A new twist of the Carleson operator

Po-Lam Yung

University of Oxford

July 16, 2014

Introduction

- Joint work with Lillian Pierce
- Our main theorem concerns a variant of the Carleson operator, which was first studied in relation to pointwise a.e. convergence of Fourier series.
- Part 1: Introduction, and statement of our main theorem
- Part 2: A taste of time-frequency analysis
- Part 3: Some aspects of the proof of our main theorem

Part 1: Introduction, and statement of our main theorem

Motivation: Pointwise a.e. convergence of Fourier series

- Given an integrable function f on $[0,1]$, we associate to f its Fourier series

$$
\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{2 \pi i n x}
$$

where

$$
\widehat{f}(n):=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x
$$

- Fourier had the insight that perhaps "every" function can be expanded as its Fourier series.
- It took mathematicians quite some time to clarify and make precise this claim of Fourier.
- Let

$$
S_{N} f(x)=\sum_{n=-N}^{N} \widehat{f}(n) e^{2 \pi i n x}
$$

- If f is C^{α} for some $\alpha>0$, then

$$
S_{N} f(x) \rightarrow f(x) \quad \text { for every } x \in[0,1]
$$

The corresponding result is false if f is merely continuous.

- If f is in $L^{p}, 1<p<\infty$, then

$$
S_{N} f \rightarrow f \text { in } L^{p} \text { norm. }
$$

The corresponding result is false if $p=1$.

- Things can go really wrong with L^{1} : there exist L^{1} functions whose Fourier series diverges everywhere.
- Question: what if one is only interested in almost everywhere convergence of Fourier series?
- Theorem (Carleson 1966, Hunt 1967): If f is in $L^{p}, 1<p<\infty$, then

$$
S_{N} f(x) \rightarrow f(x) \quad \text { for almost every } x \in[0,1]
$$

- The proof proceeds via approximating a function in L^{p} by smooth functions.
- The key then is to control a certain maximal operator, which has since been called the Carleson operator:

$$
f(x) \mapsto \sup _{N \in \mathbb{N}}\left|S_{N} f(x)\right|
$$

This operator maps L^{p} boundedly into L^{p}, for all $1<p<\infty$. ($p=2$: Carleson's theorem; other values of p : result of Hunt)

- Later C. Fefferman (1973) and Lacey-Thiele (2000) gave very interesting alternative proofs. The techniques developed have since evolved into a field called time-frequency analysis.

A variant on \mathbb{R}^{n}

- If we are given instead an L^{p} function f on \mathbb{R}, we could also ask whether

$$
\int_{-N}^{N} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi
$$

converges to $f(x)$ for almost every $x \in \mathbb{R}$.

- This would require one to study the operator

$$
f(x) \mapsto \sup _{N>0}\left|\int_{-N}^{N} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi\right| .
$$

- Modulo some trivial operators, one has then to bound the operator

$$
f(x) \mapsto \sup _{\lambda \in \mathbb{R}} \mid \text { p.v. } \left.\int_{\mathbb{R}} f(x-y) \frac{1}{y} e^{2 \pi i \lambda y} d y \right\rvert\, .
$$

- Note p.v. $\frac{1}{y}$ is the simplest Calderon-Zygmund kernel on \mathbb{R}.
- More precisely, by a Calderon-Zygmund kernel on \mathbb{R}^{n}, we mean a distribution K that agrees with a smooth function $K_{0}(y)$ outside the origin, with

$$
\left|K_{0}(y)\right| \leq C|y|^{-n}, \quad\left|\nabla^{\alpha} K_{0}(y)\right| \leq C|y|^{-(n+|\alpha|)}, \quad \widehat{K} \in L^{\infty} .
$$

- e.g. $K=$ p.v. $\frac{y_{j}}{|y|^{n+1}}$ on \mathbb{R}^{n}.
- Sjölin formulated a version of Carleson's operator on \mathbb{R}^{n}. It is given by

$$
C f(x):=\sup _{\lambda \in \mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} f(x-y) K(y) e^{i \lambda \cdot y} d y\right|
$$

where $K(y)$ is a fixed Calderon-Zygmund kernel on \mathbb{R}^{n}.

- Theorem (Sjölin): C: $L^{p} \rightarrow L^{p}$, for all $1<p<\infty$.

