
A formula for Sobolev seminorms
involving weak-Lp

Po-Lam Yung

Australian National University
The Chinese University of Hong Kong1

July 12, 2021

1I would like to thank my alma mater, the Chinese University of Hong
Kong, and in particular the teachers at the Department of Mathematics there,
who nourished me into who I am; it is sad to be leaving the Department soon.



Introduction

I Fix n ≥ 1 and 1 ≤ p <∞.
I Goal: Compute the Ẇ 1,p (semi)norm for u ∈ C∞c (Rn), i.e.

‖∇u‖Lp(Rn) =
(∫

Rn
|∇u|pdx

)1/p
.

I In joint work with Häım Brezis and Jean Van Schaftingen, we
established a new formula for these (semi)norms that involves
only difference quotients and no gradients.

I The formula was motivated by a weak-Lp estimate on the
product space R2n = Rn × Rn, which allowed us to fix up
certain Gagliardo-Nirenberg interpolations involving Ẇ 1,1.

I In joint work with Qingsong Gu, we proved a similar formula
for the Lp norm of any function u ∈ Lp(Rn).

I Finally, with Andreas Seeger, Brian Street and Jean Van
Schaftingen, we studied similar questions regarding fractional
order Besov spaces, which allowed us to clarify the nature of
the aforementioned fix to Gagliardo-Nirenberg interpolations.



Lp versus weak-Lp

I For 1 ≤ p <∞, if f ∈ Lp(Rn), then for every λ > 0,

‖f‖pLp(Rn) =

∫
Rn
|f(x)|pdx ≥ λp|{x ∈ Rn : |f(x)| > λ}|.

In particular, if f ∈ Lp(Rn), then

sup
λ>0

(
λ|{x ∈ Rn : |f(x)| > λ}|1/p

)
<∞

but the converse is not necessarily true.

I If f is measurable on Rn and the supremum above is finite,
then f is said to be in weak-Lp. Its weak-Lp norm is defined
as the above supremum, and denoted by ‖f‖Lp,∞(Rn).

I Example: f(x) = |x|−n/p is in weak-Lp on Rn, because

|{x ∈ Rn : |x|−n/p > λ}| = |B(0, λ−p/n)| = λ−p|B(0, 1)|.

It is not in Lp(Rn), because
∫
Rn |f |

pdx =
∫
Rn |x|

−ndx = +∞.



A formula for ‖∇u‖Lp(Rn)

Theorem (Brezis, Van Schaftingen, Yung)

Let n ≥ 1, 1 ≤ p <∞ and u ∈ C∞c (Rn). Define the modified
difference quotient for u on Rn × Rn = R2n by

Qu(x, y) :=
|u(y)− u(x)|
|y − x|

1

|y − x|
n
p

=
|u(y)− u(x)|
|y − x|1+

n
p

.

For λ > 0, define the superlevel set of Qu by

Eλ :=
{

(x, y) ∈ R2n : Qu(x, y) > λ
}
.

Then

lim
λ→∞

(
λ|Eλ|1/p

)
=
(k(p, n)

n

)1/p
‖∇u‖Lp(Rn),

where k(p, n) :=
∫
Sn−1 |e · ω|pdω and e ∈ Sn−1.

I Below we discuss a heuristic proof of this theorem, and more
importantly how this formula came by.



A heuristic proof (in 1 dimension)
I Let u ∈ C∞c (R). We want to see why one can compute

‖u′‖Lp(R) by understanding limλ→∞

(
λ|Eλ|1/p

)
where

Eλ :=
{

(x, y) ∈ R2 :
|u(y)− u(x)|

|y − x|1+
1
p

> λ
}
.

I Note that for λ large, (x, y) /∈ Eλ unless |y − x| is small.
I When |y − x| is small,

|u(y)− u(x)|

|y − x|1+
1
p

' |u′(x)|

|y − x|
1
p

,

so may hope Eλ ' Ẽλ :=
{

(x, y) ∈ R2 : |u
′(x)|

|y−x|
1
p
> λ

}
; but

|Ẽλ| =
∫
R

∣∣∣{y ∈ R : |y − x| < |u
′(x)|p

λp

}∣∣∣dx = 2

∫
R

|u′(x)|p

λp
dx

=⇒ λ|Ẽλ|1/p = 21/p‖u′‖Lp(R) for all λ > 0.



