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Introduction

◮ Joint work with Lillian Pierce

◮ Our main theorem concerns a variant of the Carleson
operator, which was first studied in relation to pointwise a.e.
convergence of Fourier series.

◮ Part 1: Introduction, and statement of our main theorem

◮ Part 2: A taste of time-frequency analysis

◮ Part 3: Some aspects of the proof of our main theorem



Part 1: Introduction, and statement of our main theorem



Motivation: Pointwise a.e. convergence of Fourier series

◮ Given an integrable function f on [0, 1], we associate to f its
Fourier series

∞∑

n=−∞

f̂ (n)e2πinx ,

where

f̂ (n) :=

ˆ 1

0
f (x)e−2πinxdx .

◮ Fourier had the insight that perhaps “every” function can be
expanded as its Fourier series.

◮ It took mathematicians quite some time to clarify and make
precise this claim of Fourier.



◮ Let

SN f (x) =
N∑

n=−N

f̂ (n)e2πinx .

◮ If f is Cα for some α > 0, then

SN f (x) → f (x) for every x ∈ [0, 1].

The corresponding result is false if f is merely continuous.

◮ If f is in Lp , 1 < p <∞, then

SN f → f in Lp norm.

The corresponding result is false if p = 1.

◮ Things can go really wrong with L1: there exist L1 functions
whose Fourier series diverges everywhere.

◮ Question: what if one is only interested in almost everywhere
convergence of Fourier series?



◮ Theorem (Carleson 1966, Hunt 1967):
If f is in Lp , 1 < p <∞, then

SN f (x) → f (x) for almost every x ∈ [0, 1].

◮ The proof proceeds via approximating a function in Lp by
smooth functions.

◮ The key then is to control a certain maximal operator, which
has since been called the Carleson operator:

f (x) 7→ sup
N∈N

|SN f (x)|.

This operator maps Lp boundedly into Lp , for all 1 < p <∞.
(p = 2: Carleson’s theorem; other values of p: result of Hunt)

◮ Later C. Fefferman (1973) and Lacey-Thiele (2000) gave very
interesting alternative proofs. The techniques developed have
since evolved into a field called time-frequency analysis.



A variant on R
n

◮ If we are given instead an Lp function f on R, we could also
ask whether

ˆ N

−N

f̂ (ξ)e2πixξdξ

converges to f (x) for almost every x ∈ R.

◮ This would require one to study the operator

f (x) 7→ sup
N>0

∣∣∣∣
ˆ N

−N

f̂ (ξ)e2πixξdξ

∣∣∣∣ .

◮ Modulo some trivial operators, one has then to bound the
operator

f (x) 7→ sup
λ∈R

∣∣∣∣p.v.
ˆ

R

f (x − y)
1

y
e2πiλydy

∣∣∣∣ .

◮ Note p.v. 1
y
is the simplest Calderon-Zygmund kernel on R.



◮ More precisely, by a Calderon-Zygmund kernel on R
n, we

mean a distribution K that agrees with a smooth function
K0(y) outside the origin, with

|K0(y)| ≤ C |y |−n, |∇αK0(y)| ≤ C |y |−(n+|α|), K̂ ∈ L∞.

◮ e.g. K = p.v.
yj

|y |n+1
on R

n.

◮ Sjölin formulated a version of Carleson’s operator on R
n. It is

given by

Cf (x) := sup
λ∈Rn

∣∣∣∣
ˆ

Rn

f (x − y)K (y)e iλ·ydy

∣∣∣∣ ,

where K (y) is a fixed Calderon-Zygmund kernel on R
n.

◮ Theorem (Sjölin): C : Lp → Lp, for all 1 < p <∞.



A variant with polynomial phases

◮ Stein-Wainger (2001) initiated the study of a variant of the
Carleson operator, where the phase λ · y in the exponential
e iλ·y is replaced by a real polynomial of higher degree in y .

◮ More precisely, let Pd be the set of all real polynomials of
degrees ≤ d on R

n, and P ′
d be the set of all polynomials in

Pd that vanishes at the origin to order ≥ 2. Define

Cd f (x) = sup
P∈P ′

d

∣∣∣∣
ˆ

Rn

f (x − y)K (y)e iP(y)dy

∣∣∣∣ .

Then Stein-Wainger proved that Cd : L
p(Rn) → Lp(Rn) for all

1 < p <∞ and all d , using stationary phases.