A variant with polynomial phases

- Stein-Wainger (2001) initiated the study of a variant of the Carleson operator, where the phase $\lambda \cdot y$ in the exponential $e^{i \lambda \cdot y}$ is replaced by a real polynomial of higher degree in y.
- More precisely, let \mathcal{P}_{d} be the set of all real polynomials of degrees $\leq d$ on \mathbb{R}^{n}, and \mathcal{P}_{d}^{\prime} be the set of all polynomials in \mathcal{P}_{d} that vanishes at the origin to order ≥ 2. Define

$$
C_{d} f(x)=\sup _{P \in \mathcal{P}_{d}^{\prime}}\left|\int_{\mathbb{R}^{n}} f(x-y) K(y) e^{i P(y)} d y\right|
$$

Then Stein-Wainger proved that $C_{d}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$ and all d, using stationary phases.

- This does not cover the Carleson's Theorem stated above; later, using time-frequency analysis, Lie (2009) improved Stein-Wainger's result when $n=1$ by replacing \mathcal{P}_{d}^{\prime} by the bigger class \mathcal{P}_{d}, thereby obtaining a true generalization of Carleson's Theorem.

A variant with Radon transform

- In joint work with Lillian Pierce, we study a variant of the theorem of Stein-Wainger, where an additional Radon transform is involved. For concreteness, we will work with the Radon transform along the paraboloid in \mathbb{R}^{3}.
- Recall that if $K(y)$ is a Calderon-Zygmund kernel on \mathbb{R}^{2}, then given a function $f(x, t)$ on \mathbb{R}^{3}, where $x \in \mathbb{R}^{2}$ and $t \in \mathbb{R}$, the singular Radon transform of f along the paraboloid is given by

$$
R f(x, t):=\int_{\mathbb{R}^{2}} f\left(x-y, t-|y|^{2}\right) K(y) d y
$$

- The operator we study takes the form

$$
\mathfrak{C}_{d} f(x, t):=\sup _{P \in \mathcal{Q}_{d}^{\prime}}\left|\int_{\mathbb{R}^{2}} f\left(x-y, t-|y|^{2}\right) K(y) e^{i P(y)} d y\right|,
$$

where \mathcal{Q}_{d}^{\prime} is a class of polynomials of degree $\leq d$ on \mathbb{R}^{2} to be specified.

- More precisely, fix a positive integer $d \geq 2$.

For $2 \leq j \leq d$, fix some polynomial $p_{j}(y)$ on \mathbb{R}^{2}, that is homogeneous of degree j, and that has real coefficients.

$$
\begin{aligned}
& \text { Let } \mathcal{Q}_{d}^{\prime}=\left\{\sum_{j=2}^{d} \lambda_{j} p_{j}(y): \lambda_{j} \in \mathbb{R} \text { for all } j\right\} \subset \mathcal{P}_{d}^{\prime} \\
& K(y)=\text { a Calderon-Zygmund kernel on } \mathbb{R}^{2}
\end{aligned}
$$

Theorem 1 (Pierce-Y.)
If $p_{2}(y) \not \equiv C|y|^{2}$ for any non-zero constant C, then the operator

$$
\mathfrak{C}_{d} f(x, t):=\sup _{P \in \mathcal{Q}_{d}^{\prime}}\left|\int_{\mathbb{R}^{2}} f\left(x-y, t-|y|^{2}\right) K(y) e^{i P(y)} d y\right|
$$

is bounded on $L^{p}\left(\mathbb{R}^{3}\right)$ for $1<p<\infty$ and all d.

Part 2: A taste of time-frequency analysis

Heuristics of the Proof of Carleson's theorem

- Let

$$
\begin{aligned}
H_{N} f(x) & =\sum_{n>N} \widehat{f}(n) e^{2 \pi i n x} \\
\mathcal{C} f(x) & =\sup _{N \geq 0}\left|H_{N} f(x)\right|
\end{aligned}
$$

- Then the original theorem of Carleson is equivalent to the statement that

$$
\mathcal{C}: L^{2} \rightarrow \text { weak }-L^{2} .
$$

- Let's first understand $H_{N} f$.
- Step 1: an orthogonal decomposition in frequency space
- Step 2: an orthogonal decomposition in the physical space.

