
ON BOURGAIN’S COUNTEREXAMPLE FOR THE

SCHRÖDINGER MAXIMAL FUNCTION

PO-LAM YUNG

Below I write up, for my own benefit, Bourgain’s counterexample [1] for the Schrödinger maximal
function. The exposition follows closely the excellent survey article [3] by Pierce.1

For every n ≥ 2 and every s < 1
2 −

1
2(n+1) , Bourgain [1] constructed a family of functions

FR ∈ Hs(Rn), such that

(1) lim
R→∞

‖ sup0<t<1/R |e−it∆FR(x)|‖L1(B(0,1))

‖FR‖Hs(Rn)
=∞.

Here B(0, 1) is the unit ball in Rn centered at 0, and ‖FR‖Hs(Rn) is the Sobolev norm given by

‖(I −∆)s/2FR‖L2(Rn). We will repeat this construction, with a bit more detail than in [1].

Notation. Throughout we will fix a Schwartz function ϕ on R so that ϕ̂ is supported in the unit
interval [−1, 1], and so that ϕ(0) = 1, and write

e(x) := eix.

We will allow all implicit constants to depend on ϕ as necessary.

1. Counterexample in dimension n = 1

First, it helps to understand what happens in dimension n = 1. Let R � 1. We will choose a
parameter S = S(R) such that 1� S � R, and set

(2) fR(x) = e(Rx)ϕ(Sx), x ∈ R.

It follows that f̂R is contained in the set where |ξ| ' R, and

(3) ‖fR‖Hs(R) ' RsS−1/2.

Now let
uR(x, t) = e−it∂

2
xfR(x).

Then

uR(x, t) =
1

2π

∫
R
ϕ̂(ξ)e((Sξ +R)x+ (Sξ +R)2t)dξ

so

uR(x, t) = e(Rx+R2t)

∫
R
ϕ̂(ξ)e(ξ(Sx+ 2SRt))e(S2ξ2t)dξ.

We write e(S2ξ2t) = 1 +O(S2ξ2|t|) and apply Fourier inversion for the main term. We then obtain

(4) uR(x, t) = e(Rx+R2t)ϕ(Sx+ 2SRt) +O(S2t).

1I am very grateful to Lillian B. Pierce and Keith Rogers for discussions about the proof presented here. It is
worth pointing out that Lucà and Rogers [2] gave another proof of (1) using ergodic considerations in lieu of number
theoretic estimates.
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If |x| ≤ c for some sufficiently small constant c > 0 and

t := − 1

2R
x,

then as long as

(5) S2 ≤ R,
we have

|uR(x, t)| ≥ |ϕ(0)| − 1

2
=

1

2
.

We fix such c for the remainder of this section. Then under assumption (5),

sup
0<t<1/R

|uR(x, t)| ≥ 1

2

for every x satisfying |x| ≤ c, which implies∥∥∥∥∥ sup
0<t<1/R

|uR(x, t)|

∥∥∥∥∥
L1(B(0,1))

≥ 1

2
c.

Recall the Hs norm of fR in (3). As a result, under assumption (5),

‖ sup0<t<1/R |uR(x, t)|‖L1(B(0,1))

‖fR‖Hs(Rn)
≥ 1

2
cR−sS1/2.

We now take S = R1/2, so that the lower bound above is maximized under assumption (5). This
gives

‖ sup0<t<1/R |uR(x, t)|‖L1(B(0,1))

‖fR‖Hs(Rn)
≥ 1

2
cR

1
4
−s,

which tends to +∞ as R→ +∞ if s < 1/4.

2. Another construction in dimension 1

To prove Bourgain’s theorem in dimensions n ≥ 2, it is perhaps natural to try tensor product
of the 1-dimensional example with something else. Bourgain’s insight is that you can tensor with
essentially sums of well-spaced Dirac delta’s in the frequency space and use bounds for exponential
sums from number theory. At its root we should consider the following 1-dimensional construction.

Again let R� 1. We will choose an integer D = D(R) such that 1� D � R, and write Λ as a
shorthand for the integer part of R/2D. Let

(6) gR(x) = ϕ(x)
∑

Λ<`≤2Λ

e(D`x), x ∈ R.

Then the support of ĝR is contained in the set |ξ| ' R, and

‖gR‖Hs(R) ' RsΛ1/2.

Moreover, let

vR(x, t) = e−it∂
2
xgR(x).