◮ This does not cover the Carleson’s Theorem stated above;
later, using time-frequency analysis, Lie (2009) improved
Stein-Wainger’s result when n = 1 by replacing P ′

d by the
bigger class Pd , thereby obtaining a true generalization of
Carleson’s Theorem.



A variant with Radon transform

◮ In joint work with Lillian Pierce, we study a variant of the
theorem of Stein-Wainger, where an additional Radon
transform is involved. For concreteness, we will work with the
Radon transform along the paraboloid in R

3.

◮ Recall that if K (y) is a Calderon-Zygmund kernel on R
2, then

given a function f (x , t) on R
3, where x ∈ R

2 and t ∈ R, the
singular Radon transform of f along the paraboloid is given by

Rf (x , t) :=

ˆ

R2

f (x − y , t − |y |2)K (y)dy .

◮ The operator we study takes the form

Cd f (x , t) := sup
P∈Q′

d

∣∣∣∣
ˆ

R2

f (x − y , t − |y |2)K (y)e iP(y)dy

∣∣∣∣ ,

where Q′
d is a class of polynomials of degree ≤ d on R

2 to be
specified.



◮ More precisely, fix a positive integer d ≥ 2.

For 2 ≤ j ≤ d , fix some polynomial pj(y) on R
2, that is

homogeneous of degree j , and that has real coefficients.

Let Q′
d =

{∑d
j=2 λjpj(y) : λj ∈ R for all j

}
⊂ P ′

d

K (y) = a Calderon-Zygmund kernel on R
2

Theorem 1 (Pierce-Y.)

If p2(y) 6≡ C |y |2 for any non-zero constant C, then the operator

Cd f (x , t) := sup
P∈Q′

d

∣∣∣∣
ˆ

R2

f (x − y , t − |y |2)K (y)e iP(y)dy

∣∣∣∣

is bounded on Lp(R3) for 1 < p <∞ and all d.



Part 2: A taste of time-frequency analysis



Heuristics of the Proof of Carleson’s theorem

◮ Let
HN f (x) =

∑

n>N

f̂ (n)e2πinx ,

Cf (x) = sup
N≥0

|HN f (x)|.

◮ Then the original theorem of Carleson is equivalent to the
statement that

C : L2 → weak-L2.

◮ Let’s first understand HN f .

◮ Step 1: an orthogonal decomposition in frequency space

◮ Step 2: an orthogonal decomposition in the physical space.



A first decomposition: decomposition in frequency space

◮ A dyadic interval is an interval of the form [(m − 1)2k ,m2k)
for some integers m and k .

◮ For each fixed k , the dyadic intervals of length 2k tile the real
axis.

0
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4

6

8

0

4

8



◮ Each dyadic interval ω has a parent ω∗, which is the unique
dyadic interval that contains ω, and has twice the length of ω.

◮ Given any integer N ≥ 0, one can decompose [N + 1,∞) into
a disjoint union of dyadic intervals:

[N + 1,∞) =
∞⋃

k=0

ωk,N

where each ωk,N is either a empty set, or a dyadic interval of
length 2k with ω∗

k,N 6⊂ [N + 1,∞).

◮ Examples



Decomposition of [N + 1,∞)

N = 0 N = 4
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◮ Let
Πωk,N

f (x) =
∑

n∈ωk,N

f̂ (n)e2πinx .

◮ Then

HN f =

∞∑

k=0

Πωk,N
f .

◮ It is now helpful to draw a picture of the time-frequency plane
(or the x-n plane), to illustrate where (morally speaking) each
term is supported.



H0f =
∞∑

k=0

Πωk,0
f , H4f =

∞∑

k=0

Πωk,4
f .
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A second decomposition: decomposition in physical space

◮ For k ≥ 0, ℓ = 1, . . . , 2k , let Ik,ℓ = [(ℓ− 1)2−k , ℓ2−k), so that

[0, 1) =

2k⋃

ℓ=1

Ik,ℓ.

Also let
ψk,ℓ = 2k/2χIk,ℓ(x).

Then since Πωk,N
f is roughly constant on a physical scale 2−k ,

Πωk,N
f ≃

2k∑

ℓ=1

〈Πωk,N
f , ψk,ℓ〉ψk,ℓ ≃

2k∑

ℓ=1

〈f ,Πωk,N
ψk,ℓ〉Πωk,N

ψk,ℓ,

so that

HN f ≃

∞∑

k=0

2k∑

ℓ=1

〈f ,Πωk,N
ψk,ℓ〉Πωk,N

ψk,ℓ.