A first decomposition: decomposition in frequency space

- A dyadic interval is an interval of the form $\left[(m-1) 2^{k}, m 2^{k}\right)$ for some integers m and k.
- For each fixed k, the dyadic intervals of length 2^{k} tile the real axis.

$$
\begin{aligned}
& 8 \\
& 4 \\
& 4 \\
& 0
\end{aligned}
$$

- Each dyadic interval ω has a parent ω^{*}, which is the unique dyadic interval that contains ω, and has twice the length of ω.
- Given any integer $N \geq 0$, one can decompose $[N+1, \infty)$ into a disjoint union of dyadic intervals:

$$
[N+1, \infty)=\bigcup_{k=0}^{\infty} \omega_{k, N}
$$

where each $\omega_{k, N}$ is either a empty set, or a dyadic interval of length 2^{k} with $\omega_{k, N}^{*} \not \subset[N+1, \infty)$.

- Examples

Decomposition of $[N+1, \infty)$

- Let

$$
\Pi_{\omega_{k, N}} f(x)=\sum_{n \in \omega_{k, N}} \widehat{f}(n) e^{2 \pi i n x}
$$

- Then

$$
H_{N} f=\sum_{k=0}^{\infty} \Pi_{\omega_{k, N}} f .
$$

- It is now helpful to draw a picture of the time-frequency plane (or the x - n plane), to illustrate where (morally speaking) each term is supported.

$$
H_{0} f=\sum_{k=0}^{\infty} \Pi_{\omega_{k, 0}} f
$$

$H_{4} f=\sum_{k=0}^{\infty} \Pi_{\omega_{k, 4} f} f$.

A second decomposition: decomposition in physical space

- For $k \geq 0, \ell=1, \ldots, 2^{k}$, let $I_{k, \ell}=\left[(\ell-1) 2^{-k}, \ell 2^{-k}\right)$, so that

$$
[0,1)=\bigcup_{\ell=1}^{2^{k}} I_{k, \ell} .
$$

Also let

$$
\psi_{k, \ell}=2^{k / 2} \chi_{I_{k, \ell}}(x)
$$

Then since $\Pi_{\omega_{k, N}} f$ is roughly constant on a physical scale 2^{-k},

$$
\Pi_{\omega_{k, N}} f \simeq \sum_{\ell=1}^{2^{k}}\left\langle\Pi_{\omega_{k, N}} f, \psi_{k, \ell}\right\rangle \psi_{k, \ell} \simeq \sum_{\ell=1}^{2^{k}}\left\langle f, \Pi_{\omega_{k, N}} \psi_{k, \ell}\right\rangle \Pi_{\omega_{k, N}} \psi_{k, \ell}
$$

so that

$$
H_{N} f \simeq \sum_{k=0}^{\infty} \sum_{\ell=1}^{2^{k}}\left\langle f, \Pi_{\omega_{k, N}} \psi_{k, \ell}\right\rangle \Pi_{\omega_{k, N}} \psi_{k, \ell}
$$

$H_{N} f \simeq \sum_{k=0}^{\infty} \sum_{\ell=1}^{2 k}\left\langle f, \Pi_{\omega_{k, N}} \psi_{k, \ell}\right\rangle \Pi_{\omega_{k, N}, N} \psi_{k, \ell}$.

$$
N=0
$$

$N=4$.

- A tile is a dyadic rectangle (i.e. a product of two dyadic intervals) in the time-frequency plane with area 1.
- We just saw that $H_{N} f$ is essentially a sum over tiles; essentially any tile could arise in the decomposition of $H_{N} f$ for a suitable N.
- Therefore analyzing the Carleson operator

$$
\mathcal{C} f(x)=\sup _{N \geq 0}\left|H_{N} f(x)\right|
$$

forces one to consider essentially the set of all tiles in the time-frequency plane.

- But that is a lot of tiles!
- For each $k \in \mathbb{N}$, the set of tiles whose dimensions are $2^{k} \times 2^{-k}$ tile the time-frequency plane:

Tiling with tiles of sizes $2^{-k} \times 2^{k}$
$k=1$
$k=2$
$k=3$

- Fortunately, not all tiles contribute, and one can organize the ones that contribute into unions of trees.
- The Carleson operator is then a sum over trees, and each tree would give rise to an operator that is like the Hilbert transform, that is bounded on any L^{p}.
- The key is then to exhibit orthogonality between operators corresponding to different trees, so as to prove that the full Carleson operator is weak-type (p, p).
- Carleson, Fefferman, and Lacey and Thiele each has a different way of exhibiting this crucial orthogonality; we will not enter into details here.
- On the other hand, Stein and Wainger's approach to their theorem does not require the use of all this machinery from time-frequency analysis.
- Instead, it is based on a simple, but very clever observation, that allows them to exploit the additional oscillations they have in the polynomial phases they consider.
- Our approach to our main theorem is a refinement of that, to take into account the presence of a Radon transform along the paraboloid.

