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The following is a more detailed exposition of the iteration that Bourgain and Guth [2]
used to prove the Fourier extension estimate at exponent q = 10/3 for the paraboloid in R3,
written for my own benefit. In particular, care will be taken to make precise and justify all
use of the uncertainty principle, but not much heuristics will be explained here (the original
article [2] contains a very good exposition of the heuristics already).

Let Q be the cube [−1, 1]2 in R2, and Φ: Q → R3 be the parametrization of a compact
part of the paraboloid in R3 given by Φ(ξ) = (ξ, |ξ|2). Let E : L∞(Q) → L∞(R3) be the
extension operator associated to the paraboloid in R3, i.e.

Ef(x) =

ˆ
Q

f(ξ)e2πix·Φ(ξ)dξ, x ∈ R3.

Let q = 10/3, and for each R ≥ 1, let A(R) be the smallest constant for which

‖Ef‖Lq(BR) ≤ A(R)‖f‖L∞(Q)

for all f ∈ L∞(Q) and all cubes BR ⊂ R3 of side length R. Following Bourgain and Guth
[2], we will show that for any ε > 0, there exists a finite constant Aε such that A(R) ≤ AεR

ε

for all R.

Suppose ε > 0. We will determine two positive integers K1 and K, both depending only
on ε, with K ≥ K1; as we will see shortly, it will be convenient to choose K to be a large
multiple of K1, so let’s choose K as such.

From now on, we fix a cube BR ⊂ R3 of side length R ≥ 1. Without loss of generality
we assume that R is an integer multiple of K. We partition BR into essentially disjoint
cubes of side lengths K, and call the collection of resulting cubes BK . A cube from BK is
typically denoted by µ; since K is a multiple of K1, every such µ can be further partitioned
into a disjoint union of cubes of side lengths K1. Call the collection of these resulting cubes
BK1(µ); then we have µ =

⋃
ν∈BK1

(µ) ν for every µ ∈ BK .

We also partitionQ into essentially disjoint cubes of side lengthsK−1 andK−1
1 respectively,

and call the collection of resulting cubes PK−1 and PK−1
1

. A cube in PK−1 is usually denoted

α; a cube in PK−1
1

is usually denoted β. Since K is a multiple of K1, if α ∈ PK−1 and

β ∈ PK−1
1

, then either α and β are essentially disjoint, or α ⊂ β. The distance between two

sets will be denoted by d; for instance, if α1, α2 ∈ PK−1 , then d(α1, α2) denotes the distance
between α1 and α2. Three cubes α1, α2, α3 in PK−1 will be said to be transverse, if for every
ξ1 ∈ α1, ξ2 ∈ α2 and ξ3 ∈ α3, the unit normal vectors to the paraboloid at (ξ1, |ξ1|2), (ξ2, |ξ2|2)
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and (ξ3, |ξ3|2) form a determinant whose absolute value is & K−2 (which holds if and only if
the area of the triangle whose vertices are ξ1, ξ2, ξ3 has area & K−2). Hence α1, α2, α3 would
be transverse, if for instance max1≤i<j≤3 d(αi, αj) = d(α1, α2) ≥ 10/K and the distance of
α3 to the line joining the centers of α1 and α2 is ≥ 10/K.

Now fix f ∈ L∞(Q) with ‖f‖L∞(Q) = 1. For each cube α ∈ PK−1 , let fα = fχα where χα
is the characteristic function of α. Then

Ef =
∑

α∈PK−1

Efα.

Informally, the uncertainty principle asserts that if α ∈ PK−1 , then Efα is locally constant on
any cube µ of side length K. To make this precise, let w(x) = 1

(1+|x|)30 and wK(x) = 1
K3w( x

K
).

For any cube µ of side length K and any α ∈ PK−1 , let

cµ,α =

ˆ
R3

|Efα(x)|wK(zµ − x)dx

where zµ is the center of µ. Then

‖Efα‖L∞(µ) . cµ,α;

indeed

‖Efα‖L∞(µ′) .

(
1 +

d(µ, µ′)

K

)30

cµ′,α

for every cubes µ, µ′ of side lengths K.