Then

vR(x, t) =
1

2π

∫
R
ϕ̂(ξ)

∑
Λ<`≤2Λ

e((ξ +D`)x+ (x+D`)2t)dξ
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so

vR(x, t) =
1

2π

∫
R
ϕ̂(ξ)

∑
Λ<`≤2Λ

e(ξ(x+ 2D`t))e(D`x+D2`2t)e(ξ2t)dξ.

We write e(ξ2t) = 1 +O(ξ2t) and obtain

vR(x, t) =
1

2π

∫
R
ϕ̂(ξ)

∑
Λ<`≤2Λ

e(ξ(x+ 2D`t))e(D`x+D2`2t)dξ

+O

|t| sup
z∈[0,2π]

∣∣∣∣∣∣
∑

Λ<`≤2Λ

e(`z +D2`2t)

∣∣∣∣∣∣
 .

Then we apply the summation by parts formula

(7)
∑

Λ<`≤2Λ

a`b` = a2Λ

∑
Λ<`≤2Λ

b` +
∑

Λ<L<2Λ

(aL+1 − aL)
∑

Λ<`≤L
b`

with a` = e(ξ(x + 2D`t)) and b` = e(D`x + D2`2t), and then integrate in ξ using the Fourier
inversion formula. We obtain

vR(x, t) =ϕ(x+ 4ΛDt)
∑

Λ<`≤2Λ

e(D`x+D2`2t) +O

|t| sup
z∈[0,2π]

∣∣∣∣∣∣
∑

Λ<`≤2Λ

e(`z +D2`2t)

∣∣∣∣∣∣


+O

ΛD|t| sup
Λ<L≤2Λ

∣∣∣∣∣∣
∑

Λ<`≤L
e(D`x+D2`2t)

∣∣∣∣∣∣
 .

(8)

At this point we can bring in exponential sum estimates from number theory.

Lemma 1. If there exist integers q, a, b ∈ N with q odd and (a, q) = 1 such that D2t = 2πa/q and
Dx = 2πb/q, then for Λ < L ≤ 2Λ,∑

Λ<`≤L
e(D`x+D2`2t) =

⌊
L− Λ

q

⌋
q1/2 +O(q1/2(log q)1/2).

Proof. This is because we can split the sum on the left hand side into
⌊
L−Λ
q

⌋
many complete Gauss

sums modulo q, each of which is equal to q1/2, and the remaining incomplete Gauss sum can be
bounded by an estimate of Weyl. See Lemma 3.1(1) and Lemma 3.2 of [3]. �

Furthermore, we may perturb x a bit and the error would still be under control:

Lemma 2. If there exist integers q, a, b ∈ N with q odd and (a, q) = 1 such that

D2t =
2πa

q
and

∣∣∣∣Dx− 2πb

q

∣∣∣∣ < δ,

then ∑
Λ<`≤L

e(D`x+D2`2t) =e

(
L

(
Dx− b

q

))⌊
L− Λ

q

⌋
q1/2 +O(q1/2(log q)1/2)

+O

(
(L− Λ)δ

(⌊
L− Λ

q

⌋
q1/2 +O(q1/2(log q)1/2)

))
.
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Proof. Indeed, we write the sum on the left hand side as∑
Λ<`≤L

e

(
`

(
Dx− 2πb

q

))
e

(
`
2πb

q
+ `2

2πa

q

)
and apply summation by parts (7) with a` = e

(
`
(
Dx− 2πb

q

))
, b` = e

(
2π
(
` bq + `2 aq

))
; we obtain∑

Λ<`≤L
e(D`x+D2`2t) =e

(
L

(
Dx− b

q

)) ∑
Λ<`≤L

e

(
2π

(
`
b

q
+ `2

a

q

))

+O

(L− Λ)δ sup
Λ<L≤2Λ

∣∣∣∣∣∣
∑

Λ<`≤L
e

(
2π

(
`
b

q
+ `2

a

q

))∣∣∣∣∣∣
 .