How did this modified difference quotient first arise?
I If we believe that

|∇u(x)| ' |u(y)− u(x)|
|y − x|

,

then to express ‖∇u‖Lp(Rn) using a difference quotient
instead of a gradient, a naive guess might be to try∫∫

R2n

|u(y)− u(x)|p

|y − x|p
dydx in place of

∫
Rn
|∇u(x)|pdx.

I Not working, because it doesn’t scale upon u(x) 7→ u(tx).
I A proper scaling will be achieved if we consider∫∫

R2n

|u(y)− u(x)|p

|y − x|p
dydx

|y − x|n

instead, which is
∫∫

R2n Qu(x, y)pdydx if

Qu(x, y) :=
|u(y)− u(x)|
|y − x|

1

|y − x|
n
p

.



Interplay between Lp and weak-Lp

I This is how one was first led to consider the modified
difference quotient

Qu(x, y) :=
|u(y)− u(x)|
|y − x|

1

|y − x|
n
p

.

I But should one compute ‖∇u‖Lp(Rn) via ‖Qu‖Lp(R2n)?

I For fixed x, the factor |y − x|−
n
p is only in weak-Lp(dy) but

not in Lp(dy).

I Indeed, for this reason, if u ∈ C∞c (Rn), unless u is identically
zero, the Lp norm of Qu(x, y) on R2n is always infinite!

I Hence impossible to compute ‖∇u‖Lp(Rn) via ‖Qu‖Lp(R2n).

I But what if we take the weak-Lp norm of Qu on R2n instead,
i.e.

‖Qu‖Lp,∞(R2n) = sup
λ>0

(
λ|Eλ|1/p

)
where as before Eλ := {(x, y) ∈ R2n : Qu(x, y) > λ}?



A weak-Lp estimate for the modified difference quotient

I By the previous theorem,

‖∇u‖Lp(Rn) 'p,n lim
λ→∞

(
λ|Eλ|1/p

)
≤ sup

λ>0

(
λ|Eλ|1/p

)
,

so ‖∇u‖Lp(Rn) .p,n ‖Qu‖Lp,∞(R2n).

I Is the reversed inequality true?

Yes by the following theorem.

Theorem (Brezis, Van Schaftingen, Yung)

Let n ≥ 1 and 1 ≤ p <∞. For u ∈ C∞c (Rn), define as before

Qu(x, y) :=
|u(y)− u(x)|
|y − x|

1

|y − x|
n
p

.

Then
‖Qu(x, y)‖Lp,∞(R2n) 'p,n ‖∇u‖Lp(Rn).

I Towards the end we will prove this theorem when n = p = 1.



A weak-Lp estimate for the modified difference quotient

I By the previous theorem,

‖∇u‖Lp(Rn) 'p,n lim
λ→∞

(
λ|Eλ|1/p

)
≤ sup

λ>0

(
λ|Eλ|1/p

)
,

so ‖∇u‖Lp(Rn) .p,n ‖Qu‖Lp,∞(R2n).

I Is the reversed inequality true? Yes by the following theorem.

Theorem (Brezis, Van Schaftingen, Yung)

Let n ≥ 1 and 1 ≤ p <∞. For u ∈ C∞c (Rn), define as before

Qu(x, y) :=
|u(y)− u(x)|
|y − x|

1

|y − x|
n
p

.

Then
‖Qu(x, y)‖Lp,∞(R2n) 'p,n ‖∇u‖Lp(Rn).

I Towards the end we will prove this theorem when n = p = 1.



Three applications involving Ẇ 1,1

I The issue is that ‖∇u‖L1(Rn) computes an L1 norm, and L1

is borderline for many purposes in harmonic analysis.

I First we introduce fractional order Besov (semi)norms on Rn.

