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Let T = R/Z, and K(y) = p.v. 1y on [−1/2, 1/2) and extend it periodically so that it becomes a distribution

on T. Let N : T→ 2πN be a measurable function. For f ∈ C∞(T), let

Tf(x) =

∫
T
f(x− y)K(y)eiN(x)ydy for x ∈ T.

We want to show that T : L2(T) → L2−ε(T) for any ε > 0. Below we give a white lie proof of this fact,
following Fefferman [2] (our exposition also draws heavily on Demeter’s points of view in [1]).

First decompose K(y) =
∑∞
k=0 ψk(y) where each ψk(y) is an odd C∞ function supported on |y| ' 2−k.

It follows that

(1) Tf(x) =

∞∑
k=0

∫
T
f(x− y)ψk(y)eiN(x)ydy.

If I ⊂ T is a dyadic interval and ω ⊂ [1,∞) is a dyadic interval of length 1/|I|, then the pair (I, ω) is
called a tile. (Let’s take all dyadic intervals to be half-open and half-closed, so that all dyadic intervals
contain the left endpoint but not the right endpoint; then the collection of all dyadic intervals of the same
length scale form a partition of the full space.) If p is a tile, we usually denote by Ip and ωp the time and
frequency intervals such that p = (Ip, ωp). The set of all tiles is denoted by P. It should be thought of as
a 3-parameter family, indexed by the length of the time interval, the position of the time interval and the
position of the frequency interval.

We denote by Ep the set N−1(ωp) ∩ Ip. Note that for every x ∈ T and every k ≥ 0, there exists one and
only one tile p with |Ip| = 2−k such that x ∈ Ip and N(x) ∈ ωp. In other words, there exists a unique tile p
with |Ip| = 2−k such that x ∈ Ep. Hence from (1), we have

Tf =
∑
p∈P

Tpf

where

Tpf(x) := χEp(x)

∫
T
f(x− y)ψk(y)eiN(x)ydy.

Define a tentative mass of a tile p by

A0(p) =
|Ep|
|Ip|

.

Since

|Tpf(x)| ≤ χEp(x)
1

|Ip|

∫
|y|≤|Ip|

|f(x− y)|dy ≤ χEp(x)
1

|Ip|1/2
‖f‖L2 ,

it follows that
‖Tp‖L2→L2 ≤ A0(p)1/2.

We upgrade this to a single tree estimate. First we introduce a partial ordering on the set of all tiles. If
p1, p2 are tiles, then we say p2 is an ancestor of p1, written p1 < p2, if Ip1 ⊆ Ip2 and ωp1 ⊇ ωp2 . This is
a partial ordering on P; indeed two tiles are either disjoint, or comparable under this partial ordering. A
finite collection p of tiles is said to be convex if p, p′ ∈ p and p < p′′ < p implies p′′ ∈ p. If p0 is a tile, then a
tree with top p0 is a convex collection p of tiles, such that p < p0 for all p ∈ p (note that we do not require
p0 to be in p). We write Tp for

∑
p∈p Tp whenever p is a finite collection of tiles.

Proposition 1. Let δ ∈ (0, 1). If p is a tree such that A0(p) ≤ δ for all p ∈ p, then

‖Tp‖L2→L2 . δ1/2.
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The idea is that Tp is then like a maximally truncated Hilbert transform localized to a set of measure . δ
in T. More precisely, let p be a tree with top p0. For every dyadic interval I ⊂ T, let pI be the unique tile
with time interval I such that ωpI contains ωp0 . Since p is finite, we may partition T into a disjoint union of
dyadic intervals I1, I2, . . . , such that each Ii is a maximal dyadic interval satisfying the following condition:

Ĩi ⊆ Ip for all p ∈ p with Ip ∩ Ii 6= ∅.

Here Ĩi is the ‘parent’ of Ii, namely the dyadic interval that has length 2|Ii| that contains Ii. Then every

Ĩi = Ipi for some unique pi ∈ p, and if we let Ei := E(pi) ∩ Ii, then |Ei| ≤ A0(pi)|Ipi | ≤ 2δ|Ii|. Also, for
every i, we have E(p)∩ Ii ⊆ Ei for every p ∈ p (this is trivial if E(p) doesn’t intersect Ii; on the other hand,

if E(p) intersects Ii, then Ipi = Ĩi ⊆ Ip, so ωp ⊆ ωpi , which implies E(p) ∩ Ii ⊆ N−1(ωpi) ∩ Ii = Ei). Now
define a maximal function

MF (x) =

{
supI⊇Ii

1
|I|
∫
I
|F (y)|dy if x ∈ Ei for some j

0 otherwise.

Then one can show that M : L2 → L2 with ‖M‖L2→L2 . δ1/2, and for every x ∈ T, we have

Tpf(x) .M(f ∗ K)(x) +Mf(x).

