Yau's Gradient Estimate

Theorem 1. If M is a complete Riemannian manifold of dimension $n \ge 2$ with $Ric \ge -(n-1)K$ for some $K \ge 0$, then any positive harmonic function on B_r satisfies

$$\sup_{B_{r/2}} \frac{|\nabla u|}{u} \le C_n \left(\frac{1}{r} + \sqrt{K}\right),$$

where $B_r = \exp B_r$ denotes any geodesic ball of radius r.

Proof. Let x_0 be the center of B_r and $\rho(x)$ denote the distance between x and x_0 . Then the key is to consider the function

$$F(x) = (r^2 - \rho^2) \frac{|\nabla u|}{u}$$

on B_r . It suffices to show that F is bounded on B_r by $C_n r^2 \left(\frac{1}{r} + \sqrt{K}\right)$, for if we restrict to $B_{r/2}$ then $r^2 - \rho^2$ is bounded below by a multiple of r^2 . To estimate F, we argue at a point where F assumes its maximum: suppose F attains its maximum at a point y, which has to be in the interior of B_r since F = 0 on the boundary. Then at y, unless y is a cut point of x, we have F smooth near y and

$$abla F(y) = 0,$$

 $\Delta F(y) \le 0.$

This says at y,

$$(r^2 - \rho^2)\nabla\phi - \phi\nabla\rho^2 = 0 \tag{1}$$

$$(r^2 - \rho^2)\Delta\phi - \phi\Delta\rho^2 - 2\nabla\rho^2 \cdot \nabla\phi \le 0$$
⁽²⁾

where

$$\phi = \frac{|\nabla u|}{u}.$$

Substitute (1) into (2), we get

$$(r^{2} - \rho^{2})\Delta\phi - \phi\Delta\rho^{2} - 8\rho^{2}\frac{\phi}{r^{2} - \rho^{2}} \le 0$$
 (3)

since $|\nabla \rho^2| = |2\rho \nabla \rho| = 2\rho$. Now $\Delta \rho^2$ can be controlled rather easily by the geometry of M: by Laplacian comparison theorem,

$$\Delta \rho^2 = 2\rho \Delta \rho + 2|\nabla \rho|^2 = 2\rho \Delta \rho + 2 \le C_n (1 + \sqrt{K}\rho).$$

It turns out that one can estimate $\Delta \phi$ from below by high powers of ϕ ; it would then follow from (3) that a high power of $\phi(y)$ is controlled by a small power of $\phi(y)$, and from that one can obtain a bound of |F(y)|. We proceed as follows:

First,

 $|\nabla u| = \phi u,$

 \mathbf{so}

$$\Delta |\nabla u| = u\Delta\phi + \phi\Delta u + 2\nabla u \cdot \nabla\phi,$$

i.e.

$$\Delta \phi = \frac{\Delta |\nabla u|}{u} - \frac{2 \nabla u \cdot \nabla \phi}{u}$$

since $\Delta u = 0$. To estimate $\Delta |\nabla u|$, we look at $\Delta |\nabla u|^2$: On one hand

$$\Delta |\nabla u|^2 = 2|\nabla u|\Delta |\nabla u| + 2|\nabla |\nabla u||^2 = 2|\nabla u|\Delta |\nabla u| + 2\left|u_{ij}\frac{u_j}{|\nabla u|}\right|^2$$

and on the other

 \mathbf{SO}

$$\begin{aligned} \Delta |\nabla u|^2 &= 2u_{ij}^2 + 2u_{ijj}u_i = 2u_{ij}^2 + 2u_{jji}u_i + 2\operatorname{Ric}_{ij}u_iu_j \\ &\geq 2u_{ij}^2 - 2(n-1)K|\nabla u|^2 \end{aligned}$$

because $\Delta u = 0$. Note that $U = (u_{ij})$ is a trace-free symmetric matrix. Hence its any eigenvalue is bounded by (n-1)/n times the trace of U^*U . Indeed let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of U. Then

$$\lambda_1^2 = (\lambda_2 + \dots + \lambda_n)^2 \le (n-1)(\lambda_2^2 + \dots + \lambda_n^2)$$
$$n\lambda_1^2 \le (n-1)(\lambda_1^2 + \dots + \lambda_n^2).$$