I Suppose u ∈ C∞c (Rn) (or a Schwartz function on Rn).

I For s ∈ (0, 1) and 1 < p <∞, define the Besov (semi)norm by

[u]Ḃsp(Rn)
:=
(∑
j∈Z
‖2js∆ju‖pLp(Rn)

)1/p
where {∆j}j∈Z is an appropriate family of Littlewood-Paley
projections on Rn.

I It is known that for such s and p,

[u]Ḃsp(Rn)
's,p,n

∥∥∥ |u(y)− u(x)|
|y − x|s

1

|y − x|
n
p

∥∥∥
Lp(R2n)

.

I So incidentally, the idea of taking the Lp norm of a modified
difference quotient on R2n works for fractional Besov spaces!



Application 1: Fixing a 1-d fractional Sobolev embedding
I In Rn, Sobolev embedding for Ẇ 1,1 says

‖u‖
L

n
n−1 (Rn)

.n ‖∇u‖L1(Rn) for all u ∈ C∞c (Rn).

I What about embeddings into fractional Besov spaces?
I Scaling considerations suggest that

[u]Ḃsp(Rn)
.s,n ‖∇u‖L1(Rn) for

1

p
= 1− 1− s

n
, 0 < s < 1

and this is true if n ≥ 2 (Solonnikov / Van Schaftingen).
I Situation changes in 1 dimension.

s

1/p

Ẇ1,1

L
n

n−1

Ḃs
p, s = n

p
− (n− 1)



Application 1: Fixing a 1-d fractional Sobolev embedding
I In Rn, Sobolev embedding for Ẇ 1,1 says

‖u‖
L

n
n−1 (Rn)

.n ‖∇u‖L1(Rn) for all u ∈ C∞c (Rn).

I What about embeddings into fractional Besov spaces?
I Scaling considerations suggest that

[u]Ḃsp(Rn)
.s,n ‖∇u‖L1(Rn) for

1

p
= 1− 1− s

n
, 0 < s < 1

and this is true if n ≥ 2 (Solonnikov / Van Schaftingen).
I Situation changes in 1 dimension.

s

1/p

Ẇ1,1

L
n

n−1

Ḃs
p, s = n

p
− (n− 1)



I In 1 dimension we (still) have the inequality

‖u‖L∞(R) ≤ ‖u′‖L1(R) for all u ∈ C∞c (R).

I Scaling considerations suggest that perhaps

[u]
Ḃ

1/p
p (R) .p ‖u′‖L1(R) for 1 < p <∞

but this was known to be false for all 1 < p <∞.

s

1/p

Ẇ1,1

L∞

/∈ Ḃ1/p
p



I In 1 dimension we (still) have the inequality

‖u‖L∞(R) ≤ ‖u′‖L1(R) for all u ∈ C∞c (R).

I Scaling considerations suggest that perhaps

[u]
Ḃ

1/p
p (R) .p ‖u′‖L1(R) for 1 < p <∞

but this was known to be false for all 1 < p <∞.

s

1/p

Ẇ1,1

L∞

/∈ Ḃ1/p
p



[u]
Ḃ

1/p
p (R) .p ‖u′‖L1(R) false for 1 < p <∞

I Recall

[u]Ḃsp(R)
's,p

∥∥∥u(y)− u(x)

|y − x|s+
1
p

∥∥∥
Lp(R2)

.

I From our earlier weak-Lp estimate for the modified difference
quotient, we obtain the following substitute:

Corollary (Brezis, Van Schaftingen, Yung)

There exists an absolute constant C such that if 1 < p <∞ and
u ∈ C∞c (R), then∥∥∥u(y)− u(x)

|y − x|
2
p

∥∥∥
Lp,∞(R2)

≤ C‖u′‖L1(R).

I The case p = 2 was originally due to Greco and Schiattarella
(2020), which inspired our current work.



[u]
Ḃ

1/p
p (R) .p ‖u′‖L1(R) false for 1 < p <∞

I Recall

[u]
Ḃ

1/p
p (R) 'p

∥∥∥u(y)− u(x)

|y − x|
2
p

∥∥∥
Lp(R2)

.