HN f ≃
∑∞

k=0

∑2k

ℓ=1〈f ,Πωk,N
ψk ,ℓ〉Πωk,N

ψk ,ℓ.

N = 0 N = 4.
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◮ A tile is a dyadic rectangle (i.e. a product of two dyadic
intervals) in the time-frequency plane with area 1.

◮ We just saw that HN f is essentially a sum over tiles;
essentially any tile could arise in the decomposition of HN f for
a suitable N.

◮ Therefore analyzing the Carleson operator

Cf (x) = sup
N≥0

|HN f (x)|

forces one to consider essentially the set of all tiles in the
time-frequency plane.

◮ But that is a lot of tiles!

◮ For each k ∈ N, the set of tiles whose dimensions are
2k × 2−k tile the time-frequency plane:



Tiling with tiles of sizes 2−k × 2k

k = 1 k = 2 k = 3



◮ Fortunately, not all tiles contribute, and one can organize the
ones that contribute into unions of trees.

◮ The Carleson operator is then a sum over trees, and each tree
would give rise to an operator that is like the Hilbert
transform, that is bounded on any Lp.

◮ The key is then to exhibit orthogonality between operators
corresponding to different trees, so as to prove that the full
Carleson operator is weak-type (p, p).

◮ Carleson, Fefferman, and Lacey and Thiele each has a
different way of exhibiting this crucial orthogonality; we will
not enter into details here.



◮ On the other hand, Stein and Wainger’s approach to their
theorem does not require the use of all this machinery from
time-frequency analysis.

◮ Instead, it is based on a simple, but very clever observation,
that allows them to exploit the additional oscillations they
have in the polynomial phases they consider.

◮ Our approach to our main theorem is a refinement of that, to
take into account the presence of a Radon transform along
the paraboloid.



Part 3: Some aspects of proof of our main theorem



Proof of our main Theorem 1

◮ Recall our polynomial Carleson operator along the paraboloid:

Cd f (x , t) := sup
P∈Q′

d

∣∣∣∣
ˆ

R2

f (x − y , t − |y |2)K (y)e iP(y)dy

∣∣∣∣ .

◮ We want to prove that it is bounded on L2(R3).

◮ Proof uses the method of stationary phases (rather than
time-frequency analysis).

◮ In fact, when |y | is small, e iP(y) ≃ 1. This suggests that one
should decompose K (y) dyadically:

K (y) =
∞∑

k=−∞

2−2kη(k)(2−ky),

and estimate the terms with small k (say k ≤ k(P)) with a
maximal truncated singular Radon transform.



◮ Thus we are reduced to the terms with k large:

k large → Integrating over large values of |y |

→ The phase P(y) oscillates rapidly

→ Decay in k

This then allows us to sum over large k in the previous slide,
and prove our main theorem.

◮ Notation: If P is a polynomial in y , say

P(y) =
∑

0≤|α|≤d

λαy
α,

then the isotropic norm of P is defined by

‖P‖ =
∑

|α|≥1

|λα|.



Theorem 2 (Pierce-Y.)

Let η be a C 1 function supported in the unit ball, and d ∈ N. For

each polynomial P ∈ Q′
d and each k ∈ Z, define

IP
k f (x , t) =

ˆ

R2

f (x − y , t − |y |2)2−2kη(2−ky)e iP(2−ky)dy .

Then there is some δ0 > 0 such that for all r ≥ 1, the operator

Mr f (x , t) := sup
k∈Z

sup
P∈Q′

d

‖P‖≃r

|IP
k f (x , t)|

is bounded on L2(R3) with norm . r−δ0.

◮ Since Mr is pointwisely bounded by the maximal Radon
transform of f , it is certainly bounded on L2. The key here is
the decay in r of the norm of the operator when r is large.



A toy model for Theorem 2

◮ To illustrate our method and to understand some of the
difficulties involved, we consider the following toy problem.

◮ Let’s fix k = 0 and consider

Mr ,0f (x , t) := sup
P∈Q′

d

‖P‖≃r

|IP
0 f (x , t)|.

Proposition (Pierce-Y.)

There exists δ > 0 such that for all r ≥ 1, Mr ,0 is bounded on

L2(R3), with norm . r−δ.

◮ Again the key is to gain the decay in r of the norm of the
operator. To do so we use stopping times and TT ∗.



◮ Recall Mr ,0f (x , t) = sup
P

|IP
0 f (x , t)|.

◮ At each point (x , t), this supremum is almost attained at a
possibly different polynomial P , say P(x ,t).

◮ Consider the linear operator

Tf (x , t) := I
P(x,t)

0 f (x , t).