Part 3: Some aspects of proof of our main theorem

Proof of our main Theorem 1

- Recall our polynomial Carleson operator along the paraboloid:

$$
\mathfrak{C}_{d} f(x, t):=\sup _{P \in \mathcal{Q}_{d}^{\prime}}\left|\int_{\mathbb{R}^{2}} f\left(x-y, t-|y|^{2}\right) K(y) e^{i P(y)} d y\right| .
$$

- We want to prove that it is bounded on $L^{2}\left(\mathbb{R}^{3}\right)$.
- Proof uses the method of stationary phases (rather than time-frequency analysis).
- In fact, when $|y|$ is small, $e^{i P(y)} \simeq 1$. This suggests that one should decompose $K(y)$ dyadically:

$$
K(y)=\sum_{k=-\infty}^{\infty} 2^{-2 k} \eta^{(k)}\left(2^{-k} y\right)
$$

and estimate the terms with small k (say $k \leq k(P))$ with a maximal truncated singular Radon transform.

- Thus we are reduced to the terms with k large:

$$
\begin{aligned}
k \text { large } & \rightarrow \text { Integrating over large values of }|y| \\
& \rightarrow \text { The phase } P(y) \text { oscillates rapidly } \\
& \rightarrow \text { Decay in } k
\end{aligned}
$$

This then allows us to sum over large k in the previous slide, and prove our main theorem.

- Notation: If P is a polynomial in y, say

$$
P(y)=\sum_{0 \leq|\alpha| \leq d} \lambda_{\alpha} y^{\alpha}
$$

then the isotropic norm of P is defined by

$$
\|P\|=\sum_{|\alpha| \geq 1}\left|\lambda_{\alpha}\right|
$$

Theorem 2 (Pierce-Y.)

Let η be a C^{1} function supported in the unit ball, and $d \in \mathbb{N}$. For each polynomial $P \in \mathcal{Q}_{d}^{\prime}$ and each $k \in \mathbb{Z}$, define

$$
\mathcal{I}_{k}^{P} f(x, t)=\int_{\mathbb{R}^{2}} f\left(x-y, t-|y|^{2}\right) 2^{-2 k} \eta\left(2^{-k} y\right) e^{i P\left(2^{-k} y\right)} d y .
$$

Then there is some $\delta_{0}>0$ such that for all $r \geq 1$, the operator

$$
M_{r} f(x, t):=\sup _{k \in \mathbb{Z}} \sup _{\substack{P \in \mathcal{Q}_{d}^{\prime} \\\|P\| \simeq r}}\left|\mathcal{I}_{k}^{P} f(x, t)\right|
$$

is bounded on $L^{2}\left(\mathbb{R}^{3}\right)$ with norm $\lesssim r^{-\delta_{0}}$.

- Since M_{r} is pointwisely bounded by the maximal Radon transform of f, it is certainly bounded on L^{2}. The key here is the decay in r of the norm of the operator when r is large.

A toy model for Theorem 2

- To illustrate our method and to understand some of the difficulties involved, we consider the following toy problem.
- Let's fix $k=0$ and consider

$$
M_{r, 0} f(x, t):=\sup _{\substack{P \in \mathcal{Q}_{d}^{\prime} \\\|P\| \simeq r}}\left|\mathcal{I}_{0}^{P} f(x, t)\right|
$$

Proposition (Pierce-Y.)
There exists $\delta>0$ such that for all $r \geq 1, M_{r, 0}$ is bounded on $L^{2}\left(\mathbb{R}^{3}\right)$, with norm $\lesssim r^{-\delta}$.