Since ‖f ∗ K‖L2 . ‖f‖L2 , we obtain the conclusion of Proposition 1.
(Indeed the above is adapted from Demeter’s survey [1], and is not exactly Fefferman’s proof. In Feffer-

man’s paper, the mass was defined so that the mass of a tile p is at least the supremum of the A0 mass
of all ancestors of p. We may assume, without loss of generality, that N is bounded. In that case, if |I| is
sufficiently small, then the mass of pI is 1. Hence we may partition T into a disjoint union of dyadic intervals
I1, I2, . . . , such that each Ii is a maximal dyadic interval with the mass of pIi being > δ. Then because we
are using Fefferman’s definition of mass, where the mass was defined so that the mass of a tile p is at least
the supremum of the A0 mass of all ancestors of p, we still have Ĩi ⊆ Ip for all p ∈ p with Ip ∩ Ii 6= ∅. Also,
if we let Ei := E(pĨi)∩ Ii, then for every i, we still have |Ei| ≤ 2δ|Ii|, and E(p)∩ Ii ⊆ Ei for all p ∈ p. Thus

we can proceed as above, and finish the proof of Proposition 1.)
To proceed further, note that if two tiles p1 and p2 are disjoint, then at least one of the following happens:

Ip1 ∩ Ip2 = ∅ or ωp1 ∩ ωp2 = ∅. In either case, Tp1f(x)Tp2g(x) = 0 for all f, g ∈ C∞(T) and all x ∈ T; in
particular,

T ∗p1Tp2 = 0.

We will pretend that we also have
White lie:

Tp1T
∗
p2 = 0

whenever p1, p2 are disjoint tiles; this is based on the heuristic that Tpf is morally supported on p for all
tiles p and all f ∈ C∞(T).

Proposition 2. Let p be a convex collection of tiles. Suppose for any p ∈ p, and for any two ancestors
p1, p2 of p with p1, p2 ∈ p, we have p1 comparable to p2. Then

(a) p can be organized into a union of trees, so that any two tiles from two different trees are disjoint.
(b) Hence if A0(p) ≤ δ for every p ∈ p, then by Proposition 1 and Cotlar-Stein, we have

‖Tp‖L2→L2 . δ1/2.

A collection of tiles p satisfying the conditions of Proposition 2 is called a Fefferman forest.
From now on let K be a large positive integer to be determined.

Proposition 3. Let p be a convex collection of tiles, such that A0(p) ≤ δ for every p ∈ p. Then there exists
a convex collection p′ ⊂ p such that the following holds:

(a) A0(p′) ≤ δ/2 for all p′ ∈ p′;
(b) p \ p′ can be organized into a union of trees p1, p2, . . . with tops p1, p2, . . . , so that∥∥∥∥∥∥

∑
j

χIpj (x)

∥∥∥∥∥∥
L1(T)

. δ−1.
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In particular, there exists a (small) exceptional set Fδ ⊂ T, such that |Fδ| ≤ δ99/K, and such that for x /∈ Fδ,
the number of pj’s with x ∈ Ipj is at most Kδ−100.

Indeed, if A0(p) ≤ δ/2 for all p ∈ p, then just set p′ = p. If not, then we pick a maximal p1 ∈ p with
A0(p1) ∈ (δ/2, δ], and let p1 be the set of all p ∈ p with p < p1. Clearly p1 is a tree with top p1. Assume
that we have chosen trees p1, . . . , p`. Then p\ (p1∪ · · · ∪p`) is a convex collection of tiles, and if A0(p) ≤ δ/2
for all p ∈ p \ (p1 ∪ · · · ∪ p`), just set p′ = p \ (p1 ∪ · · · ∪ p`); if not, we pick a maximal p`+1 ∈ p \ (p1 ∪ · · · ∪ p`)
such that A0(p`+1) ∈ (δ/2, δ], and let p`+1 be the set of all p ∈ p \ (p1 ∪ · · · ∪ p`) with p < p`+1. This process

terminate (since p is finite), and it remains to compute
∥∥∥∑j χIpj (x)

∥∥∥
L1(T)

. But this norm is equal to∑
j

|Ipj | ≤
2

δ

∑
j

|Epj | ≤
2

δ
;

indeed Ep1 , Ep2 , . . . are disjoint subsets of T, since the p1, p2, . . . were chosen to be incomparable. This
proves Proposition 3.

We remark that a small modification of the above proof shows that the dyadic BMO norm of
∑
j χIpj is

also bounded by δ−1. The John-Nirenberg inequality then gives a better control of the size of the exceptional
set, and this is useful when one wants to prove pointwise a.e. convergence of Fourier series for functions in
Lp(T), p ∈ (1, 2).

Proposition 4. Let p be as in Proposition 3. Let p′ and Fδ be as in the conclusion of Proposition 3. Let
p′′ be the collection of tiles p ∈ p such that Ip ⊂ Fδ. Then p \ (p′ ∪ p′′) can be reorganized into a union of M

Fefferman forests p(1), . . . p(M) with M . log(Kδ−100). Hence

‖Tp\p′‖L2(T\Fδ) . log(Kδ−100)δ1/2‖f‖L2 .

