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Introduction

» Joint work with Lillian Pierce

» Qur main theorem concerns a variant of the Carleson
operator, which was first studied in relation to pointwise a.e.
convergence of Fourier series.

» Part 1: Introduction, and statement of our main theorem
» Part 2: A taste of time-frequency analysis

» Part 3: Some aspects of the proof of our main theorem



Part 1: Introduction, and statement of our main theorem



Motivation: Pointwise a.e. convergence of Fourier series

» Given an integrable function f on [0, 1], we associate to f its

Fourier series
2 : f 27rlnx
n=—o0

where )
?(n) ::/ f(x)e_zﬂinxdx.
0

» Fourier had the insight that perhaps “every” function can be
expanded as its Fourier series.

» It took mathematicians quite some time to clarify and make
precise this claim of Fourier.



Let
N o~ .
Snf(x) = Z f(n)e27””x.
n=—N

If fis C% for some o > 0, then
Snf(x) — f(x) for every x € [0,1].

The corresponding result is false if f is merely continuous.
If fisin LP, 1 < p < oo, then

Syf — f in LP norm.

The corresponding result is false if p = 1.
Things can go really wrong with L': there exist L! functions
whose Fourier series diverges everywhere.

Question: what if one is only interested in almost everywhere
convergence of Fourier series?



Theorem (Carleson 1966, Hunt 1967):
If fisin LP, 1 < p < oo, then

Snf(x) — f(x) for almost every x € [0,1].

The proof proceeds via approximating a function in LP by
smooth functions.

The key then is to control a certain maximal operator, which
has since been called the Carleson operator:

f(x) +— sup |Snf(x)].
NeN

This operator maps LP boundedly into LP, for all 1 < p < oo.
(p = 2: Carleson’s theorem; other values of p: result of Hunt)
Later C. Fefferman (1973) and Lacey-Thiele (2000) gave very
interesting alternative proofs. The techniques developed have
since evolved into a field called time-frequency analysis.



A variant on R”"

» If we are given instead an LP function f on R, we could also
ask whether

N ~ .
/ f(§)e*™dg

converges to f(x) for almost every x € R.

» This would require one to study the operator

f(x) — sup
N>0

N ~ o
[ Foea.
N

» Modulo some trivial operators, one has then to bound the
operator

f(x) — sup
AER

1 .
p.v./ f(x— y)—e27”)‘ydy‘ )
R y

» Note p.v.% is the simplest Calderon-Zygmund kernel on R.



More precisely, by a Calderon-Zygmund kernel on R", we
mean a distribution K that agrees with a smooth function
Ko(y) outside the origin, with

IKo(y)| < Cly|™",  |VKo(y)| < Cly|"(rHleD | K e 1.

eg. K=p.v. |y\}:’j+1 on R”.

Sjolin formulated a version of Carleson’s operator on R”. It is
given by

Cf(x) == )\seulgn

/n f(x —y)K(y)e™dy|,

where K(y) is a fixed Calderon-Zygmund kernel on R".
Theorem (Sjolin): C: LP — LP, for all 1 < p < oo.



A variant with polynomial phases

» Stein-Wainger (2001) initiated the study of a variant of the
Carleson operator, where the phase A - y in the exponential
e is replaced by a real polynomial of higher degree in y.

> More precisely, let Py be the set of all real polynomials of
degrees < d on R”, and P/, be the set of all polynomials in
Py that vanishes at the origin to order > 2. Define

Cyf(x) = sup

[ = y)K)eray|.
PeP, I/R"

Then Stein-Wainger proved that Cy: LP(R") — LP(R") for all
1 < p < o0 and all d, using stationary phases.

» This does not cover the Carleson’'s Theorem stated above;
later, using time-frequency analysis, Lie (2009) improved
Stein-Wainger's result when n =1 by replacing P, by the
bigger class Py, thereby obtaining a true generalization of
Carleson's Theorem.



A variant with Radon transform

> In joint work with Lillian Pierce, we study a variant of the
theorem of Stein-Wainger, where an additional Radon
transform is involved. For concreteness, we will work with the
Radon transform along the paraboloid in R3.

» Recall that if K(y) is a Calderon-Zygmund kernel on R?, then
given a function f(x,t) on R3, where x € R? and t € R, the
singular Radon transform of f along the paraboloid is given by

RF(x, t) := /Rz Fx — v, t — lyP)K(y)dy.
» The operator we study takes the form

Cyf(x,t) := sup
PeQ)

[ =yt = yPKO)ay .
R2

where Q' is a class of polynomials of degree < d on R? to be
specified.



» More precisely, fix a positive integer d > 2.

