Yau's Gradient Estimate

Theorem 1. If M is a complete Riemannian manifold of dimension $n \geq 2$ with Ric $\geq-(n-1) K$ for some $K \geq 0$, then any positive harmonic function on B_{r} satisfies

$$
\sup _{B_{r / 2}} \frac{|\nabla u|}{u} \leq C_{n}\left(\frac{1}{r}+\sqrt{K}\right)
$$

where $B_{r}=\exp B_{r}$ denotes any geodesic ball of radius r.
Proof. Let x_{0} be the center of B_{r} and $\rho(x)$ denote the distance between x and x_{0}. Then the key is to consider the function

$$
F(x)=\left(r^{2}-\rho^{2}\right) \frac{|\nabla u|}{u}
$$

on B_{r}. It suffices to show that F is bounded on B_{r} by $C_{n} r^{2}\left(\frac{1}{r}+\sqrt{K}\right)$, for if we restrict to $B_{r / 2}$ then $r^{2}-\rho^{2}$ is bounded below by a multiple of r^{2}. To estimate F, we argue at a point where F assumes its maximum: suppose F attains its maximum at a point y, which has to be in the interior of B_{r} since $F=0$ on the boundary. Then at y, unless y is a cut point of x, we have F smooth near y and

$$
\begin{aligned}
& \nabla F(y)=0 \\
& \Delta F(y) \leq 0 .
\end{aligned}
$$

This says at y,

$$
\begin{gather*}
\left(r^{2}-\rho^{2}\right) \nabla \phi-\phi \nabla \rho^{2}=0 \tag{1}\\
\left(r^{2}-\rho^{2}\right) \Delta \phi-\phi \Delta \rho^{2}-2 \nabla \rho^{2} \cdot \nabla \phi \leq 0 \tag{2}
\end{gather*}
$$

where

$$
\phi=\frac{|\nabla u|}{u} .
$$

Substitute (1) into (2), we get

$$
\begin{equation*}
\left(r^{2}-\rho^{2}\right) \Delta \phi-\phi \Delta \rho^{2}-8 \rho^{2} \frac{\phi}{r^{2}-\rho^{2}} \leq 0 \tag{3}
\end{equation*}
$$

since $\left|\nabla \rho^{2}\right|=|2 \rho \nabla \rho|=2 \rho$. Now $\Delta \rho^{2}$ can be controlled rather easily by the geometry of M : by Laplacian comparison theorem,

$$
\Delta \rho^{2}=2 \rho \Delta \rho+2|\nabla \rho|^{2}=2 \rho \Delta \rho+2 \leq C_{n}(1+\sqrt{K} \rho)
$$

It turns out that one can estimate $\Delta \phi$ from below by high powers of ϕ; it would then follow from (3) that a high power of $\phi(y)$ is controlled by a small power of $\phi(y)$, and from that one can obtain a bound of $|F(y)|$. We proceed as follows:

First,

$$
|\nabla u|=\phi u,
$$

so

$$
\Delta|\nabla u|=u \Delta \phi+\phi \Delta u+2 \nabla u \cdot \nabla \phi
$$

i.e.

$$
\Delta \phi=\frac{\Delta|\nabla u|}{u}-\frac{2 \nabla u \cdot \nabla \phi}{u}
$$

since $\Delta u=0$. To estimate $\Delta|\nabla u|$, we look at $\Delta|\nabla u|^{2}$: On one hand

$$
\Delta|\nabla u|^{2}=2|\nabla u| \Delta|\nabla u|+2|\nabla| \nabla u| |^{2}=2|\nabla u| \Delta|\nabla u|+2\left|u_{i j} \frac{u_{j}}{|\nabla u|}\right|^{2}
$$

and on the other

$$
\begin{aligned}
\Delta|\nabla u|^{2} & =2 u_{i j}^{2}+2 u_{i j j} u_{i}=2 u_{i j}^{2}+2 u_{j j i} u_{i}+2 \operatorname{Ric}_{i j} u_{i} u_{j} \\
& \geq 2 u_{i j}^{2}-2(n-1) K|\nabla u|^{2}
\end{aligned}
$$

because $\Delta u=0$. Note that $U=\left(u_{i j}\right)$ is a trace-free symmetric matrix. Hence its any eigenvalue is bounded by $(n-1) / n$ times the trace of $U^{*} U$. Indeed let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of U. Then

$$
\lambda_{1}^{2}=\left(\lambda_{2}+\cdots+\lambda_{n}\right)^{2} \leq(n-1)\left(\lambda_{2}^{2}+\cdots+\lambda_{n}^{2}\right)
$$

so

$$
n \lambda_{1}^{2} \leq(n-1)\left(\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}\right)
$$