- Again the key is to gain the decay in r of the norm of the operator. To do so we use stopping times and $T T^{*}$.
- Recall $M_{r, 0} f(x, t)=\sup _{P}\left|\mathcal{I}_{0}^{P} f(x, t)\right|$.
- At each point (x, t), this supremum is almost attained at a possibly different polynomial P, say $P_{(x, t)}$.
- Consider the linear operator

$$
T f(x, t):=\mathcal{I}_{0}^{P_{(x, t)}} f(x, t)
$$

It suffices to show that T is bounded on L^{2} with norm $\lesssim r^{-\delta}$.

- Since T is linear, it suffices to prove that $T T^{*}$ is bounded on L^{2}, with norm $\lesssim r^{-2 \delta}$. This is desirable since the kernel of $T T^{*}$ exhibits more cancellation than that of T :
- In fact,

$$
\begin{gathered}
T f(x, t)=\int_{\mathbb{R}^{2}} f\left(x-y, t-|y|^{2}\right) \eta(y) e^{i P_{(x, t)}(y)} d y \\
T^{*} f(x, t)=\int_{\mathbb{R}^{2}} f\left(x+z, t+|z|^{2}\right) \eta(z) e^{i P_{\left(x+z, t+|z|^{2}\right)}(z)} d z
\end{gathered}
$$

so $T T^{*} f(x, t)$ is given as an integral over 4-dimensions.

- One can then (almost) write $T T^{*} f(x, t)$ as a 3-dimensional convolution against a convolution kernel; the kernel will then be a 1-dimensional (oscillatory) integral.
- In fact,

$$
T T^{*} f(x, t)=\int_{\mathbb{R}^{2} \times \mathbb{R}} f\left(x-u, t-|u|^{2}-2|u| \tau\right) K_{P_{1}, P_{2}}^{\sharp}(u, \tau) d u d \tau,
$$

for a suitable kernel $K_{P_{1}, P_{2}}^{\sharp}$, where

$$
P_{1}:=P_{(x, t)}, \quad P_{2}:=P_{\left(x-u, t-|u|^{2}-2|u| \tau\right)} .
$$

- The kernel $K_{P_{1}, P_{2}}^{\sharp}$ is defined in terms of an oscillatory integral:

$$
K_{P_{1}, P_{2}}^{\sharp}(u, \tau):=\int_{\mathbb{R}} e^{i P_{1}(u+z)-i P_{2}(z)} \eta(u+z) \eta(z) d \sigma,
$$

where $z=\left(z_{1}, z_{2}\right)$ is defined by $z_{1}=\frac{u_{1} \tau+u_{2} \sigma}{|u|}, z_{2}=\frac{\mu_{2} \tau-u_{1} \sigma}{|u|}$.

- Note that while $\operatorname{Tf}(x, t)$ is given as an integral over 2 dimensions, the kernel $K_{P_{1}, P_{2}}^{\sharp}$ is only a 1-dimensional integral.
\rightarrow Less oscillations in the integral defining $K_{P_{1}, P_{2}}^{\sharp}$
\rightarrow so method of $T T^{*}$ is less effective in the Radon case.
- But we still hope to gain something non-trivial from the oscillatory nature of the integral defining $K_{P_{1}, P_{2}}^{\sharp}$.
- First we have a trivial bound:

$$
\left|K_{P_{1}, P_{2}}^{\sharp}(u, \tau)\right| \lesssim 1, \text { and is supported where }|u|,|\tau| \lesssim 1
$$

- As a result,

$$
\left|T T^{*} f(x, t)\right| \lesssim \int_{\mathbb{R}^{2} \times \mathbb{R}}|f|\left(x-u, t-|u|^{2}-2|u| \tau\right) \chi_{B_{1}}(u) \chi_{B_{1}}(\tau) d u d \tau
$$

which is bounded on L^{2} with norm $\lesssim 1$; we need to do better.

- Using the method of stationary phases, we improve the above trivial bound on $K_{P_{1}, P_{2}}^{\sharp}$.
(It is only here that we use our assumption that our polynomial phases $P(y)$ are from our specific class \mathcal{Q}_{d}^{\prime}.)