I From our earlier weak-Lp estimate for the modified difference
quotient, we obtain the following substitute:

Corollary (Brezis, Van Schaftingen, Yung)

There exists an absolute constant C such that if 1 < p <∞ and
u ∈ C∞c (R), then∥∥∥u(y)− u(x)

|y − x|
2
p

∥∥∥
Lp,∞(R2)

≤ C‖u′‖L1(R).

I The case p = 2 was originally due to Greco and Schiattarella
(2020), which inspired our current work.



Application 2: Fixing a Gagliardo-Nirenberg interpolation

I In Rn, if 1 ≤ q <∞, then for 0 < s < 1, Gagliardo-Nirenberg
interpolation between Ẇ 1,1 and Lq gives

[u]Ḃsp(Rn)
.s,q,n ‖u‖1−sLq(Rn)‖∇u‖

s
L1(Rn) for

1

p
=

1− s
q

+ s

if u ∈ C∞c (Rn).

I Situation changes when q =∞.

s

1/p

Ẇ1,1

Lq

Ḃs
p,

1
p

= 1−s
q

+ s



I When q =∞, the anticipated inequality

[u]Ḃsp(Rn)
.s,n ‖u‖1−sLq(Rn)‖∇u‖

s
L1(Rn) for s =

1

p

fails for every 1 < p <∞.

s

1/p

Ẇ1,1

L∞

/∈ Ḃ1/p
p



[u]
Ḃ

1/p
p (Rn) .p,n ‖u‖

1− 1
p

L∞(Rn)‖∇u‖
1
p

L1(Rn) false for 1 < p <∞

I Recall

[u]
Ḃ

1/p
p (Rn) 'p,n

∥∥∥u(y)− u(x)

|y − x|
1+n
p

∥∥∥
Lp(R2n)

.

I Again from our earlier weak-Lp estimate for the modified
difference quotient, we obtain the following substitute:

Corollary (Brezis, Van Schaftingen, Yung)

There exists a dimensional constant C = C(n) such that if
1 < p <∞ and u ∈ C∞c (Rn), then∥∥∥u(y)− u(x)

|y − x|
1+n
p

∥∥∥
Lp,∞(R2n)

≤ C‖u‖
1− 1

p

L∞(Rn)‖∇u‖
1
p

L1(Rn).

I When n = 1, ‖u‖L∞(R) ≤ ‖u′‖L1(R), so we recover our
previous corollary about fractional Sobolev embedding.



Proof of Corollary in Application 2
I Let 1 ≤ p <∞. To prove∥∥∥u(y)− u(x)

|y − x|
1+n
p

∥∥∥
Lp,∞(R2n)

≤ C‖u‖
1− 1

p

L∞(Rn)‖∇u‖
1
p

L1(Rn),

remember our weak-L1 estimate for the modified difference
quotient says∣∣∣{ |u(y)− u(x)|

|y − x|1+n
> Λ

}∣∣∣ . 1

Λ
‖∇u‖L1(Rn) for all Λ > 0.

I But for any λ > 0,{ |u(y)− u(x)|

|y − x|
1+n
p

> λ
}
⊆
{ |u(y)− u(x)|
|y − x|1+n

>
λp

(2‖u‖L∞)p−1

}
.

I The Lebesgue measure of the latter set is

.
(2‖u‖L∞)p−1

λp
‖∇u‖L1(Rn).

Rearranging this inequality gives the desired conclusion.



Application 3: Another Gagliardo-Nirenberg interpolation
I In Rn, we might consider Gagliardo-Nirenberg interpolation

between Ẇ 1,1 and Ḃs1
p1 where 0 < s1 < 1 and 1 < p1 <∞.