For 2 < j < d, fix some polynomial p;(y) on R?, that is
homogeneous of degree j, and that has real coefficients.

Let O/, = {Zj‘i:z Aipi(y): Aj € R for all j } C P,

K(y) = a Calderon-Zygmund kernel on R?

Theorem 1 (Pierce-Y.)

If p2(y) # Cly|? for any non-zero constant C, then the operator

Cyf(x, t) := sup
pPeQ,

/ Flx -y, t — yP)K(y)eP W dy
]RZ

is bounded on LP(R3) for 1 < p < oo and all d.



Part 2: A taste of time-frequency analysis



Heuristics of the Proof of Carleson’s theorem

> Let
HNf Z f 27rlnx
n>N
Cf(x) = sup |Hnf(x)].
N>0
» Then the original theorem of Carleson is equivalent to the

statement that
C: 1% — weak-L2.

v

Let's first understand Hyf.

v

Step 1: an orthogonal decomposition in frequency space

v

Step 2: an orthogonal decomposition in the physical space.



A first decomposition: decomposition in frequency space

» A dyadic interval is an interval of the form [(m — 1)2k, m2k)
for some integers m and k.

» For each fixed k, the dyadic intervals of length 2* tile the real
axis.
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» Each dyadic interval w has a parent w*, which is the unique
dyadic interval that contains w, and has twice the length of w.

» Given any integer N > 0, one can decompose [N + 1,00) into
a disjoint union of dyadic intervals:

o0
[N+ 1,00) = U Wk,N
k=0
where each wy y is either a empty set, or a dyadic interval of

length 2% with wj ¢ [N + 1, 00).

» Examples



Decomposition of [N + 1, 00)
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1




> Let

Munf() = D F(m)e™™,

newy n

» Then -
Hyf = Z ey o f -
k=0

> It is now helpful to draw a picture of the time-frequency plane
(or the x-n plane), to illustrate where (morally speaking) each
term is supported.



Hof = Z Moy o,
k=0

H4f = Z I_Iwk74f
k=0




A second decomposition: decomposition in physical space

» For k>0, 0=1,....2K let I, = [(¢ — 1)27k,£27K), so that

2k
0,1) = [ Ie-
(=1

Also let
Yo = 2%x, ,(x).

Then since My, ,f is roughly constant on a physical scale 27,

Wk,N

2k 2k
nkaNf ~ Z(nkaN f7 ¢k,£>1/1k,€ =~ Z<f7 nwk}/\/d}k,é>nwk’/\/¢k,€7

/=1 /=1

so that

oo 2k

HE = 0 (F My y ko) Mooy y Pt

k=0 (=1



HNf = ZT{O:O Zfz,:]_<f7 I_Iwk7/\//¢k.,f> I_Iwhl\/wk,ﬁ'

16

O DN

N=0

16

S~ 0o

N =4.




v

A tile is a dyadic rectangle (i.e. a product of two dyadic
intervals) in the time-frequency plane with area 1.

We just saw that Hpyf is essentially a sum over tiles;
essentially any tile could arise in the decomposition of Hyf for
a suitable N.

Therefore analyzing the Carleson operator

CF(x) = sup |Huf(x)

forces one to consider essentially the set of all tiles in the
time-frequency plane.
But that is a lot of tiles!

For each kK € N, the set of tiles whose dimensions are
2k x 27K tile the time-frequency plane:



Tiling with tiles of sizes 27% x 2k

k=1

k=2

DA



Fortunately, not all tiles contribute, and one can organize the
ones that contribute into unions of trees.

The Carleson operator is then a sum over trees, and each tree
would give rise to an operator that is like the Hilbert
transform, that is bounded on any LP.

The key is then to exhibit orthogonality between operators
corresponding to different trees, so as to prove that the full
Carleson operator is weak-type (p, p).

Carleson, Fefferman, and Lacey and Thiele each has a
different way of exhibiting this crucial orthogonality; we will
not enter into details here.



» On the other hand, Stein and Wainger's approach to their
theorem does not require the use of all this machinery from
time-frequency analysis.

> Instead, it is based on a simple, but very clever observation,
that allows them to exploit the additional oscillations they
have in the polynomial phases they consider.

» Our approach to our main theorem is a refinement of that, to
take into account the presence of a Radon transform along
the paraboloid.



Part 3: Some aspects of proof of our main theorem



Proof of our main Theorem 1

» Recall our polynomial Carleson operator along the paraboloid:

Cyf(x,t) := sup
PeQ)

[ =yt = PRI gy .
R2

» We want to prove that it is bounded on L2(R3).