Now for µ ∈ BK , let

cµ,∗ = max
α∈PK−1

cµ,α

We consider two conditions on µ:
Condition 1. There exist α1, α2, α3 ∈ PK−1 , transverse to each other, with cµ,αj

> K−2cµ,∗
for j = 1, 2, 3.
Condition 2. There exists a line L ⊂ R2, such that if α ∈ PK−1 satisfy cµ,α > K−2cµ,∗,
then d(α,L) < 10/K.
One can check that every µ ∈ BK satisfies at least one of these two conditions: indeed, let’s
call a cube α ∈ PK−1 important if cµ,α > K−2cµ,∗. Among all the important cubes, choose
two that are as far apart as possible (if there are two), and see whether every other important
cube is at a distance at most 10/K from the line joining the centers of the two important
cubes chosen just now. If yes, then µ satisfies condition 2; if not, then µ satisfies condition 1.

Let’s write µ ∈ Ci if µ ∈ BK satisfies condition i, for i = 1, 2. The α1, α2, α3 in condition
1, and the line L in condition 2, will generally depend on µ; we write αi(µ) and L(µ) if there
is a need to carry the dependence of such on µ.

Our goal is to estimate ‖Ef‖Lq(BR). Since

‖Ef‖qLq(BR) =
∑
µ∈C1

‖Ef‖qLq(µ) +
∑
µ∈C2

‖Ef‖qLq(µ),

we will estimate the two terms on the right hand side separately.
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If µ ∈ C1, then

‖Ef‖L∞(µ) . K2cµ,∗ ≤ K4 geom
1≤j≤3

cµ,αj(µ)

where geom1≤j≤3 aj is the geometric mean of a1, a2, a3. Hence

‖Ef‖qLq(µ) ≤ ‖Ef‖
3
L3(µ)

. K12

˚
wK(x1)wK(x2)wK(x3)

ˆ
µ

geom
1≤j≤3

|Efαj(µ)(z − xj)|3dz dx1dx2dx3

which is

. K12
∑

α1,α2,α3
transverse

˚
wK(x1)wK(x2)wK(x3)

ˆ
µ

geom
1≤j≤3

|Efαj
(z − xj)|3dz dx1dx2dx3.

Summing over µ ∈ C1, we have∑
µ∈C1

‖Ef‖qLq(µ) . K12
∑

α1,α2,α3
transverse

˚
wK(x1)wK(x2)wK(x3)

ˆ
BR

geom
1≤j≤3

|Efαj
(z − xj)|3dz dx1dx2dx3

.K,ε R
εq geom

1≤j≤3
‖fαj
‖3
L2

.K,ε R
εq.

We used the trilinear restriction estimate of Bennett, Carbery and Tao [1] in the second
inequality above.

Next we estimate
∑

µ∈C2
‖Ef‖qLq(µ). Suppose µ ∈ C2. Let L(µ) be the line in the statement

of condition 2, and S(µ) for the strip given by the 10/K neighborhood of L(µ). Let

fS(µ) =
∑

α∈PK−1

α∩S(µ)6=∅

fα,

and for each β ∈ PK−1
1

, let

fS(µ),β =
∑

α∈PK−1 , α⊂β
α∩S(µ)6=∅

fα

so that

fS(µ) =
∑
β∈P−1

K1

fS(µ),β.

Then

|Ef(z)| ≤ cµ,∗ + |EfS(µ)(z)|
for all z ∈ µ, and hence

‖Ef‖qLq(µ) . |µ|c
q
µ,∗ + ‖EfS(µ)‖qLq(µ). (1)

This is true if µ ∈ C2. We want to sum over all µ ∈ C2. The first term on the right hand
side of (1) can be estimated easily by the following parabolic rescaling lemma:
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Lemma 1. We have ∑
µ∈BK

|µ|
∑

α∈PK−1

cqµ,α . K6−2qA(R/K)q.

Indeed then ∑
µ∈C2

|µ|cqµ,∗ . K6−2qA(R/K)q. (2)

To control the second term on the right hand side of (1), we introduce some further
notation. Still suppose µ ∈ C2. Let W (x) = 1

(1+|x|)3000 , and WK1(x) = 1
K3

1
W ( x

K1
). For

ν ∈ BK1(µ), let

cν,β =

ˆ
R3

|EfS(µ),β(x)|WK1(zν − x)dx

for all β ∈ PK−1
1

, where zν is the center of ν. Let

cν,∗ = max
β∈P

K−1
1

cν,β.