(Geometrically, this says if λ is a point on the *n*-dimensional unit sphere that lies in the hyperplane $\lambda_1 + \cdots + \lambda_n = 0$ then $|\lambda_1|$ cannot be as big as 1; it is at most (n-1)/n. This trick is useful as long as the trace of U is very small, say bounded by some ε_n , in absolute value.) As a result, combining the above, if we write the unit vector $\frac{u_j}{|\nabla u|} = \sum a_j e_j$ in an orthonormal eigenbasis e_j of (u_{ij}) (so $\sum a_j^2 = 1$), then

$$\begin{split} \nabla u |\Delta| \nabla u| &\geq u_{ij}^2 - (n-1)K |\nabla u|^2 - \left| u_{ij} \frac{u_j}{|\nabla u|} \right|^2 \\ &= u_{ij}^2 - (n-1)K |\nabla u|^2 - \lambda_j^2 a_j^2 \\ &\geq \frac{n}{n-1} \lambda_1^2 - (n-1)K |\nabla u|^2 - \lambda_j^2 a_j^2 \\ &\geq \frac{n}{n-1} \lambda_j^2 a_j^2 - (n-1)K |\nabla u|^2 - \lambda_j^2 a_j^2 \\ &= \frac{1}{n-1} \lambda_j^2 a_j^2 - (n-1)K |\nabla u|^2 \\ &= \frac{|\nabla|\nabla u||^2}{n-1} - (n-1)K |\nabla u|^2. \end{split}$$

Hence

$$\begin{split} \Delta \phi &\geq \frac{1}{|\nabla u|u} \left(\frac{|\nabla |\nabla u||^2}{n-1} - (n-1)K|\nabla u|^2 \right) - \frac{2\nabla u \cdot \nabla \phi}{u} \\ &= \frac{|\nabla |\nabla u||^2}{(n-1)|\nabla u|u} - (n-1)K\phi - \frac{2\nabla u \cdot \nabla \phi}{u}. \end{split}$$

Notice how we squeezed out the first positive term on the right hand side using

 $\Delta u = 0$. This term will cancel with part of the third term as follows:

$$\begin{split} \frac{\nabla u \cdot \nabla \phi}{u} &= \frac{\nabla |\nabla u| \cdot \nabla u}{u} - \frac{|\nabla u|^3}{u^3} \\ &\leq \frac{|\nabla |\nabla u|| |\nabla u|}{u} - \phi^3 \\ &= \frac{|\nabla |\nabla u||}{(|\nabla u|u)^{\frac{1}{2}}} \frac{|\nabla u|^{\frac{3}{2}}}{u^{\frac{3}{2}}} - \phi^3 \\ &\leq \frac{1}{2} \left(\frac{|\nabla |\nabla u||^2}{|\nabla u|u} + \phi^3 \right) - \phi^3 \\ &= \frac{|\nabla |\nabla u||^2}{2|\nabla u|u} - \frac{1}{2}\phi^3. \end{split}$$

Hence

$$\Delta \phi \ge -(n-1)K\phi - \left(2 - \frac{2}{n-1}\right)\frac{\nabla u \cdot \nabla \phi}{u} + \frac{1}{n-1}\phi^3$$

and this is how $\Delta \phi$ is bounded below by a high power of ϕ . Now the second term is at least $-C_n \phi |\nabla \phi|$, which at y is

$$-C_n \frac{\phi^2 |\nabla \rho^2|}{r^2 - \rho^2} = -C_n \frac{\phi^2 \rho}{r^2 - \rho^2}$$

by (1). Hence at y we have

$$\Delta \phi \ge -(n-1)K\phi - C_n \frac{\phi^2 \rho}{r^2 - \rho^2} + \frac{1}{n-1}\phi^3$$

and from (3)

$$(r^{2} - \rho^{2})^{2} \left(-(n-1)K\phi - C_{n}\frac{\phi^{2}\rho}{r^{2} - \rho^{2}} + \frac{1}{n-1}\phi^{3} \right)$$

$$\leq C_{n}\phi(1 + \sqrt{K}\rho)(r^{2} - \rho^{2}) + 8\rho^{2}\phi.$$

Dividing through by ϕ , and collecting terms,

$$\frac{1}{n-1}F^2 \le C_n rF + r^2 \left((n-1)Kr^2 + C_n(1+\sqrt{K}r) + 8 \right)$$
$$\le C_n \left(rF + r^2(1+\sqrt{K}r)^2 \right)$$

from which one gets

$$|F(y)| \le C_n r^2 (1 + \sqrt{K}r).$$

Hence we are done in the case when y is not a cut point of x_0 . Note how geometry of M (bound of Ricci curvature) enters only via the Laplacian comparison theorem and the Ricci formula for u_{ijj} .

If y is a cut point of x_0 , then take x_1 to be a point along a minimizing geodesic from x_0 to y that is close to x_1 . Then y is not a cut point of x_1 , and we can run the above argument for the support function

$$F_1(x) = \left(r^2 - (d(x, x_1) + d(x_1, x_0))^2\right)\phi(x)$$

instead. Note $F_1(x) \leq F(x)$ and $F_1(y) = F(y)$, so y is still a maximum point of F_1 , and F_1 is smooth near y. This completes the proof in general. \Box