It suffices to show that T is bounded on L2 with norm . r−δ.

◮ Since T is linear, it suffices to prove that TT ∗ is bounded on
L2, with norm . r−2δ. This is desirable since the kernel of
TT ∗ exhibits more cancellation than that of T :



◮ In fact,

Tf (x , t) =

ˆ

R2

f (x − y , t − |y |2)η(y)e iP(x,t)(y)dy

T ∗f (x , t) =

ˆ

R2

f (x + z , t + |z |2)η(z)e iP(x+z,t+|z|2 )(z)dz

so TT ∗f (x , t) is given as an integral over 4-dimensions.

◮ One can then (almost) write TT ∗f (x , t) as a 3-dimensional
convolution against a convolution kernel; the kernel will then
be a 1-dimensional (oscillatory) integral.

◮ In fact,

TT ∗f (x , t) =

ˆ

R2×R

f (x − u, t − |u|2 − 2|u|τ)K ♯
P1,P2

(u, τ)dudτ,

for a suitable kernel K ♯
P1,P2

, where

P1 := P(x,t), P2 := P(x−u,t−|u|2−2|u|τ ).



◮ The kernel K ♯
P1,P2

is defined in terms of an oscillatory integral:

K
♯
P1,P2

(u, τ) :=

ˆ

R

e iP1(u+z)−iP2(z)η(u + z)η(z)dσ,

where z = (z1, z2) is defined by z1 =
u1τ+u2σ

|u| , z2 =
u2τ−u1σ

|u| .

◮ Note that while Tf (x , t) is given as an integral over 2

dimensions, the kernel K ♯
P1,P2

is only a 1-dimensional integral.

→ Less oscillations in the integral defining K
♯
P1,P2

→ so method of TT ∗ is less effective in the Radon case.

◮ But we still hope to gain something non-trivial from the
oscillatory nature of the integral defining K

♯
P1,P2

.



◮ First we have a trivial bound:

|K ♯
P1,P2

(u, τ)| . 1, and is supported where |u|, |τ | . 1.

◮ As a result,

|TT ∗f (x , t)| .

ˆ

R2×R

|f |(x − u, t − |u|2 − 2|u|τ)χB1(u)χB1 (τ)dudτ

which is bounded on L2 with norm . 1; we need to do better.

◮ Using the method of stationary phases, we improve the above
trivial bound on K

♯
P1,P2

.

(It is only here that we use our assumption that our
polynomial phases P(y) are from our specific class Q′

d .)



Lemma

If P1, P2 ∈ Q′
d with ‖P1‖, ‖P2‖ ≃ r , then there exists

◮ some δ > 0 depending only on d,

◮ a set E (P1) depending only on P1, and

◮ a family of sets F (P1, u) depending only on P1 and u,

such that

|K ♯
P1,P2

(u, τ)| . r−2δχB1(u)χB1 (τ) + χE(P1)(u)χB1 (τ) + χB1(u)χF (P1,u)(τ).

Furthermore, the sets E (P1) and F (P1, u) has small measures:

|E (P1)| . r−8δ, and |F (P1, u)| . r−8δ for all u.



◮ Then we have the following bound for |TT ∗f (x , t)|:

ˆ

R2×R

|f |(x − u, t − |u|2 − 2|u|τ)
[
r−2δχB1(u)χB1(τ)

+χE(P(x,t))(u)χB1 (τ) + χB1(u)χF (P(x,t),u)(τ)
]
dudτ.

◮ This is a sum of three terms, and they are all bounded on L2

with a small norm . r−2δ (e.g. by interpolation between a
good L∞ → L∞ bound, and a trivial L1 → L1 bound).

◮ It is important here that we get small exceptional sets E (P1)
and F (P1, u) that are independent of P2: otherwise we then
need to estimate things like
ˆ

R2×R

|f |(x − u, t − |u|2 − 2|u|τ)χE(P(x,t),P(x−u,t−|u|2−2|u|τ))
(u)χB1 (τ)dudτ,

which we cannot quite estimate.



Back to Theorem 2: bounding a square function

◮ At this point, we observe that if one wants to apply the same
argument to prove the desired bound for our original operator

Mr f (x , t) = sup
k

sup
P

|IP
k f (x , t)|,

one would naively also adopt a stopping time in k , and do a
TT ∗, because otherwise one does not have a linear operator
T , and linearity is crucial for the application of TT ∗.