» Proof uses the method of stationary phases (rather than
time-frequency analysis).

» In fact, when |y| is small, eP(¥) ~ 1. This suggests that one
should decompose K(y) dyadically:

K(y) = i 22kl (27ky),

k=—o00

and estimate the terms with small k (say k < k(P)) with a
maximal truncated singular Radon transform.



» Thus we are reduced to the terms with k large:

k large — Integrating over large values of |y|
—  The phase P(y) oscillates rapidly
—  Decay in k

This then allows us to sum over large k in the previous slide,
and prove our main theorem.

» Notation: If P is a polynomial in y, say

’D(y): Z Aoy

0< o <d

then the isotropic norm of P is defined by

1PI= D MAal.

|a|>1



Theorem 2 (Pierce-Y.)

Let n be a C! function supported in the unit ball, and d € N. For
each polynomial P € Q), and each k € Z, define

_ _ i —k
I f(x, t)szz f(x —y, t —|y[})272kn(27*y)eP Ndy.

Then there is some dy > 0 such that for all r > 1, the operator

M, f(x,t) == sup sup |Z}f(x,t)|
kEZ PeQl,
[[Pll~r

is bounded on L?(R3) with norm < r=%.
» Since M, is pointwisely bounded by the maximal Radon

transform of f, it is certainly bounded on L2. The key here is
the decay in r of the norm of the operator when r is large.



A toy model for Theorem 2

» To illustrate our method and to understand some of the
difficulties involved, we consider the following toy problem.

> Let's fix k = 0 and consider
M, of(x,t) := sup |ZEF(x,t)].
PeQ,
[IPll~=r
Proposition (Pierce-Y.)

There exists § > 0 such that for all r > 1, M, o is bounded on
L2(R3), with norm < r=9.

» Again the key is to gain the decay in r of the norm of the
operator. To do so we use stopping times and TT*.



Recall M, of (x, t) = sup |Z§ f(x, t)|.

P
At each point (x, t), this supremum is almost attained at a
possibly different polynomial P, say P, ).

Consider the linear operator

TF(x, t) = Ty O f (x, t).

It suffices to show that T is bounded on L2 with norm < r=°,

Since T is linear, it suffices to prove that TT* is bounded on
L2, with norm < r=2%. This is desirable since the kernel of
TT* exhibits more cancellation than that of T:



» |n fact,

e = [ eyt = yPhaly)emeody

T*f(x,t) / Fx + z, t + |z]P)n(z)eFeseeriz@ gz

so TT*f(x,t) is given as an integral over 4-dimensions.

» One can then (almost) write TT*f(x,t) as a 3-dimensional
convolution against a convolution kernel; the kernel will then
be a 1-dimensional (oscillatory) integral.

» |n fact,

TT*f(x,t) = / f(x —u,t — |uf®> = 2|u|7')K£,1’P2(u, T)dudT,
R2xR

for a suitable kernel Kﬁ p,» Where
1,72

Py = P(X,t)7 P> = P(X*U,t*‘u‘272‘u‘7)'



» The kernel KE,I p, i defined in terms of an oscillatory integral:

Kb pu(.7) = [ PPt 2y (2)don

where z = (z1, z) is defined by z; = ””'JE‘”Z”, Zy = ”27|;‘”1".

» Note that while Tf(x, t) is given as an integral over 2
dimensions, the kernel K,ﬁ31 p, is only a 1-dimensional integral.

— Less oscillations in the integral defining Kﬁ,l P,
— so method of TT™ is less effective in the Radon case.

» But we still hope to gain something non-trivial from the
oscillatory nature of the integral defining Kf-,l P,



First we have a trivial bound:
|Kg1,P2(“v7')| <1, and is supported where |u|, |7| < 1.

As a result,

[TT f(x, 1) S / [F1(x = u, t = [u* = 2|u|7) x5, (u)xe, (T)dudT
R2xR

which is bounded on L2 with norm < 1; we need to do better.

Using the method of stationary phases, we improve the above

. #
trivial bound on KP1,P2'

(It is only here that we use our assumption that our
polynomial phases P(y) are from our specific class Q7,.)



Lemma

If P1, Py € Q. with ||P1]|,||P2|| ~ r, then there exists

» some § > 0 depending only on d,
» a set E(P1) depending only on P1, and
» a family of sets F(P1, u) depending only on Py and u,

such that
KE, o, (u, )| S 172X, (u)XB: (7) + XE(Py) (W)XB, (T) + X8, (U)X F(Pyu (7)-
Furthermore, the sets E(Py1) and F(Py, u) has small measures:

|[E(PY)| < r7 8, and |F(Py,u)| <r % forallu.