The desired estimate follows via the same argument in the proof of Lemma 1, where one splits into
complete Gauss sums and an incomplete one. �

The following summarizes what we need below:

Lemma 3. If there exist integers q, a, b ∈ N with q odd and (a, q) = 1 such that

D2t =
2πa

q
and

∣∣∣∣Dx− 2πb

q

∣∣∣∣ < δ,

then the following three estimates hold:∣∣∣∣∣∣
∑

Λ<`≤2Λ

e(D`x+D2`2t)

∣∣∣∣∣∣ = (1 +O(Λδ))

(⌊
Λ

q

⌋
q1/2 +O(q1/2(log q)1/2)

)
,

sup
Λ<L≤2Λ

∣∣∣∣∣∣
∑

Λ<`≤L
e(D`x+D2`2t)

∣∣∣∣∣∣ ≤ (1 +O(Λδ))

(⌊
Λ

q

⌋
q1/2 +O(q1/2(log q)1/2)

)
,

and

sup
z∈[0,2π]

∣∣∣∣∣∣
∑

Λ<`≤2Λ

e(`z +D2`2t)

∣∣∣∣∣∣ = O

((
Λ

q
q1/2 + q1/2

)
(log q)1/2

)
.

In fact, the first two estimates follow directly from Lemma 2, whereas the third one follows from
another Weyl sum estimate (see again Lemma 3.2 of [3]).

With these preparations, we are ready for the construction of Bourgain’s counterexample in
general dimensions n ≥ 2.

3. Counterexample in dimensions n ≥ 2

Let R� 1. As in the last section, D = D(R) is an integer to be chosen, such that 1� D � R.
Λ will be a shorthand for the integer part of R/2D. We define two one-variable functions fR and

gR as in (2) and (6) in the previous sections, where we take S = R1/2 in the definition of fR.

Let FR be the function on Rn defined by

FR(x) = fR(x1)gR(x2) . . . gR(xn), x = (x1, . . . , xn) ∈ Rn.
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Then the support of F̂R is contained in the set |ξ| ' R, and

(9) ‖FR‖Hs(Rn) ' Rs−
1
4 Λ

n−1
2 ' Rs−

1
4

(
R

D

)n−1
2

.

Let

UR(x, t) := e−it∆FR(x) = uR(x1, t)vR(x2, t) . . . vR(xn, t)

where uR and vR are as in the previous sections. We will now construct a set Ω = ΩR ⊂ B(0, 1) in
Rn, for which sup0<t<1/R |UR(x, t)| is large for x ∈ Ω.

The construction of Ω involves the choice of another integer Q = Q(R) with 1� Q� R, whose
value we will only pick at the close. Denote by I(r, d) the interval (r − d, r + d). For odd primes
q ≤ Q, let

Ω1,q :=
⋃

1≤a≤c qD
2

R
(a,q)=1

I

(
−4πaR

qD2
,

c

R1/2

)
and Ω2,q :=

⋃
1≤b≤cqD

I

(
2πb

qD
,
c

ΛD

)

where c > 0 is a sufficiently small constant to be determined. Then let Ω ⊂ B(0, 1) be given by

Ω =
⋃
q≤Q

q odd prime

Ω1,q × Ωn−1
2,q

Suppose now x ∈ Ω. Then there exists an odd prime q ≤ Q, and integers a, b2, . . . , bn with

1 ≤ a ≤ c qD
2

R , (a, q) = 1, and 1 ≤ bi ≤ cqD for 2 ≤ i ≤ n, such that∣∣∣∣x1 +
4πaR

qD2

∣∣∣∣ ≤ c

R1/2
, and

∣∣∣∣xi − 2πbi
qD

∣∣∣∣ ≤ c

ΛD
for every 2 ≤ i ≤ n.

Setting

t :=
2πa

qD2
,

we have

|R1/2(x1 + 2Rt)| ≤ c,
which implies

(10) |t| ≤
∣∣∣t+

x1

2R

∣∣∣+
|x1|
R
≤ c

R3/2
+

1

R

(
4πc+

c

R1/2

)
≤ 4πc+ o(1)

R
;

from (4) with S2 = R, we get

(11) |uR(x1, t)| ≥
1

2
|ϕ(0)| = 1

2

if c is chosen small enough. Also note that for 2 ≤ i ≤ n,

|xi| ≤
∣∣∣∣xi − 2πbi

qD

∣∣∣∣+
2πbi
qD
≤ c

ΛD
+ 2πc = 2πc+ o(1),

which in light of ΛD ' R and (10) shows that |xi + 4ΛDt| = O(c) for our previous choice of t. In
addition, we have

D2t =
2πa

q
with

∣∣∣∣Dxi − 2πbi
q

∣∣∣∣ ≤ c

Λ
for every 2 ≤ i ≤ n,
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which allows us to apply Lemma 3 with δ = c
Λ . If c is chosen small enough, then from (8) and the

previous application of Lemma 3, it follows that

(12) |vR(xi, t)| ≥
1

2

(⌊
Λ

q

⌋
q1/2 +O(q1/2(log q)1/2)

)
.