◮ Unfortunately, stopping times and the method of TT ∗ are not
good for bounding the supremum in k , as is known when
people tried to bound the (ordinary) maximal Radon
transform along the paraboloid.

◮ So we proceed differently, by introducing a smoother variant
of our maximal operator, and estimating a square function.



◮ Recall that our operator Mr is given by

Mr f (x , t) = sup
k

sup
P

∣∣IP
k f (x , t)

∣∣ ,

IP
k f (x , t) =

ˆ

R2

f (x − y , t − |y |2)e iP( y

2k
)
η(

y

2k
)
dyds

22k
.

◮ The key is to compare IP
k f (x , t) to a smoother variant, which

we call J P
k f (x , t).

◮ Let now ζ ∈ C∞
c [−1, 1] be fixed, with

´

R
ζ(s)ds = 1. Define

J P
k f (x , t) :=

ˆ ˆ

R2×R

f (x − y , t − s)e iP( y

2k
)
η(

y

2k
)ζ(

s

22k
)
dyds

24k
.

◮ Note an important cancellation property between IP
k and J P

k :

ˆ

R

(IP
k − J P

k )f (x , t)dt = 0 for every x .



◮ Now

Mr f = sup
k

sup
P

|IP
k f |

≤ sup
k

sup
P

|J P
k f |+ sup

k

sup
P

|(IP
k − J P

k )f |

≤ sup
k

sup
P

|J P
k f |+

(
∑

k∈Z

sup
P

|(IP
k − J P

k )f |2

)1/2

.

◮ The first term is known to be bounded on L2 with norm
. r−2δ, by an easy modification of Stein and Wainger’s
argument. (No Radon behavior for J P

k !)

◮ Thus to show that Mr is bounded on L2 with the desired
norm, it suffices to prove the same for the second term:

Sr f (x , t) :=



∑

k∈Z

sup
P∈Q′

d

‖P‖≃r

|(IP
k − J P

k )f (x , t)|2




1/2

.



◮ Square function again:

Sr f (x , t) :=

(
∑

k∈Z

sup
P

|(IP
k − J P

k )f (x , t)|2

)1/2

.

◮ Recall that IP
k − J P

k satisfies a cancellation property

→ Morally speaking, IP
k − J P

k should act only on the part of
f with ‘frequency’ ≃ 2−k .

◮ So by decomposing f in the ‘frequency’ space, one can hope
to carry out the sum in k in the definition of Sr .

◮ More precisely, we hope to be able to find Littlewood-Paley
projections ∆j , such that one can decompose any f ∈ L2(R3)
as

f =
∑

j∈Z

∆jFj ,
∑

j∈Z

‖Fj‖
2
L2 . ‖f ‖2L2 ,

and ∆j f has ‘frequency’ 2−j .



◮ More importantly, we hope to choose Littlewood-Paley
projections ∆j , such that the following holds:

Theorem 3 (Pierce-Y.)

There exists δ0 > 0 and ε0 > 0 such that for all r ≥ 1 and j , k ∈ Z,

Mr ,j ,k f (x , t) := sup
P∈Q′

d

‖P‖≃r

|(IP
k − J P

k )∆j f (x , t)|

is bounded on L2(R3), with norm . 2−ε0|j−k|r−δ0 .

◮ Note the additional decay when |j − k | is large.

◮ When 2−j ≤ 2−k , use the cancellation property of IP
k − J P

k ;

◮ When 2−j > 2−k , one needs a cancellation property from ∆j .



◮ The question now is then two-fold, namely:

(1) What cancellation property do we require of ∆j?

(2) How can we exploit that cancellation property?

◮ The answer to the first question has a nice simple form:
We just take ∆j to be a Littlewood-Paley projection in the
last variable:

∆j f (x , t) =

ˆ

R

f (x , t − s)
1

22j
∆(

s

22j
)ds.

◮ But this is a bit tricky to use, in the presence of the Radon
transform:



◮ e.g. when 0 = j < k , let’s try to gain some cancellation
between j and k from IP

k ∆j f . Note

IP
k ∆0f (x , t) =

ˆ

R3

f (x−y , t−s)
1

22k
η(

y

2k
)e

iP( y

2k
)
∆(s−|y |2)dyds.

◮ Even if say
´

R
∆(s)ds = 0, or ∆(s) = ∆̃′(s) for some function

∆̃, it is not immediate how one can gain 2−k by integrating
by parts.

◮ This difficulty only arises from the presence of Radon
behaviour in IP

k !

◮ Fortunately, one can succeed by using yet another TT ∗

argument here.


