K 2c, .. Among all the important cubes, choose
two that are as far apart as possible (if there are two), and see whether every other important
cube is at a distance at most 10/K from the line joining the centers of the two important
cubes chosen just now. If yes, then pu satisfies condition 2; if not, then u satisfies condition 1.

Let’s write u € €; if u € By satisfies condition 4, for © = 1,2. The a1, as, a3 in condition
1, and the line L in condition 2, will generally depend on p; we write «; (1) and L(u) if there
is a need to carry the dependence of such on p.

Our goal is to estimate || E f||La(py). Since

Ef G asm = 2 NEM ag + D IES o

pneey pnecs

we will estimate the two terms on the right hand side separately.
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If 4 € &, then

1Ef o) S K < K geom e,
1<5<3

where geom; ;5 a; is the geometric mean of ay, ag, az. Hence
HEfmﬂm‘<HEﬂﬁ%m

5KlQ///wK(xl)wK(xg)wK(xg)/geom\Efa (w (2 — j)]?’dzdxldwgdxg
o

1<5<3
which is
SK? ), ///“’K T )wi l’?)wK(SCs,)/geom!Efaj(z—xj)\?’dzdxld:@dxg.
1,002,003 u 1<5<3

transverse

Summing over u € €1, we have

Z ||Ef||Lq(M K'? Z ///wK T )Wk :BQ)wK(xg)/ geqm|Ef%.(z —:Ej)|3dzdx1d:v2da73
a1,02,03 B

1<5<
pneey Rr 155<3
transverse

ke R geom || fu,|[72
1<j<3

Ske R
We used the trilinear restriction estimate of Bennett, Carbery and Tao [1] in the second

inequality above.

Next we estimate > ., \|Ef||%q(u). Suppose p € €. Let L(u) be the line in the statement
of condition 2, and S(u) for the strip given by the 10/ K neighborhood of L(u). Let

> fan

a€Pp—1
anS(u)#0

and for each § € 77 —1, let

fswo= D fa

aGPK_l ,aCp

ans(u)#0
so that
fsw = D Fsuws
BEP,
Then

[Ef(2)] < cu + [Efsqn(2)]
for all z € u, and hence

HEf”qu(#) S ’M’Cq,* + ”EfS(u)Hqu(#)- (1)

This is true if p € €;. We want to sum over all u € €,. The first term on the right hand
side of (1) can be estimated easily by the following parabolic rescaling lemma:
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Lemma 1. We have

Dol Y o S KUTHAR/K)

HEBK a€Pp 1

Indeed then
> lplel, S KTHMAR/K). (2)

pecs

To control the second term on the right hand side of (1), we introduce some further
notation. Still suppose p € €. Let W(z) = W, and Wk, (z) = %W(K%) For
1

v € Br, (1), let
Cup = /R B fs0.6(0) Wi, (2 — 2)da

for all g € PKI—I, where z, is the center of v. Let

Cyx = ,Bé%a): Cv.B-
If §1,B5 € Pyo1, we say they are transverse, if d(f1, 52) > 10/ K. For each v € By, (i), we

consider two conditions:

Condition 2a. There exist 3y, 85 € PKfl transverse, such that ¢, 5, > Kflcyv* for j =1,2.
(Note such f31, 3, must intersect S(u), for otherwise ¢, 5, = 0.)

Condition 2b. There exists a point P C R?, such that if 8 € Py satisty ¢,5 > K{'e,q,

then the distance between 5 and P is < 100/ Kj;.

Clearly every v € B, (u) satisfies at least one of these two conditions. Let’s write v € €;(u)
if it satisfies condition 27, for j = a,b. Also write (;(v) and fs(v) for the cubes arising in
condition 2a, if v € €y (p). Recall our goal was to control > ., HEfS(M)H%q(M), which is

given by
Z HEfS(u)Hqu(u) = Z Z ”EfS(u)Hqu(#) + Z Z ”EfS(u)”qu(#)

peds pELs vEa, (1) HEC2 ve€sy (1)

Hence we will estimate each of the two terms on the right hand side one by one.