We now fix, once and for all, a small c so that both (11) and (12) holds. We thus have, for x ∈ Ω,
that

(13) sup
0<t<1/R

|UR(x, t)| &
(

R

Q1/2D

)n−1

,

provided that Q = Q(R) and D = D(R) are chosen so that

(14)
R

D
� Q(logQ)1/2

(recall Λ ' R/D).

We will now show that the measure of Ω is large, so that ‖ sup0<t<1/R |UR(x, t)|‖L1(B(0,1)) has a

favorable lower bound. To do so, we should choose D = D(R) and Q = Q(R) so that

(15)
2c

R1/2
≤ 4πR

QD2
;

this will ensure that the intervals in the definition of Ω1,q are disjoint for every prime q ≤ Q. We
will also choose D = D(R) such that

(16) D2 � R;

this ensures that the union in the definition of Ω1,q runs over many complete residue classes modulo
q, and also ensures that

2c

Λ
≤ 2π

Q

(recall Λ ' R/D so (15) and (16) ensures that 2π
Q ≥

cD2

R3/2 ' c
Λ

D
R1/2 � c

Λ). The latter ensures that

the intervals in the definition of Ω2,q are disjoint for every prime q ≤ Q. If we were so fortunate

that the sets Ω1,q × Ωn−1
2,q in the definition of Ω are disjoint as q varies over all odd primes ≤ Q,

then the measure of Ω can now be easily computed: we would then have

|Ω| =
∑
q≤Q

q odd prime

|Ω1,q × Ωn−1
2,q | ≥

∑
q≤Q

q odd prime

⌊
c
D2

R

⌋
(q − 1)

2c

R1/2
·
(
bcqDc c

ΛD

)n−1
,

because there are at least
⌊
c qD

2

R
1
q

⌋
(q − 1) many disjoint intervals of lengths 2c

R1/2 in the set Ω1,q,

which shows

(17) |Ω1,q| ≥
⌊
c
D2

R

⌋
(q − 1)

2c

R1/2
,

and there are bcqDc disjoint intervals of length c
ΛD in Ω2,q, which shows

(18) |Ω2,q| ≥ bcqDc
c

ΛD
.

We make the earlier sum smaller by summing only over those q that satisfies additionally q > Q/2.
Indeed, the prime number theorem allows us to count the number of primes q satisfying Q/2 < q ≤
Q: for every ε > 0, when Q� 1,

(19) π(Q)− π(Q/2) ≥ (1− ε) Q

logQ
− (1 + ε)

Q/2

log(Q/2)
≥
(

1

2
− 2ε

)
Q

logQ
,
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where π(Q) is the number of primes ≤ Q. Hence for Q� 1, we have

(20) |Ω| ≥ 1

4

Q

logQ

(
c
D2

R

Q

2

2c

R1/2

)
·
(
c
Q

2
D

c

ΛD

)n−1

=
c2n

2n+1 logQ

QD2

R3/2

QnDn−1

Rn−1
.

(We used the assumption (16) to bound
⌊
cD

2

R

⌋
≥ (1− ε)cD2

R for every ε > 0, and Q� 1 to bound

bcqDc ≥ (1 − ε)cQ2 D whenever q > Q/2. If ε is sufficiently small, we can make the coefficient on
the right hand side of the first inequality in the earlier display equation > 1/4.) This calculation
turns out to give essentially the correct answer when Q and 1/Λ ' D/R are small, but is too good
to be true when Q or D/R is too big; the correct lower bound for |Ω| is given in (25) below, whose
rigorous derivation we now give.

To begin with the rigorous argument, note that the measure of Ω can be computed using Fubini’s
theorem, by first integrating the charateristic function 1Ω of Ω in the x1 variable, before integrating
in the x′ variables. The projection of Ω to the x′ space is⋃

q≤Q
q odd prime

Ωn−1
2,q

and for each x′ in this projection, we may choose a prime q ≤ Q so that x′ ∈ Ωn−1
2,q ; it then follows

that ∫
R

Ω(x1, x
′)dx1 ≥ |Ω1,q| ≥

⌊
c
D2

R

⌋
(q − 1)

2c

R1/2

where we used (17). This shows that∫
R

Ω(x1, x
′)dx1 ≥

⌊
c
D2

R

⌋
Q

2

2c

R1/2
≥ c2

2

QD2

R3/2
whenever x′ ∈ Ω′ :=

⋃
Q/2<q≤Q
q odd prime

Ωn−1
2,q .