If β1, β2 ∈ PK−1
1

, we say they are transverse, if d(β1, β2) ≥ 10/K1. For each ν ∈ BK1(µ), we

consider two conditions:
Condition 2a. There exist β1, β2 ∈ PK−1

1
transverse, such that cν,βj > K−1

1 cν,∗ for j = 1, 2.

(Note such β1, β2 must intersect S(µ), for otherwise cν,βj = 0.)

Condition 2b. There exists a point P ⊂ R2, such that if β ∈ PK−1
1

satisfy cν,β > K−1
1 cν,∗,

then the distance between β and P is ≤ 100/K1.
Clearly every ν ∈ BK1(µ) satisfies at least one of these two conditions. Let’s write ν ∈ C2j(µ)
if it satisfies condition 2j, for j = a, b. Also write β1(ν) and β2(ν) for the cubes arising in
condition 2a, if ν ∈ C2a(µ). Recall our goal was to control

∑
µ∈C2
‖EfS(µ)‖qLq(µ), which is

given by ∑
µ∈C2

‖EfS(µ)‖qLq(µ) =
∑
µ∈C2

∑
ν∈C2a(µ)

‖EfS(µ)‖qLq(µ) +
∑
µ∈C2

∑
ν∈C2b(µ)

‖EfS(µ)‖qLq(µ).

Hence we will estimate each of the two terms on the right hand side one by one.

Now suppose ν ∈ C2a(µ). Then

‖EfS(µ)‖L∞(ν) ≤ K1cν,∗ ≤ K2
1 geom
j=1,2

cν,βj(ν).

Hence

‖EfS(µ)‖qLq(ν) ≤ K2q
1 |ν| geom

j=1,2
cqν,βj(ν) ≤ K2q

1

∑
β1,β2

transverse

|ν| geom
j=1,2

cqν,βj ,

which is bounded by

. K2q
1

¨
WK1(x1)WK1(x2)

∑
β1,β2

transverse

ˆ
ν

geom
j=1,2

|EfS(µ),βj(z − xj)|qdz dx1dx2.
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Summing over ν ∈ C2a(µ), we get∑
ν∈C2a(µ)

‖EfS(µ)‖qLq(ν) . K2q
1

¨
WK1(x1)WK1(x2)

∑
β1,β2

transverse

ˆ
µ

geom
j=1,2

|EfS(µ),βj(z−xj)|qdz dx1dx2.

Applying Hölder’s inequality in the integral over µ, we bound this by

K2q
1 |µ|1−

q
4

¨
WK1(x1)WK1(x2)

∑
β1,β2

transverse

(ˆ
µ

geom
j=1,2

|EfS(µ),βj(z − xj)|4dz
)q/4

dx1dx2. (3)

We estimate this using the following lemma, which is a consequence of the bilinear restriction
theorem in 2 dimensions:

Lemma 2. Fix two constants K, K1 with K >> K1. Suppose L is a line in R2, C is the
curve Φ(L ∩ Q), and N is the 100/K neighborhood of C in R3. Let U1 and U2 be two balls
in R3 of radius 10K−1

1 , that are at a distance ≥ 100K−1
1 from each other. Suppose F1 and

F2 are two functions on R3, so that the support of F̂j is in Uj ∩ N , for j = 1, 2. Then for
any cube µ ⊂ R3 of side length K, we haveˆ

µ

geom
j=1,2

|Fj(z)|4dz .K1 |µ|−1 geom
j=1,2

‖Fj‖4
L2(R3).

Proof. This is a consequence of bilinear restriction in R2. Indeed, rotating the coordinate
system, we may assume that L = {ξ1 = c} where c ∈ [−1, 1] is a constant. For j = 1, 2,
let F̃j(ξ1, z2, z3) be the partial Fourier transform of Fj in the first variable. Then whenever
|ξ1 − c| ≥ 100/K, we have

F̃j(ξ1, z2, z3) =

ˆ
R2

F̂j(ξ)e
2πi(z2ξ2+z3ξ3)dξ2dξ3 = 0

for all (z2, z3) ∈ R2. Thus if ω(y) = 1
1+y2

and ωK(y) = 1
K
ω( y

K
) for y ∈ R, then for all z ∈ R3

we have

|Fj(z)| .
ˆ
yj∈R
|Fj(yj, z2, z3)|ωK(z1 − yj)dyj, j = 1, 2.