I The anticipated inequality

[u]Ḃsp(Rn)
.θ,s1,p1,n [u]1−θ

Ḃ
s1
p1

(Rn)
‖∇u‖θL1(Rn)

where

(
1

p
, s) = (1− θ)( 1

p1
, s1) + θ(1, 1)

holds for all θ ∈ (0, 1) if s1 <
1
p1

(by Cohen, Dahmen, Daubechies, DeVore) but
fails for all θ ∈ (0, 1) if s1 ≥ 1

p1
(Brezis, Mironescu).

s

1/p

Ẇ1,1

Ḃ
s1
p1

Ḃs
p



Application 3: Another Gagliardo-Nirenberg interpolation
I In Rn, we might consider Gagliardo-Nirenberg interpolation

between Ẇ 1,1 and Ḃs1
p1 where 0 < s1 < 1 and 1 < p1 <∞.

I The anticipated inequality

[u]Ḃsp(Rn)
.θ,s1,p1,n [u]1−θ

Ḃ
s1
p1

(Rn)
‖∇u‖θL1(Rn)

where

(
1

p
, s) = (1− θ)( 1

p1
, s1) + θ(1, 1)

holds for all θ ∈ (0, 1) if s1 <
1
p1

(by Cohen, Dahmen, Daubechies, DeVore) but
fails for all θ ∈ (0, 1) if s1 ≥ 1

p1
(Brezis, Mironescu).

s

1/p

Ẇ1,1

Ḃ
s1
p1

/∈ Ḃs
p



[u]Ḃsp(Rn)
.θ,s1,p1,n [u]1−θ

Ḃ
s1
p1

(Rn)
‖∇u‖θL1(Rn) false for s1 ≥

1

p1

I Recall

[u]Ḃsp(Rn)
's,p,n

∥∥∥u(y)− u(x)

|y − x|s+
n
p

∥∥∥
Lp(R2n)

.

I From our earlier weak-Lp estimate for the modified difference
quotient, we obtain the following substitute:

Corollary (Brezis, Van Schaftingen, Yung)

There exists a dimensional constant C = C(n) such that for any
0 < s1 < 1, 1 < p1 <∞ with s1 ≥ 1

p1
, and any θ ∈ (0, 1), one has∥∥∥u(y)− u(x)

|y − x|s+
n
p

∥∥∥
Lp,∞(R2n)

≤ C
∥∥∥ u(y)− u(x)

|y − x|s1+
n
p1

∥∥∥1−θ
Lp1 (R2n)

‖∇u‖θL1(Rn)

if u ∈ C∞c (Rn) and (1p , s) = (1− θ)( 1
p1
, s1) + θ(1, 1).



Interlude: A formula for Lp norm

I Recall our main results: if Qu(x, y) := |u(y)−u(x)|
|y−x|1+

n
p

, then

‖Qu(x, y)‖Lp,∞(Rn) ' ‖∇u‖Lp(Rn)

and

lim
λ→∞

(
λ|Eλ|

)1/p
=
(k(p, n)

n

)1/p
‖∇u‖Lp(Rn)

where
Eλ :=

{
(x, y) ∈ R2n : Qu(x, y) > λ

}
.

I What if we consider ‖u‖Lp(Rn) in place of ‖∇u‖Lp(Rn)?
I One possible difference quotient to look at would then be

|u(y)− u(x)|
|y − x|

n
p

.



I Dominguez and Milman observed the existence of a
dimensional constant C = C(n) so that∥∥∥u(y)− u(x)

|y − x|
n
p

∥∥∥
Lp,∞(R2n)

≤ C1/p‖u‖Lp(Rn)

for all 1 ≤ p <∞ and u ∈ Lp(Rn).
I Reversed inequality established in work with Qingsong Gu:

Theorem (Gu, Yung)

If 1 ≤ p <∞ and u ∈ Lp(Rn), then

lim
λ→0+

(
λ|Eλ|1/p

)
= (2Vn)1/p‖u‖Lp(Rn)

where

Eλ :=
{

(x, y) ∈ R2n :
|u(y)− u(x)|
|y − x|

n
p

> λ
}

and Vn is the volume of the unit ball in Rn.

I Note that the hypothesis u ∈ Lp(Rn) is necessary, for the left
hand side is zero and the right hand side is infinite if u ≡ 1.



