Yau’s Gradient Estimate

Theorem 1. If M is a complete Riemannian manifold of dimension n > 2 with
Ric > —(n — 1)K for some K > 0, then any positive harmonic function on B,
satisfies
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where B, = exp B, denotes any geodesic ball of radius r.
Proof. Let xy be the center of B, and p(x) denote the distance between x and
2o. Then the key is to consider the function
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on B,. Tt suffices to show that F is bounded on B, by C,,r? (% + \/I?), for if we

restrict to B, /o then r?2 — p? is bounded below by a multiple of 2. To estimate
F, we argue at a point where F' assumes its maximum: suppose F' attains its
maximum at a point y, which has to be in the interior of B, since F' = 0 on the
boundary. Then at y, unless y is a cut point of x, we have F' smooth near y and

VF(y) =0,
AF(y) <0.
This says at vy,
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Substitute (1) into (2), we get
¢
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since |Vp?| = |2pVp| = 2p. Now Ap? can be controlled rather easily by the
geometry of M: by Laplacian comparison theorem,

Ap? = 2pAp+2|Vp|? = 2pAp+2 < C,(1 + VEKp).

It turns out that one can estimate A¢ from below by high powers of ¢; it would
then follow from (3) that a high power of ¢(y) is controlled by a small power of
o(y), and from that one can obtain a bound of |F'(y)|. We proceed as follows:
First,
Vu| = ¢u,
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since Au = 0. To estimate A|Vu|, we look at A|Vu|?: On one hand
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and on the other
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because Au = 0. Note that U = (u;;) is a trace-free symmetric matrix. Hence
its any eigenvalue is bounded by (n — 1)/n times the trace of U*U. Indeed let
A1, ..., Ay be the eigenvalues of U. Then

M=+ +X)2<(n=1)A+-+A2)
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nA < (n =1 (A + -+ A0).

(Geometrically, this says if A is a point on the n-dimensional unit sphere that
lies in the hyperplane A; + --- + A, = 0 then |A;| cannot be as big as 1; it is at
most (n — 1)/n. This trick is useful as long as the trace of U is very small, say
bounded by some &, in absolute value.) As a result, combining the above, if
we write the unit vector i = >~ aje; in an orthonormal eigenbasis e; of (u;;)
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Notice how we squeezed out the first positive term on the right hand side using



Awu = 0. This term will cancel with part of the third term as follows:
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Hence

n—1 U n—1

Ap> —(n—1)Ké— (2 pe

and this is how A¢ is bounded below by a high power of ¢. Now the second
term is at least —C,,¢|V¢|, which at y is
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by (1). Hence at y we have
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and from (3)
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Dividing through by ¢, and collecting terms,
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from which one gets

|F(y)| < Cor®(1+ VKT).

Hence we are done in the case when y is not a cut point of zg. Note how geom-
etry of M (bound of Ricci curvature) enters only via the Laplacian comparison
theorem and the Ricci formula for u;;;.

If y is a cut point of xg, then take x; to be a point along a minimizing
geodesic from xg to y that is close to x1. Then y is not a cut point of z1, and
we can run the above argument for the support function

Fi(x) = (r2 — (d(z,z1) + d(xl,xo))Q) o(x)

instead. Note Fy(z) < F(x) and Fi(y) = F(y), so y is still a maximum point
of F1, and F} is smooth near y. This completes the proof in general. O