Thusˆ
µ

geom
j=1,2

|Fj(z)|4dz

.
¨
y1,y2∈R

ˆ
z1∈R

ωK(z1 − y1)ωK(z1 − y2)

ˆ
(z2,z3)∈π1(µ)

geom
j=1,2

|Fj(yj, z2, z3)|4dz2dz3 dz1dy1dy2

where π1 denotes the coordinate projection from R3 onto the plane that forgets the first
coordinates. Now for each y1 ∈ R, let F̆j(y1, ξ2, ξ3) be the partial Fourier transform of Fj in
the last two variables. Then whenever (ξ2, ξ3) /∈ π1(Uj ∩N), we have

F̆j(y1, ξ2, ξ3) =

ˆ
R
F̂j(ξ)e

2πiy1ξ1dξ1 = 0 for all y1 ∈ R.

Thus for each fixed y1 ∈ R, the functions (z2, z3) 7→ Fj(y1, z2, z3), j = 1, 2, satisfy the
hypothesis of the bilinear restriction theorem on the plane; indeed π1(U1∩N) and π1(U2∩N)
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are 100/K neighborhoods of two arcs of length ' K−1
1 , that are at a distance ≥ 100K−1

1 . It
follows thatˆ

(z2,z3)∈π1(ν)

geom
j=1,2

|Fj(yj, z2, z3)|4dz2dz3 .K1 K
−2

2∏
j=1

ˆ
R2

|Fj(yj, z2, z3)|2dz2dz3.

Plugging this back, we getˆ
µ

geom
j=1,2

|Fj(z)|4dz

.K1K
−2

¨
y1,y2∈R

ˆ
z1∈R

2∏
j=1

ωK(z1 − yj)‖Fj(yj, ·)‖2
L2(R2)dz1dy1dy2.

Applying Cauchy-Schwarz in the z1 integral, we bound this by

.K1 K
−3

2∏
j=1

‖Fj‖2
L2(R3),

since ‖ωK‖L2(R) . K−1/2. This completes the proof of the lemma. �

Now we claim that (3) is bounded by

.K1 |µ|
∑
β1,β2

transverse

geom
j=1,2

 ∑
α∈PK−1

α⊂βj

c2
µ,α


q/2

. (4)

This is because we can take a Schwartz function η on R3, whose Fourier support is in a unit
ball, and such that |η(z)| ≥ 1 for |z| ≤ 1. Let ηK(z) = η( z

K
) for z ∈ R3. Given x1, x2 ∈ Rn,

and β1, β2 ∈ PK−1
1

that are transverse, let Fj(z) = EfS(µ),βj(z − xj)ηK(z − zµ) for j = 1, 2;

again zµ is the center of µ. Thenˆ
µ

geom
j=1,2

|EfS(µ),βj(z − xj)|4dz ≤
ˆ
µ

geom
j=1,2

|Fj(z)|4dz.

Since β1, β2 are transverse, F1 and F2 verify the hypothesis of Lemma 2, unless F1F2 is
identically zero in which case there is nothing to prove. Hence by Lemma 2, the above is
bounded by

.K1 |µ|−1 geom
j=1,2

‖Fj‖4
L2(R3).

But by orthogonality, for j = 1, 2,

‖Fj‖2
L2(R3) .

∑
α∈PK−1 , α⊂βj
α∩S(µ)6=∅

ˆ
R2

|Efα(z − xj)|2|ηK(z − zµ)|2dz

and ˆ
R2

|Efα(z − xj)|2|ηK(z − zµ)|2dz .
∑
µ′

|µ′|
∥∥∥∥Efα(z)

1

1 + |z + xj − zµ|300

∥∥∥∥2

L∞(µ′)
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where the sum is over all µ′ in a partition of R3 into cubes of side lengths K. Also

‖Efα‖L∞(µ′) .

(
1 +

d(µ, µ′)

K

)30

cµ,α,

and ∥∥∥∥ 1

1 + |z + xj − zµ|300

∥∥∥∥
L∞(µ′)

(
1 +

d(µ, µ′)

K

)−300(
1 +
|xj|
K

)300

.

Thus altogether, we have

‖Fj‖2
L2(R3) .