Besov meets weak-Lp

I The above considerations led us to consider∥∥∥u(y)− u(x)

|y − x|s+
n
p

∥∥∥
Lp,∞(R2n)

if 0 < s < 1 and 1 < p <∞.

I This quantity is in general smaller than [u]Ḃsp(Rn)
.

I It also arises in various substitutes when fractional Sobolev
embeddings / Gagliardo-Nirenberg interpolations fail.

I But what else can we say about it?

I In joint work with Andreas Seeger, Brian Street and Jean Van
Schaftingen, we clarify the role of this quantity.

I The first result is a Fourier analytic characterization.



I It relies on the observation that the Besov (semi)norm

[u]Ḃsp(Rn)
=
(∑
j∈Z
‖2js∆ju‖pLp(Rn)

)1/p
can also be rewritten as

‖2j(s+
n
p
)
∆ju(x)‖Lp(µ)

where µ is the measure on Rn × Z given by

µ(E × {j}) = 2−jn|E| for all measurable E ⊂ Rn.
I Indeed,

‖2j(s+
n
p
)
∆ju(x)‖pLp(µ)

=

∫ ∞
0

λpµ{(x, j) : 2
j(s+n

p
)|∆ju(x)| > λ}dλ

λ

=
∑
j∈Z

∫ ∞
0

2−jnλp|{x : 2js|∆ju(x)| > 2
−j n

p λ}|dλ
λ

=
∑
j∈Z
‖2js∆ju‖pLp(Rn).



Theorem (Seeger, Street, Van Schaftingen, Yung)

If u ∈ C∞c (Rn) (or a Schwartz function on Rn), then∥∥∥u(y)− u(x)

|y − x|s+
n
p

∥∥∥
Lp,∞(R2n)

' ‖2j(s+
n
p
)
∆ju(x)‖Lp,∞(µ)

whenever s ∈ (0, 1), 1 < p <∞, and µ is the measure on Rn × Z
given by

µ(E × {j}) = 2−jn|E| for all measurable E ⊂ Rn, j ∈ Z.

More explicitly, the norm on the right hand side is

sup
λ>0

(∑
j∈Z

2−jnλp|{x ∈ Rn : |2js∆ju(x)| > 2
−j n

p λ}|
)1/p

.

I Such distribution of weight into the measure has appeared
also in work on radial Fourier multipliers, and Fourier
restriction theorems with affine arclength measure on curves.



I The second result is a characterization via real interpolation,
that follows from the first theorem.

Theorem (Seeger, Street, Van Schaftingen, Yung)

If u ∈ C∞c (Rn) (or a Schwartz function on Rn), then∥∥∥u(y)− u(x)

|y − x|s+
n
p

∥∥∥
Lp,∞(R2n)

' ‖u‖[Ḃs1p1 ,Ḃ
s2
p2

]θ,∞

whenever s1, s2 ∈ (0, 1), p1, p2 ∈ (1,∞), θ ∈ (0, 1),

(
1

p
, s) = (1− θ)( 1

p1
, s1) + θ(

1

p2
, s2) and

s1 − s2
1
p1
− 1

p2

= −n.

s

1/p

( 1
p
, s)

Ḃ
s1
p1

Ḃ
s2
p2

slope = −n



I The second result is a characterization via real interpolation,
that follows from the first theorem.

Theorem (Seeger, Street, Van Schaftingen, Yung)

If u ∈ C∞c (Rn) (or a Schwartz function on Rn), then∥∥∥u(y)− u(x)

|y − x|s+
n
p

∥∥∥
Lp,∞(R2n)

' ‖u‖[Ḃs1p1 ,Ḃ
s2
p2

]θ,∞

whenever s1, s2 ∈ (0, 1), p1, p2 ∈ (1,∞), θ ∈ (0, 1),

(
1

p
, s) = (1− θ)( 1

p1
, s1) + θ(

1

p2
, s2) and

s1 − s2
1
p1
− 1

p2

= −n.

(The norm on the right hand side is

sup
t>0

(
t−θ inf

{
‖u1‖Ḃs1p1 + t‖u2‖Ḃs2p2 : u = u1 + u2

})
that arises from the real method of interpolation.)