Now suppose v € €, (pt). Then

|Efsollew) < Kicyy < K? ge(ir;lcyﬂj( V)
J

Hence

2 2
1E sl Taq) < K1V geomC‘iﬁj(V) < K* Z v geomey 5,
=2 B1.B2 J=12

transverse

which is bounded by

< KZq//I/VK1 x1) Wi, (22) Z /geom|EfS(u 8, (2 — x5)|"dz doyde,.

B1,B2

transverse



Summing over v € €y,(u), we get

Z | E fs( ) S KQ‘I//VVK1 x1) Wi, (22) Z /geom|Ef5(u 8, (z—1;)|"dz do1ds.

ve€aq (1) BiBa H I

transverse

Applying Holder’s inequality in the integral over u, we bound this by

/4
Kfq\ml‘an/WKl(:cl)WKl(xg) Z (/geom\EfS 5](z—xj)]4dz> dridxs.  (3)
w

=1,2
B1,B2 J
transverse

We estimate this using the following lemma, which is a consequence of the bilinear restriction
theorem in 2 dimensions:

Lemma 2. Fiz two constants K, K, with K >> K. Suppose L is a line in R%, C is the
curve (LN Q), and N is the 100/ K neighborhood of C' in R3. Let Uy and Uy be two balls
in R® of radius 10K ", that are at a distance > 100K, from each other. Suppose Fy and

Fy are two functions on R®, so that the support of F; is in U; NN, for j = 1,2. Then for
any cube i C R3 of side length K, we have

| o Fy )1 S 1l eeom 1 e
M J=4

j=1

Proof. This is a consequence of bilinear restriction in R?. Indeed, rotating the coordinate
system, we may assume that L = {& = ¢} where ¢ € [—1,1] is a constant. For j = 1,2,

let F' (&1, 22, z3) be the partial Fourier transform of Fj in the first variable. Then whenever
&, — ¢| > 100/ K, we have

Fj(glv 2o, 23) _ / J/_ﬁj(6)62wi(zz£2+23€3)d52d€3 =0
R2

for all (29, z3) € R% Thus if w(y) =
we have

and wi (y) = zw(¥) for y € R, then for all z € R?

_1
1—‘,—y2 K

[F5(2)] 5/ | F(y5, 22, 23) lwre (21 — y5)dy;,  j=1,2.
ijR
Thus
/geom\F( )|*dz
o

j=1

// / k(21— y1)wi (21 — yz)/ geom |F}(y;, za, z3)|*dzodzs dzydy dys
y1,y2€R zleR (z2,23)€m1(p) J=1,2

where m; denotes the coordinate projection from R* onto the plane that forgets the first
coordinates. Now for each y; € R, let Fj(y1, &2, &) be the partial Fourier transform of F; in
the last two variables. Then whenever (&2, &3) ¢ m(U; N N), we have

(y1,§2,§3) /]R L(€)er™i8de, =0 for all y; € R.

Thus for each fixed y; € R, the functions (29, 23) — Fj(y1, 22, 23), j = 1,2, satisfy the
hypothesis of the bilinear restriction theorem on the plane; indeed 7 (U3 NN) and 7 (UsNN)
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are 100/ K neighborhoods of two arcs of length ~ K, that are at a distance > 100K '. It
follows that

2
/ geom | Fj(y;, 2, 23)|*dzodzs S, K2H/ |Ej(y)s 22, 23)[*dzadzs.
(ZQ,Z3)E7T1(V) j=1 R2

=12

Plugging this back, we get

/ geom | F(2)|'dz

7j=1,2

serff HwK 21 = ) F3 (0 )22 ey Aoy
y1,Y2€R Z1ER

Applying Cauchy-Schwarz in the z; integral, we bound this by
Si K 3H 1 F5lZ ).
since [|wk || z2@) < K/, This completes the proof of the lemma. O

Now we claim that (3) is bounded by

q/2

Swolul Y, geom | > g | (4)

=1,2
B, T a€Py 1
transverse aCp;