∑
α∈PK−1 , α⊂βj
α∩S(µ)6=∅

|µ|
∑
µ′

(
1 +

d(µ, µ′)

K

)60

c2
µ,α

(
1 +

d(µ, µ′)

K

)−600(
1 +
|xj|
K

)600

.
∑

α∈PK−1 , α⊂βj
α∩S(µ)6=∅

|µ|c2
µ,α

(
1 +
|xj|
K

)600

,

which in turn gives
ˆ
µ

geom
j=1,2

|EfS(µ),βj(z − xj)|4dz .K1 |µ|
2∏
j=1

∑
α∈PK−1 , α⊂βj
α∩S(µ)6=∅

c2
µ,α

(
1 +
|xj|
K

)600

.

Plugging this back into (3), we see that (3) is bounded by

.K1 |µ|1−
q
4 |µ|

q
4

∑
β1,β2

transverse

2∏
j=1

 ∑
α∈PK−1

α⊂βj

c2
µ,α


q/4

which is (4). Now (4) is bounded by

.K1 |µ|K
q
2
−1

∑
α∈PK−1

cqµ,α,

i.e. ∑
ν∈C2a(µ)

‖EfS(µ)‖qLq(ν) .K1 |µ|K
q
2
−1

∑
α∈PK−1

cqµ,α.

Summing over all µ ∈ C2, we get∑
µ∈C2

∑
ν∈C2a(µ)

‖EfS(µ)‖qLq(ν) .K1 K
q
2
−1
∑
µ∈BK

|µ|
∑

α∈PK−1

cqµ,α .K1 K
q
2
−1K6−2qA(R/K), (5)

the last inequality following from Lemma 1.

On the other hand, if ν ∈ C2b(µ), then

‖EfS(µ)‖L∞(ν) . cν,∗,

so
‖EfS(µ)‖qLq(ν) . |ν|c

q
ν,∗ . |ν|

∑
β∈P−1

K1

cqν,β.
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Summing over ν ∈ C2b(µ) and then over µ ∈ C2, we get∑
µ∈C2

∑
ν∈C2b(µ)

‖EfS(µ)‖qLq(ν) .
∑
µ∈BK

∑
ν∈BK1

(µ)

|ν|
∑
β∈P−1

K1

cqν,β.

Similar to Lemma 1, we have

Lemma 3. ∑
µ∈BK

∑
ν∈BK1

(µ)

|ν|
∑
β∈P−1

K1

cqν,β . K6−2q
1 A(R/K1)q.

Thus ∑
µ∈C2

∑
ν∈C2b(µ)

‖EfS(µ)‖qLq(ν) . K6−2q
1 A(R/K1)q. (6)

From (5) and (6), we get∑
µ∈C2

‖EfS(µ)‖qLq(µ) ≤ CK1K
q
2
−1K6−2qA(R/K)q + CK6−2q

1 A(R/K1)q. (7)

where CK1 is a constant depending on K1. From (2) and (7), we see that∑
µ∈C2

‖Ef‖qLq(µ) ≤ CK1K
q
2
−1K6−2qA(R/K)q + CK6−2q

1 A(R/K1)q.

As a result,

‖Ef‖qLq(BR) ≤
∑
µ∈C1

‖Ef‖qLq(µ) +
∑
µ∈C2

‖Ef‖qLq(µ)

≤ CK,εR
εq + CK1K

q
2
−1K6−2qA(R/K)q + CK6−2q

1 A(R/K1)q.

Since q = 10/3, the power of K in front of A(R/K)q is zero. This shows

A(R) ≤ CK,εR
ε + CK1A(R/K) + CK

6
q
−2

1 A(R/K1).

By first choosing K1 to be sufficiently large, so that CK
6
q
−2

1 ≤ 1, then K to be sufficiently
large, so that CK1K

−ε/2 ≤ 1, we get

A(R) ≤ CK,εR
ε +Kε/2A(R/K) + A(R/K1),

so iterating, we get

A(R) ≤ CK,εR
ε

∞∑
j=0

(K−jε/2 +K−jε1 ) .ε R
ε,

as desired.

We remark that a small refinement of the above argument also shows that

‖Ef‖Lq(BR) .ε R
ε‖f‖Lq(Q)

for all f ∈ Lq(Q).
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