Lemma

If $P_{1}, P_{2} \in \mathcal{Q}_{d}^{\prime}$ with $\left\|P_{1}\right\|,\left\|P_{2}\right\| \simeq r$, then there exists

- some $\delta>0$ depending only on d,
- a set $E\left(P_{1}\right)$ depending only on P_{1}, and
- a family of sets $F\left(P_{1}, u\right)$ depending only on P_{1} and u,
such that
$\left|K_{P_{1_{1}}, P_{2}}^{\sharp}(u, \tau)\right| \lesssim r^{-2 \delta} \chi_{B_{1}}(u) \chi_{B_{1}}(\tau)+\chi_{E\left(P_{1}\right)}(u) \chi_{B_{1}}(\tau)+\chi_{B_{1}}(u) \chi_{F\left(P_{1}, u\right)}(\tau)$.
Furthermore, the sets $E\left(P_{1}\right)$ and $F\left(P_{1}, u\right)$ has small measures:

$$
\left|E\left(P_{1}\right)\right| \lesssim r^{-8 \delta}, \quad \text { and } \quad\left|F\left(P_{1}, u\right)\right| \lesssim r^{-8 \delta} \quad \text { for all } u
$$

- Then we have the following bound for $\left|T T^{*} f(x, t)\right|$:

$$
\begin{aligned}
\int_{\mathbb{R}^{2} \times \mathbb{R}}|f| & \left(x-u, t-|u|^{2}-2|u| \tau\right)\left[r^{-2 \delta} \chi_{B_{1}}(u) \chi_{B_{1}}(\tau)\right. \\
& \left.+\chi_{E\left(P_{(x, t)}\right)}(u) \chi_{B_{1}}(\tau)+\chi_{B_{1}}(u) \chi_{F\left(P_{(x, t)}, u\right)}(\tau)\right] d u d \tau
\end{aligned}
$$

- This is a sum of three terms, and they are all bounded on L^{2} with a small norm $\lesssim r^{-2 \delta}$ (e.g. by interpolation between a good $L^{\infty} \rightarrow L^{\infty}$ bound, and a trivial $L^{1} \rightarrow L^{1}$ bound).
- It is important here that we get small exceptional sets $E\left(P_{1}\right)$ and $F\left(P_{1}, u\right)$ that are independent of P_{2} : otherwise we then need to estimate things like

which we cannot quite estimate.

Back to Theorem 2: bounding a square function

- At this point, we observe that if one wants to apply the same argument to prove the desired bound for our original operator

$$
M_{r} f(x, t)=\sup _{k} \sup _{P}\left|\mathcal{I}_{k}^{P} f(x, t)\right|
$$

one would naively also adopt a stopping time in k, and do a $T T^{*}$, because otherwise one does not have a linear operator T, and linearity is crucial for the application of $T T^{*}$.

- Unfortunately, stopping times and the method of $T T^{*}$ are not good for bounding the supremum in k, as is known when people tried to bound the (ordinary) maximal Radon transform along the paraboloid.
- So we proceed differently, by introducing a smoother variant of our maximal operator, and estimating a square function.
- Recall that our operator M_{r} is given by

$$
\begin{gathered}
M_{r} f(x, t)=\sup _{k} \sup _{P}\left|\mathcal{I}_{k}^{P} f(x, t)\right|, \\
\mathcal{I}_{k}^{P} f(x, t)=\int_{\mathbb{R}^{2}} f\left(x-y, t-|y|^{2}\right) e^{i P\left(\frac{y}{2^{k}}\right)} \eta\left(\frac{y}{2^{k}}\right) \frac{d y d s}{2^{2 k}} .
\end{gathered}
$$

- The key is to compare $\mathcal{I}_{k}^{P} f(x, t)$ to a smoother variant, which we call $\mathcal{J}_{k}^{P} f(x, t)$.
- Let now $\zeta \in C_{c}^{\infty}[-1,1]$ be fixed, with $\int_{\mathbb{R}} \zeta(s) d s=1$. Define

$$
\mathcal{J}_{k}^{P} f(x, t):=\iint_{\mathbb{R}^{2} \times \mathbb{R}} f(x-y, t-s) e^{i P\left(\frac{v}{2^{k}}\right)} \eta\left(\frac{y}{2^{k}}\right) \zeta\left(\frac{s}{2^{2 k}}\right) \frac{d y d s}{2^{4 k}} .
$$

- Note an important cancellation property between \mathcal{I}_{k}^{P} and \mathcal{J}_{k}^{P} :

$$
\int_{\mathbb{R}}\left(\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}\right) f(x, t) d t=0 \quad \text { for every } x
$$