This is because we can take a Schwartz function 7 on R3, whose Fourier support is in a unit
ball, and such that [n(z)] > 1 for |z| < 1. Let ni(z) = n(£) for z € R®. Given z1, x5 € R",
and By, B2 € P that are transverse, let Fj(2) = Efsup, (2 — 2j)nk (2 — 2,) for j =1, 2;
again z,, is the center of . Then

| soom B s, (= )1tz < [ woom |Fy(2)
M u

J=1 Jj=12

Since (1, s are transverse, F} and Fy verify the hypothesis of Lemma 2, unless FiF5 is
identically zero in which case there is nothing to prove. Hence by Lemma 2, the above is

bounded by

Sk Il ge?r;lllﬂl\ia(m)-
J: K

But by orthogonality, for j =1, 2,

s S Y / Efu(z — 2,)Plic(z — ) Pdz
a€Pp—1,aCpj
anS(u)#0

an

1 2

1+ |z +z; — 2,30

Efa(2)

/ Bfae )Pl

Leo(p')



where the sum is over all 1/ in a partition of R? into cubes of side lengths K. Also

d(p, 1)\
IBLlimon S (14 220) g,

(1 + d(ﬂ;, /J//)):SOO (1 + m)?)oo
L) K K

and
1

1+ |z 4+ z; — 2,390

Thus altogether, we have

oI SR ) oY R UTION R CURLILTION Ry o1
JUL2(R3) ~> / K [INe’ K K
o

a€Pp—1,aCB;
ans(u)#0

2 |\ ™"
ri Z |M|c,u,a (1 + ?) )

a€Pp—1,aCB;
anS ()0

which in turn gives

2 600
4 2 EA
/#g'eogl |Efs(#)75j (Z - $])| dz §K1 |,U| H Z Cu,a (1 + K ) :

=1 J=1 a€Py_1,aCh;
ansS(p)#0

Plugging this back into (3), we see that (3) is bounded by

q/4

2
§K1 |ILL‘1_%‘M|% Z H Z Ci,a

B1,82  J=1 \ a€Pp_1
transverse aCpBj

which is (4). Now (4) is bounded by
SKl ‘M'Kgil Z Cq,om
a€Pp -1

1.e.

q_
Z ”EfS(u)”qu(y) Sk [pl K271 Z Cha-

u€€2a(,u,) aEPK_1
Summing over all u € €, we get

q_ q_ _
DD NEfsullbe) Se K270 qul Y el Sk KETTKSTA(R/K),
HEC2 vECo, (1) nEBK a€Pp—1

the last inequality following from Lemma 1.

On the other hand, if v € €y(1), then
HEfS(}L) HLOO(V) S CV7*,

SO
HEfS(u)Hqu(y) S vl S vl Z ¢ 5
BEP,

(5)



Summing over v € €q,(1) and then over u € €, we get

Z Z 1E fsllTaq) S Z Z v Z s

HET: Ve (1) HEBK veBI (W) BePy)

Similar to Lemma 1, we have

S Il DD s S KYTAR/KY)

neBr vEBK, (1) BEP,

Lemma 3.

Thus
S Y NEfswllte, S K A(R/KY). (6)

pE€2 veLa (1)
From (5) and (6), we get
D B Ssillfagy < O K37 K AR/ K) + CKY AR/ K )", (7)
peCs
where C, is a constant depending on K;. From (2) and (7), we see that
S By < Cr, K2 KT A(R/K)* + CKY T A(R/ K ).
pels
As a result,

1E o < D NEFI g + D IEFIS

nee pnes

< Ci R+ O K3 K2 A(R/K) + CKY M A(R/ K, ).

Since ¢ = 10/3, the power of K in front of A(R/K)? is zero. This shows

6_
A(R) < Cx . + Ci, A(R/K) + CK} A(R/K).

6_

By first choosing K to be sufficiently large, so that C'KY ’ < 1, then K to be sufficiently

large, so that Cx, K~5/2 < 1, we get

A(R) < Og R + K*?A(R/K) + A(R/K,),

so iterating, we get
o0

A(R) < Ck R (K77 + K7) <. R,
=0

as desired.

We remark that a small refinement of the above argument also shows that

IEfllzar) Se B\ fllraq)
for all f € LY(Q).
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