(We used the assumption (16) to bound
⌊
cD

2

R

⌋
≥ c

2
D2

R .) In particular,

(21) |Ω| ≥ |Ω′|c
2

2

QD2

R3/2
.

But Ω′ is the support of the function

η(x′) :=
∑

Q/2<q≤Q
q odd prime

1Ωn−1
2,q

(x′),

and for Q� 1,

(22) ‖η‖L1(Rn−1) =
∑

Q/2<q≤Q
q odd prime

|Ω2,q|n−1 ≥ 1

4

Q

logQ

(
1

2
cQD

c

ΛD

)n−1

=
c2(n−1)

2n+1 logQ

Qn

Λn−1

where we used (18) (together with the bound bcqDc ≥ (1
2 − ε)cQD when q > Q/2� 1) and (19).

On the other hand,

(23) ‖η‖2L2(Rn−1) =
∑

Q/2<q,q′≤Q
q,q′ odd prime

|Ω2,q ∩ Ω2,q′ |n−1 = ‖η‖L1 +
∑

Q/2<q,q′≤Q
q,q′ distinct odd prime

|Ω2,q ∩ Ω2,q′ |n−1

7



For distinct primes q, q′ with Q/2 < q, q′ ≤ Q, we count the number of pairs (b, b′) with 1 ≤ b ≤ cqD
and 1 ≤ b′ ≤ cq′D so that the intervals I(2πb

qD ,
c

ΛD ) and I(2πb′

q′D ,
c

ΛD ) intersect. This happens precisely

when ∣∣∣∣2πbqD
− 2πb′

q′D

∣∣∣∣ < 2c

ΛD
,

i.e.

|bq′ − b′q| < c

πΛ
qq′.

But since q, q′ are relatively prime, for all integers m and k, the number of integer solutions (b, b′)
to the equation bq′ − b′q = m with kq < b ≤ (k + 1)q is at most 1. (If (b, b′) and (b̄, b̄′) are both
such solutions, then (b − b̄)q′ = (b′ − b̄′)q is divisible by q, so q divides b − b̄, which implies b = b̄
and hence b′ = b̄′.) As a result, the number of pairs (b, b′) with 1 ≤ b ≤ cqD and 1 ≤ b′ ≤ cq′D so
that |bq′ − b′q| ≤ c

πΛqq
′ is at most

dcDe
(

2
c

πΛ
qq′ + 1

)
≤ CQ

2D

Λ

provided that Q = Q(R), D = D(R) are chosen so that

(24) Q2 � R

D

(recall Λ ' R/D so (24) impiles dcDe · 1 ≤ cQ
2D
Λ ). It follows that for distinct primes q, q′ with

Q/2 < q, q′ ≤ Q,

|Ω2,q ∩ Ω2,q′ | ≤
∑

1≤b≤cqD

∑
1≤b′≤cq′D

∣∣∣∣I (2πb

qD
,
c

DΛ

)
∩ I
(

2πb′

q′D
,
c

DΛ

)∣∣∣∣ ≤ CQ2D

Λ

c

DΛ
= C

Q2

Λ2
,

so using (19) again, we obtain∑
Q/2<q,q′≤Q

q,q′ distinct odd prime

|Ω2,q ∩ Ω2,q′ |n−1 ≤ C
(

Q

logQ

)2(Q2

Λ2

)n−1

=
C

logQ

(
Qn

Λn−1

)2

.

Plugging back into (23),

‖η‖2L2(Rn−1) ≤ 2 max

{
‖η‖L1 ,

C

logQ

(
Qn

Λn−1

)2
}
.

But then from Cauchy-Schwarz, we obtain

|Ω′| ≥
‖η‖2L1(Rn−1)

‖η‖2
L2(Rn−1)

≥ 1

2
min

‖η‖L1(Rn−1), ‖η‖2L1(Rn−1)

(
C

logQ

(
Qn

Λn−1

)2
)−1

 ,

so the lower bound (22) for ‖η‖L1(Rn−1) gives

|Ω′| ≥ 1

2
min

{
c2(n−1)

2n+1 logQ

Qn

Λn−1
,

c4(n−1)

22(n+1)C logQ

}
Using (21), we then obtain our final bound for |Ω|, namely

(25) |Ω| & 1

logQ

QD2

R3/2
min

{
QnDn−1

Rn−1
, 1

}
8



(note that this is only worse than the naive guess in (20) when QnDn−1

Rn−1 ≤ 1). From (13), it follows
that ∥∥∥∥∥ sup

0<t<1/R
|UR(x, t)|

∥∥∥∥∥
L1(B(0,1))

&

(
R

Q1/2D

)n−1 1

logQ

QD2

R3/2
min

{
QnDn−1

Rn−1
, 1

}
.