(Geometrically, this says if λ is a point on the n-dimensional unit sphere that lies in the hyperplane $\lambda_{1}+\cdots+\lambda_{n}=0$ then $\left|\lambda_{1}\right|$ cannot be as big as 1 ; it is at most $(n-1) / n$. This trick is useful as long as the trace of U is very small, say bounded by some ε_{n}, in absolute value.) As a result, combining the above, if we write the unit vector $\frac{u_{j}}{|\nabla u|}=\sum a_{j} e_{j}$ in an orthonormal eigenbasis e_{j} of $\left(u_{i j}\right)$ (so $\sum a_{j}^{2}=1$), then

$$
\begin{aligned}
|\nabla u| \Delta|\nabla u| & \geq u_{i j}^{2}-(n-1) K|\nabla u|^{2}-\left|u_{i j} \frac{u_{j}}{|\nabla u|}\right|^{2} \\
& =u_{i j}^{2}-(n-1) K|\nabla u|^{2}-\lambda_{j}^{2} a_{j}^{2} \\
& \geq \frac{n}{n-1} \lambda_{1}^{2}-(n-1) K|\nabla u|^{2}-\lambda_{j}^{2} a_{j}^{2} \\
& \geq \frac{n}{n-1} \lambda_{j}^{2} a_{j}^{2}-(n-1) K|\nabla u|^{2}-\lambda_{j}^{2} a_{j}^{2} \\
& =\frac{1}{n-1} \lambda_{j}^{2} a_{j}^{2}-(n-1) K|\nabla u|^{2} \\
& =\frac{|\nabla| \nabla u \|^{2}}{n-1}-(n-1) K|\nabla u|^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Delta \phi & \geq \frac{1}{|\nabla u| u}\left(\frac{|\nabla| \nabla u| |^{2}}{n-1}-(n-1) K|\nabla u|^{2}\right)-\frac{2 \nabla u \cdot \nabla \phi}{u} \\
& =\frac{|\nabla| \nabla u| |^{2}}{(n-1)|\nabla u| u}-(n-1) K \phi-\frac{2 \nabla u \cdot \nabla \phi}{u}
\end{aligned}
$$

Notice how we squeezed out the first positive term on the right hand side using
$\Delta u=0$. This term will cancel with part of the third term as follows:

$$
\begin{aligned}
\frac{\nabla u \cdot \nabla \phi}{u} & =\frac{\nabla|\nabla u| \cdot \nabla u}{u}-\frac{|\nabla u|^{3}}{u^{3}} \\
& \leq \frac{|\nabla| \nabla u| ||\nabla u|}{u}-\phi^{3} \\
& =\frac{|\nabla| \nabla u| |}{(|\nabla u| u)^{\frac{1}{2}}} \frac{|\nabla u|^{\frac{3}{2}}}{u^{\frac{3}{2}}}-\phi^{3} \\
& \leq \frac{1}{2}\left(\frac{\left.|\nabla| \nabla u\right|^{2}}{|\nabla u| u}+\phi^{3}\right)-\phi^{3} \\
& =\frac{\left.|\nabla| \nabla u\right|^{2}}{2|\nabla u| u}-\frac{1}{2} \phi^{3} .
\end{aligned}
$$

Hence

$$
\Delta \phi \geq-(n-1) K \phi-\left(2-\frac{2}{n-1}\right) \frac{\nabla u \cdot \nabla \phi}{u}+\frac{1}{n-1} \phi^{3}
$$

and this is how $\Delta \phi$ is bounded below by a high power of ϕ. Now the second term is at least $-C_{n} \phi|\nabla \phi|$, which at y is

$$
-C_{n} \frac{\phi^{2}\left|\nabla \rho^{2}\right|}{r^{2}-\rho^{2}}=-C_{n} \frac{\phi^{2} \rho}{r^{2}-\rho^{2}}
$$

by (1). Hence at y we have

$$
\Delta \phi \geq-(n-1) K \phi-C_{n} \frac{\phi^{2} \rho}{r^{2}-\rho^{2}}+\frac{1}{n-1} \phi^{3}
$$

and from (3)

$$
\begin{aligned}
& \left(r^{2}-\rho^{2}\right)^{2}\left(-(n-1) K \phi-C_{n} \frac{\phi^{2} \rho}{r^{2}-\rho^{2}}+\frac{1}{n-1} \phi^{3}\right) \\
\leq & C_{n} \phi(1+\sqrt{K} \rho)\left(r^{2}-\rho^{2}\right)+8 \rho^{2} \phi
\end{aligned}
$$

Dividing through by ϕ, and collecting terms,

$$
\begin{aligned}
\frac{1}{n-1} F^{2} & \leq C_{n} r F+r^{2}\left((n-1) K r^{2}+C_{n}(1+\sqrt{K} r)+8\right) \\
& \leq C_{n}\left(r F+r^{2}(1+\sqrt{K} r)^{2}\right)
\end{aligned}
$$

from which one gets

$$
|F(y)| \leq C_{n} r^{2}(1+\sqrt{K} r)
$$

Hence we are done in the case when y is not a cut point of x_{0}. Note how geometry of M (bound of Ricci curvature) enters only via the Laplacian comparison theorem and the Ricci formula for $u_{i j j}$.

If y is a cut point of x_{0}, then take x_{1} to be a point along a minimizing geodesic from x_{0} to y that is close to x_{1}. Then y is not a cut point of x_{1}, and we can run the above argument for the support function

$$
F_{1}(x)=\left(r^{2}-\left(d\left(x, x_{1}\right)+d\left(x_{1}, x_{0}\right)\right)^{2}\right) \phi(x)
$$

instead. Note $F_{1}(x) \leq F(x)$ and $F_{1}(y)=F(y)$, so y is still a maximum point of F_{1}, and F_{1} is smooth near y. This completes the proof in general.