- Now

$$
\begin{aligned}
M_{r} f & =\sup _{k} \sup _{P}\left|\mathcal{I}_{k}^{P} f\right| \\
& \leq \sup _{k} \sup _{P}\left|\mathcal{J}_{k}^{P} f\right|+\sup \sup _{P}\left|\left(\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}\right) f\right| \\
& \leq \sup _{k} \sup _{P}\left|\mathcal{J}_{k}^{P} f\right|+\left(\sum_{k \in \mathbb{Z}} \sup _{P}\left|\left(\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}\right) f\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

- The first term is known to be bounded on L^{2} with norm $\lesssim r^{-2 \delta}$, by an easy modification of Stein and Wainger's argument. (No Radon behavior for \mathcal{J}_{k}^{P} !)
- Thus to show that M_{r} is bounded on L^{2} with the desired norm, it suffices to prove the same for the second term:
- Square function again:

$$
S_{r} f(x, t):=\left(\sum_{k \in \mathbb{Z}} \sup _{P}\left|\left(\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}\right) f(x, t)\right|^{2}\right)^{1 / 2}
$$

- Recall that $\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}$ satisfies a cancellation property \rightarrow Morally speaking, $\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}$ should act only on the part of f with 'frequency' $\simeq 2^{-k}$.
- So by decomposing f in the 'frequency' space, one can hope to carry out the sum in k in the definition of S_{r}.
- More precisely, we hope to be able to find Littlewood-Paley projections Δ_{j}, such that one can decompose any $f \in L^{2}\left(\mathbb{R}^{3}\right)$ as

$$
f=\sum_{j \in \mathbb{Z}} \Delta_{j} F_{j}, \quad \sum_{j \in \mathbb{Z}}\left\|F_{j}\right\|_{L^{2}}^{2} \lesssim\|f\|_{L^{2}}^{2},
$$

and $\Delta_{j} f$ has 'frequency' 2^{-j}.

- More importantly, we hope to choose Littlewood-Paley projections Δ_{j}, such that the following holds:

Theorem 3 (Pierce-Y.)
There exists $\delta_{0}>0$ and $\varepsilon_{0}>0$ such that for all $r \geq 1$ and $j, k \in \mathbb{Z}$,

$$
M_{r, j, k} f(x, t):=\sup _{\substack{P \in \mathcal{Q}_{d}^{\prime} \\\|P\| \simeq r}}\left|\left(\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}\right) \Delta_{j} f(x, t)\right|
$$

is bounded on $L^{2}\left(\mathbb{R}^{3}\right)$, with norm $\lesssim 2^{-\varepsilon_{0}|j-k|} r^{-\delta_{0}}$.

- Note the additional decay when $|j-k|$ is large.
- When $2^{-j} \leq 2^{-k}$, use the cancellation property of $\mathcal{I}_{k}^{P}-\mathcal{J}_{k}^{P}$;
- When $2^{-j}>2^{-k}$, one needs a cancellation property from Δ_{j}.
- The question now is then two-fold, namely:
(1) What cancellation property do we require of Δ_{j} ?
(2) How can we exploit that cancellation property?
- The answer to the first question has a nice simple form: We just take Δ_{j} to be a Littlewood-Paley projection in the last variable:

$$
\Delta_{j} f(x, t)=\int_{\mathbb{R}} f(x, t-s) \frac{1}{2^{2 j}} \Delta\left(\frac{s}{2^{2 j}}\right) d s
$$

- But this is a bit tricky to use, in the presence of the Radon transform:
- e.g. when $0=j<k$, let's try to gain some cancellation between j and k from $\mathcal{I}_{k}^{P} \Delta_{j} f$. Note

$$
\mathcal{I}_{k}^{P} \Delta_{0} f(x, t)=\int_{\mathbb{R}^{3}} f(x-y, t-s) \frac{1}{2^{2 k}} \eta\left(\frac{y}{2^{k}}\right) e^{i P\left(\frac{y}{2^{k}}\right)} \Delta\left(s-|y|^{2}\right) d y d s .
$$

- Even if say $\int_{\mathbb{R}} \Delta(s) d s=0$, or $\Delta(s)=\tilde{\Delta}^{\prime}(s)$ for some function $\tilde{\Delta}$, it is not immediate how one can gain 2^{-k} by integrating by parts.
- This difficulty only arises from the presence of Radon behaviour in \mathcal{I}_{k}^{P} !
- Fortunately, one can succeed by using yet another $T T^{*}$ argument here.