Hence in view of (9), we obtain

(26)

∥∥∥sup0<t<1/R |UR(x, t)|
∥∥∥
L1(B(0,1))

‖FR‖Hs(Rn)
& R

1
4
−s
(
R

QD

)n−1
2 1

logQ

QD2

R3/2
min

{
QnDn−1

Rn−1
, 1

}
under the assumptions on D = D(R) and Q = Q(R) we have made so far, namely (14), (15), (16)
and (24).

As we will see shortly, to maximize this lower bound under the assumptions made, it is natural
to take D = D(R) and Q = Q(R) so that

QD2

R3/2
' 1 and

QnDn−1

Rn−1
' 1;

this is so that QD2

R3/2 achieves the maximum allowed value in (16), and so that the minimum in (26)

equals 1. In other words, we are taking D = D(R) and Q = Q(R) so that

(27) D ' R
n+2

2(n+1) and Q ' R
n−1

2(n+1) .

This is the choice made by Bourgain, and it is easy to check that the assumptions (14), (16) and
(24) are all satisfied. The right hand side of (26) is now bounded below by

R
1
4
−sR

(1− n−1
2(n+1)

− n+2
2(n+1)

)n−1
2
−o(1)

= R
1
4

+ n−1
4(n+1)

−o(1)−s
= R

n
2(n+1)

−o(1)−s

which tends to +∞ as R→ +∞ if s < n
2(n+1) .

4. Optimality of Bourgain’s counterexample

A simple linear programming exercise shows that under assumptions (14), (15), (16) and (24)
on D and Q, the choice (27) of D = D(R) and Q = Q(R) maximizes the right hand side of (26),
thereby giving the optimal lower bound for the left hand side of (26).

Indeed, assumptions (15) and (16) almost implies the condition (14), because (15) says QD2 .
R3/2, and (16) says D � R1/2. Together they imply

Q .
R3/2

D2
=
R

D
· R

1/2

D
� R

D

which is (14) up to a factor of (logQ)1/2. So when we carry out linear programming, we may as
well just focus on the assumptions (15), (16) and (24) on Q and D and check that the final solution
does satisfy (14). Writing D = Rδ and Q = Rκ, we see that the assumptions (15), (16) and (24)
translate into

2δ + κ ≤ 3

2
, δ >

1

2
, and δ + 2κ > 1.

These inequalities describe, in the (δ, κ) plane, the union of the open triangle ABC, together with
the open edge (AB), where

A = (1/2, 1/2), B = (2/3, 1/6), and C = (1/2, 1/4).
9



δ

κ

C

A

B

X

To maximize the right hand side of (26), we need to maximize

L(δ, κ) := 2δ +
3− n

2
κ+ min{(n− 1)δ + nκ− (n− 1), 0}.

The line (n− 1)δ+ nκ− (n− 1) = 0 (pictured in red above) cuts the triangle ABC into two parts,
one where (n− 1)δ + nκ− (n− 1) ≤ 0 and

L(δ, κ) = L1(δ, κ) := (n+ 1)δ +
n+ 3

2
κ− (n− 1)

(let’s call this region P1; it is shaded in green above); and another where (n−1)δ+nκ− (n−1) > 0
and

L(δ, κ) = L2(δ, κ) := 2δ +
3− n

2
κ

(let’s call this region P2; it is shaded in yellow above). Let

X =

(
n+ 2

2(n+ 1)
,
n− 1

2(n+ 1)

)
be the intersection of the red line with the line segment AB. The slope of the level sets of L1

(namely −2(n+1)
n+3 , as for the blue line in the picture) is sandwiched between the slope of the red

line (namely − n
n−1) and the slope of XB (namely −2), and when n ≥ 2, the level sets of L2 (such

as the purple line in the picture) makes an angle arctan( 4
n−3) with the positive δ axis, which is

smaller than the angle that AX makes with the positive δ axis (namely arctan(−2); here arctan is
defined to have range [0, π)). As a result, the maximum of L(δ, κ) on both P1 and P2 occurs at the
point (δ, κ) = X. This corresponds precisely to the choice of D = D(R) and Q = Q(R) in (27).
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