Back to the beginning (with Brezis and Van Schaftingen)
I Recall while the Lp norm of the modified difference quotient

Qu(x, y) :=
|u(y)− u(x)|
|y − x|1+

n
p

on R2n is usually infinite, its weak-Lp norm on R2n is indeed
comparable to ‖∇u‖Lp(Rn) for 1 ≤ p <∞.

I Let’s prove this when n = p = 1, i.e.∥∥∥∥u(y)− u(x)

|y − x|2

∥∥∥∥
Lp,∞(R2)

. ‖u′‖L1(R).

(Passage to higher dimensions possible via the method of
rotation.)

I The proof relies on the Vitali covering lemma in 1-dimension:
If X is a collection of intervals on R with supI∈X |I| <∞,
then there exists a subcollection Y ⊂ X such that
all intervals from Y are pairwise disjoint up to end-points, and
every I ∈ X is contained in 5J for some J ∈ Y .



I Goal: Show that for u ∈ C∞c (R) and λ > 0,

|Eλ| .
1

λ
‖u′‖L1(R)

where Eλ :=
{

(x, y) ∈ R2 : |u(y)−u(x)||y−x|2 > λ
}

.

I Let X be the collection of intervals [x, y] where (x, y) ∈ Eλ.

I Vitali covering lemma applies to X because for every I ∈ X,

|I| <
(

1

λ

∫
I
|u′|
)1/2

≤
( 1

λ
‖u′‖L1(R)

)1/2
.

I We obtain a subcollection Y ⊂ X such that all intervals from
Y are pairwise disjoint up to end-points, and every I ∈ X is
contained in 5J for some J ∈ Y .

I As a result, Eλ ⊂
⋃
I∈X

I × I ⊂
⋃
J∈Y

(5J)× (5J), and

|Eλ| ≤
∑
J∈Y
|5J |2 ≤ 25

∑
J∈Y

1

λ

∫
J
|u′| ≤ 25

λ
‖u′‖L1(R).



Another limiting equality for ‖∇u‖Lp(Rn)

I Now recall for u ∈ C∞c (Rn), if

Eλ :=
{

(x, y) ∈ R2n :
|u(y)− u(x)|
|y − x|1+

n
p

> λ
}
,

then for 1 ≤ p <∞,

lim
λ→∞

(
λ|Eλ|1/p

)
=
(k(p, n)

n

)1/p
‖∇u‖Lp(Rn).

I This is strikingly similar to a consequence of the BBM formula
of Bourgain, Brezis and Mironescu (2001), which says

lim
s→1−

(1−s)1/p
∥∥∥u(y)− u(x)

|y − x|s+
n
p

∥∥∥
Lp(R2n)

=
(k(p, n)

p

)1/p
‖∇u‖Lp(Rn).

(thanks to Armin Schikorra who showed me this consequence;

incidentally, this shows that
∥∥∥u(y)−u(x)
|y−x|s+

n
p

∥∥∥
Lp(R2n)

blows up like

(1− s)−1/p as s→ 1−, unless u is a constant).



Closing remarks
I Recently, Oscar Dominguez and Mario Milman have been able

to put some of the above results in an abstract framework.
I They proved that if X is a σ-finite measure space, 1 ≤ p <∞

and {Tt}t>0 is a family of sublinear operators on Lp(X), then
for all f ∈ Lp(X) satisfying

‖Ttf − f‖L∞(X) .f t
1/p for all t > 0,

we have
lim
λ→∞

(
λ|Eλ|1/p

)
= ‖f‖Lp(X),

where

Eλ :=
{

(x, t) ∈ X × (0,∞) :
|Ttf(x)|
t1/p

> λ
}
.

I They found an impressive list of applications, from a
characterization of ‖∆u‖Lp(Rn) and ‖∂x1∂x2u‖Lp(R2), to
relations between ‖f‖Lp(Rn) with level set estimates for
spherical averages of f for p > n

n−1 , to ergodic theory, etc.