» Then we have the following bound for | TT*f(x, t)]:

/ 1F(x — u, £ — |uf? — 2Jul7) [ xe,(0) X, (7)
R2xR
FXE(P ) (U)X8: () + X, (U)XF( ) (7)] .

» This is a sum of three terms, and they are all bounded on L2
with a small norm < r=2 (e.g. by interpolation between a
good L — L°° bound, and a trivial -1 bound).

» It is important here that we get small exceptional sets E(Py)
and F(Py,u) that are independent of P,: otherwise we then
need to estimate things like

/ Ifl(x — u, t — |u)® — 2|u|T)XE(P(X1t)7,D(X7u HU‘LMT))(U)X& (T)dudT,
R2xR ’

which we cannot quite estimate.



Back to Theorem 2: bounding a square function

» At this point, we observe that if one wants to apply the same
argument to prove the desired bound for our original operator

M,f(x, t) = supsup [T F(x, t)],
k P

one would naively also adopt a stopping time in k, and do a
TT*, because otherwise one does not have a linear operator
T, and linearity is crucial for the application of TT*.

» Unfortunately, stopping times and the method of TT* are not
good for bounding the supremum in k, as is known when
people tried to bound the (ordinary) maximal Radon
transform along the paraboloid.

» So we proceed differently, by introducing a smoother variant
of our maximal operator, and estimating a square function.



v

v

v

v

Recall that our operator M, is given by

)

M, f(x,t) = supsup |Iff(x, t)
k P

() .y | dyds
16 t) = [ e yot = YR .
R2

The key is to compare Iff(x, t) to a smoother variant, which
we call JPf(x, t).
Let now ¢ € C°[—1,1] be fixed, with [, ((s)ds = 1. Define

P ._ iP(%) Y s | dyds
rrxey= [ [ fxm =9 S

Note an important cancellation property between I,’: and Jf:

/(I/{D — IP)f(x,t)dt =0 for every x.
R



> Now
M, f = supsup |Zf |
kK P

< supsup [T f| +supsup |(Z{ — T )f|
kK P kK P

1/2
< sipsgpljkpfl + <ngpl(ff - jkp)f|2> :

kEZ

» The first term is known to be bounded on L? with norm
< r=2% by an easy modification of Stein and Wainger's
argument. (No Radon behavior for J/1)

» Thus to show that M, is bounded on L? with the desired
norm, it suffices to prove the same for the second term:

1/2

Sf(xt) == | Y sup [(Zf — TO)F(x, 1)
ke



Square function again:

1/2

Sif(x,t) = (Z sup |(ZF — TE)f(x, t)|2> .
kez, P

Recall that I,’: — j,f satisfies a cancellation property

— Morally speaking, I,f — jkP should act only on the part of

f with ‘frequency’ ~ 27K,

So by decomposing f in the ‘frequency’ space, one can hope

to carry out the sum in k in the definition of S,.

More precisely, we hope to be able to find Littlewood-Paley
projections A;, such that one can decompose any f € L?(IR3)

as
F=Y AF, D IR S IR,
JEZ JEZ.

and Ajf has ‘frequency’ 2.



» More importantly, we hope to choose Littlewood-Paley
projections A;, such that the following holds:

Theorem 3 (Pierce-Y.)
There exists 6o > 0 and €y > 0 such that for all r > 1 and j, k € Z,

Mpjif(x,t) == sup |(Zf — T )Af(x t)]
pPeQ
1Pll~r

is bounded on L%(R3), with norm < 2—coli=kly—d

» Note the additional decay when |j — k| is large.
» When 27/ < 27k, use the cancellation property of I,’: — JkP;

» When 2/ > 27k one needs a cancellation property from A;



» The question now is then two-fold, namely:

(1) What cancellation property do we require of A;7?

(2) How can we exploit that cancellation property?

» The answer to the first question has a nice simple form:

We just take A; to be a Littlewood-Paley projection in the
last variable:

1 s
Ajf(X, t):/Rf(X,t—5)2—2JA(2TJ)dS

» But this is a bit tricky to use, in the presence of the Radon
transform:



e.g. when 0 = < k, let's try to gain some cancellation
between j and k from Z[ Af. Note

1 iP(L
IE Aof (x,t) = / F(x=y. t=5) 55 )e"” 3 As—|y ) dyds.

R3
Even if say [ A(s)ds =0, or A(s) = A’(s) for some function
A, it is not |mmed|ate how one can gain 27X by integrating
by parts.

This difficulty only arises from the presence of Radon
behaviour in I,’:!

Fortunately, one can succeed by using yet another TT*
argument here.