Indeed, let M be the smallest integer such that 2M > Kδ−100; in particular, M . log(Kδ−100). Recall
that we had a list of trees p1, p2, . . . with tops p1, p2, . . . from Proposition 3. For m = 1, 2, . . . ,M , let p(m)

be the set of all p ∈ p \ (p′ ∪ p′′) such that

2m−1 ≤ the number of tree tops pj ’s that are ancestors of p < 2m.

Then p \ (p′ ∪ p′′) is the disjoint union of p(1), . . . , p(M), because each p ∈ p \ p′ belongs to at least one tree
(hence at least one of the tree tops is an ancestor of p), and if p ∈ p\ (p′∪p′′) has at least 2M > log(Kδ−100)
ancestors that are tree tops, then Ip is contained in Ipj for more than log(Kδ−100) tree tops pj , contradicting
Proposition 3.

Furthermore, we check that each p(m) is a Fefferman forest: the key is to show that if p ∈ p(m) and
p′, p′′ ∈ p(m) are both ancestors of p, then p′ and p′′ are comparable. Assume not. Then since p′, p′′ ∈ p(m),
there are at least 2m−1 tree tops that are ancestors of p′, and at least 2m−1 tree tops that are ancestors of
p′′. Furthermore, these two sets of tree tops are disjoint, since if p′, p′′ are incomparable ancestors of p, then
p′ and p′′ cannot have ancestors in common. Hence there are at least 2m−1 + 2m−1 = 2m tree tops that are
ancestors of p, contradicting that p ∈ p(m). It remains to apply Proposition 2 to estimate ‖Tp(m)‖L2→L2 for

each forest p(m). Since

Tp\p′ =

M∑
m=1

Tp(m) on T \ Fδ,

it follows that ‖Tp\p′f‖L2(T\Fδ) . log(Kδ−100)δ1/2‖f‖L2 .

By successively applying Propositions 3 and 4 (with δ = 1, 2−1, 2−2, . . . and p replaced by p′ from the
previous step each time), we obtain the following proposition:

Proposition 5. Let p be a convex collection of tiles. Then there exists a (small) exceptional set F ⊂ T such
that |F | ≤ 1/K, with

‖Tpf‖L2(T\F ) . logK‖f‖L2 .

Hence if ‖f‖L2 = 1, then for any α > 1, the set {x ∈ T : |Tpf(x)| > α} has measure

.
(logK)2

α2
+

1

K
.
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This is true for all K ≥ 1, so letting K = α2 we see that

|{x ∈ T : |Tpf(x)| > α}| .ε
1

α2−ε

for any ε > 0. It follows that
‖Tpf‖L2−ε(T) .ε 1

for all ε > 0, which shows that ‖Tp‖L2→L2−ε .ε 1.
We remark that in order to deal with the white lie, we need a more complicated definition of mass (namely

A(p) in Fefferman’s paper), that takes into account tiles whose frequency intervals are further away. In that
case, we can only say that ‖Tp1T ∗p2‖L2→L2 is small whenever A(p1) and A(p2) are small (say ≤ δ), and

ωp1 , ωp2 are far apart (at least distance δ−1 when measured in the correct length scale). This led Fefferman
to introduce the notion of separated trees; see Lemma 4 in his paper.

Next, let’s have a row of trees where the tops have disjoint time intervals. At some point one needs to
study the orthogonality between separated rows. In order for this to work, we need to localize in frequency
for each tree, and this corresponds to a blurring of the support for each tree on the time side. In order
for this blurring not to ruin things, Fefferman introduced the notion of normal trees, and required that all
trees in a row to be normal. See Lemma 5 in his paper. It is for this reason that Fefferman had to remove
an exceptional set in the conclusion of his main lemma; indeed, to create normal trees, on top of removing
tiles whose time interval lives inside the exceptional set, Fefferman considered what he called central dyadic
frequency intervals, and invoked a convenient inclusion property for these central dyadic frequency intervals.

Another complication that arise because we don’t have perfect frequency localization is that for any
union of trees p, in order to control Tp, we need to control the number of rows present in p. This is why in
Fefferman’s main lemma, he needs to assume that each point in T belongs to no more than a certain number
of time intervals of the tops.

Finally, although Fefferman used a more complicated definition of mass, he would still use the exact same
tree selection algorithm we used in the proof of our Proposition 3. In particular, one should still consider
maximal elements whose A0 mass is big (rather than the A mass), and remove all tiles in the remaining
collection that are < than this maximal element. In order to guarantee that one would remove at least one
tile from the collection unless the A mass of all remaining tiles are small, one needs to reconcile between the
A mass and the A0 mass again. This is done again via the convenient inclusion property for central dyadic
frequency intervals. See the first page of Section 7 in Fefferman’s paper.

For reference, our Proposition 1 is basically Fefferman’s Lemma 3. Our Proposition 2 is basically Feffer-
man’s Corollary to his Main Lemma. Our Propositions 3,4 and 5 are in Section 7 of Fefferman’s paper.
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