
Yau’s Gradient Estimate

Theorem 1. If M is a complete Riemannian manifold of dimension n ≥ 2 with
Ric ≥ −(n− 1)K for some K ≥ 0, then any positive harmonic function on Br

satisfies

sup
Br/2

|∇u|
u
≤ Cn

(
1
r

+
√
K

)
,

where Br = expBr denotes any geodesic ball of radius r.

Proof. Let x0 be the center of Br and ρ(x) denote the distance between x and
x0. Then the key is to consider the function

F (x) = (r2 − ρ2)
|∇u|
u

on Br. It suffices to show that F is bounded on Br by Cnr
2
(

1
r +
√
K
)

, for if we

restrict to Br/2 then r2 − ρ2 is bounded below by a multiple of r2. To estimate
F , we argue at a point where F assumes its maximum: suppose F attains its
maximum at a point y, which has to be in the interior of Br since F = 0 on the
boundary. Then at y, unless y is a cut point of x, we have F smooth near y and

∇F (y) = 0,

∆F (y) ≤ 0.

This says at y,
(r2 − ρ2)∇φ− φ∇ρ2 = 0 (1)

(r2 − ρ2)∆φ− φ∆ρ2 − 2∇ρ2 · ∇φ ≤ 0 (2)

where

φ =
|∇u|
u

.

Substitute (1) into (2), we get

(r2 − ρ2)∆φ− φ∆ρ2 − 8ρ2 φ

r2 − ρ2
≤ 0 (3)

since |∇ρ2| = |2ρ∇ρ| = 2ρ. Now ∆ρ2 can be controlled rather easily by the
geometry of M : by Laplacian comparison theorem,

∆ρ2 = 2ρ∆ρ+ 2|∇ρ|2 = 2ρ∆ρ+ 2 ≤ Cn(1 +
√
Kρ).

It turns out that one can estimate ∆φ from below by high powers of φ; it would
then follow from (3) that a high power of φ(y) is controlled by a small power of
φ(y), and from that one can obtain a bound of |F (y)|. We proceed as follows:

First,
|∇u| = φu,

so
∆|∇u| = u∆φ+ φ∆u+ 2∇u · ∇φ,

i.e.

∆φ =
∆|∇u|
u

− 2∇u · ∇φ
u
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since ∆u = 0. To estimate ∆|∇u|, we look at ∆|∇u|2: On one hand

∆|∇u|2 = 2|∇u|∆|∇u|+ 2|∇|∇u||2 = 2|∇u|∆|∇u|+ 2
∣∣∣∣uij

uj

|∇u|

∣∣∣∣2
and on the other

∆|∇u|2 = 2u2
ij + 2uijjui = 2u2

ij + 2ujjiui + 2Ricijuiuj

≥ 2u2
ij − 2(n− 1)K|∇u|2

because ∆u = 0. Note that U = (uij) is a trace-free symmetric matrix. Hence
its any eigenvalue is bounded by (n− 1)/n times the trace of U∗U . Indeed let
λ1, . . . , λn be the eigenvalues of U . Then

λ2
1 = (λ2 + · · ·+ λn)2 ≤ (n− 1)(λ2

2 + · · ·+ λ2
n)

so
nλ2

1 ≤ (n− 1)(λ2
1 + · · ·+ λ2

n).

(Geometrically, this says if λ is a point on the n-dimensional unit sphere that
lies in the hyperplane λ1 + · · ·+ λn = 0 then |λ1| cannot be as big as 1; it is at
most (n− 1)/n. This trick is useful as long as the trace of U is very small, say
bounded by some εn, in absolute value.) As a result, combining the above, if
we write the unit vector uj

|∇u| =
∑
ajej in an orthonormal eigenbasis ej of (uij)

(so
∑
a2

j = 1), then

|∇u|∆|∇u| ≥ u2
ij − (n− 1)K|∇u|2 −

∣∣∣∣uij
uj

|∇u|

∣∣∣∣2
= u2

ij − (n− 1)K|∇u|2 − λ2
ja

2
j

≥ n

n− 1
λ2

1 − (n− 1)K|∇u|2 − λ2
ja

2
j

≥ n

n− 1
λ2

ja
2
j − (n− 1)K|∇u|2 − λ2

ja
2
j

=
1

n− 1
λ2

ja
2
j − (n− 1)K|∇u|2

=
|∇|∇u||2

n− 1
− (n− 1)K|∇u|2.

Hence

∆φ ≥ 1
|∇u|u

(
|∇|∇u||2

n− 1
− (n− 1)K|∇u|2

)
− 2∇u · ∇φ

u

=
|∇|∇u||2

(n− 1)|∇u|u
− (n− 1)Kφ− 2∇u · ∇φ

u
.

Notice how we squeezed out the first positive term on the right hand side using
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∆u = 0. This term will cancel with part of the third term as follows:

∇u · ∇φ
u

=
∇|∇u| · ∇u

u
− |∇u|

3

u3

≤ |∇|∇u|||∇u|
u

− φ3

=
|∇|∇u||

(|∇u|u)
1
2

|∇u| 32
u

3
2
− φ3

≤ 1
2

(
|∇|∇u||2

|∇u|u
+ φ3

)
− φ3

=
|∇|∇u||2

2|∇u|u
− 1

2
φ3.

Hence

∆φ ≥ −(n− 1)Kφ−
(

2− 2
n− 1

)
∇u · ∇φ

u
+

1
n− 1

φ3

and this is how ∆φ is bounded below by a high power of φ. Now the second
term is at least −Cnφ|∇φ|, which at y is

−Cn
φ2|∇ρ2|
r2 − ρ2

= −Cn
φ2ρ

r2 − ρ2

by (1). Hence at y we have

∆φ ≥ −(n− 1)Kφ− Cn
φ2ρ

r2 − ρ2
+

1
n− 1

φ3

and from (3)

(r2 − ρ2)2
(
−(n− 1)Kφ− Cn

φ2ρ

r2 − ρ2
+

1
n− 1

φ3

)
≤Cnφ(1 +

√
Kρ)(r2 − ρ2) + 8ρ2φ.

Dividing through by φ, and collecting terms,
1

n− 1
F 2 ≤ CnrF + r2

(
(n− 1)Kr2 + Cn(1 +

√
Kr) + 8

)
≤ Cn

(
rF + r2(1 +

√
Kr)2

)

from which one gets
|F (y)| ≤ Cnr

2(1 +
√
Kr).

Hence we are done in the case when y is not a cut point of x0. Note how geom-
etry of M (bound of Ricci curvature) enters only via the Laplacian comparison
theorem and the Ricci formula for uijj .

If y is a cut point of x0, then take x1 to be a point along a minimizing
geodesic from x0 to y that is close to x1. Then y is not a cut point of x1, and
we can run the above argument for the support function

F1(x) =
(
r2 − (d(x, x1) + d(x1, x0))2

)
φ(x)

instead. Note F1(x) ≤ F (x) and F1(y) = F (y), so y is still a maximum point
of F1, and F1 is smooth near y. This completes the proof in general.
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