
SHARP DISCRETE STRICHARTZ INEQUALITY IN 2 + 1 DIMENSIONS:
AN EXPOSITION

PO-LAM YUNG

In a beautiful paper [3], Herr and Kwak proved sharp discrete Strichartz inequality for the Schrödinger
equation on T2 := (R/2πZ)2:

Theorem 1 (Herr-Kwak). There is a universal constant c so that for any finite subsets S ⊂ Z2 and
any initial data F on T2 with Fourier support in S, we have1

(1) ∥eit∆F∥L4([0,2π]×T2) ≤ c(log#S)1/4∥F∥L2(T2).

The power of log#S is the best possible, as seen by Bourgain’s example [1] where S = [−M,M ]2∩Z2

and F (x) =
∑

ξ∈S e
ix·ξ; for a nice detailed explanation see Chapter 13.2 of Demeter [2].

For general finite set S ⊂ Z2, if F (x) =
∑

ξ∈S e
ix·ξ, then

∥eit∆F∥4L4([0,2π]×T2) =
∑

(ξ1,ξ2,ξ3,ξ4)∈S4

� 2π

0

�
T2

eix·(ξ1−ξ2+ξ3−ξ4)eit(|ξ1|
2−|ξ2|2+|ξ3|2−|ξ4|2)dxdt(2)

= (2π)3N(S)

where N(S) is the number of solutions (ξ1, ξ2, ξ3, ξ4) ∈ S4 to the equations

ξ1 + ξ3 = ξ2 + ξ4

|ξ1|2 + |ξ3|2 = |ξ2|2 + |ξ4|2.
The first (vector) equation says ξ1−ξ2 = ξ4−ξ3, i.e. (ξ1, ξ2, ξ3, ξ4) are vertices of a parallelogram. Under
this first equation, the second equation can be rearranged to say

2(ξ1 − ξ2) · (ξ1 − ξ4) = 0

so one of the angles of the parallelogram (ξ1, ξ2, ξ3, ξ4) is a right angle, i.e. (ξ1, ξ2, ξ3, ξ4) is a rectangle.
Thus N(S) counts the number of rectangles in S (henceforth by a rectangle in S we mean a quadruple
(ξ1, ξ2, ξ3, ξ4) ∈ S4 that forms a (possibly degenerate) rectangle). Pach and Sharir [5] proved that
N(S) ≲ #S2 log#S; in fact, using the Szemeredi-Trotter theorem for counting incidences of lines in
the plane, they showed that for any finite set S in the plane, there are at most O(#S2 log#S) many
right angled triangles whose vertices all lie in S. This establishes (1) when F (x) =

∑
ξ∈S e

ix·ξ; the issue

is that we do not know F extremizes the inequality (1) (the proof of Herr and Kwak does not proceed
this way).

Herr and Kwak actually proved a lot more than Theorem 1: the following is interesting even for the
example F mentioned above.

Theorem 2 (Herr-Kwak). There is a universal constant c so that for any finite subsets S ⊂ Z2 and
any initial data F on T2 supported on S, we have

(3) ∥eit∆F∥L4([0,T0]×T2) ≤ c∥F∥L2(T2) for T0 :=
1

log#S
.

Below we explain their proof of Theorem 2 (slightly reorganized to highlight some key ideas). In fact,
we show that #S in Theorem 2, and hence Theorem 1, can be sharpened to maxk∈Z#Sk where

Sk := {ξ ∈ Z2 : 2k ≤ |F̂ (ξ)| < 2k+1}.
1Throughout this note log x means max{1, loge x}.
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1. Initial reductions

The argument of Herr and Kwak is entirely Fourier analytic and takes advantage of the fact that the
exponent 4 is an even integer, so that one can access Fourier expansions of ∥eit∆F∥4L4([0,T0]×T2) similar to

(2). Once they passed to the Fourier side, they rely on geometric ideas surrounding the Szemeredi-Trotter
theorem from incidence geometry2. Hence it is useful to introduce some shorthands: we denote by Q the
set of all (possibly degenerate) parallelograms in Z2, i.e. the set of all quadruples (ξ1, ξ2, ξ3, ξ4) ∈ (Z2)4

with ξ1 + ξ3 = ξ2 + ξ4. For any integer τ , let Qτ be the set of all parallelograms Q ∈ Q with

τ = |ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ4|2 = 2(ξ1 − ξ2) · (ξ1 − ξ4).

In particular, Q0 is the set of all rectangles. Additionally, for Q = (ξ1, ξ2, ξ3, ξ4) ∈ Q and f : Z2 → C let
f(Q) = f(ξ1)f(ξ2)f(ξ3)f(ξ4).

The first reduction of Herr and Kwak is in proving the following proposition.

Lemma 1. For any initial data F on T2 Fourier supported on a finite set, and any 0 < T0 ≤ 2π,

(4) ∥eit∆F∥4L4([0,T0]×T2) ≲ T0

∑
Q∈Q0

|f(Q)|+ sup
M∈2N

1

M

∑
|τ |≃M

∑
Q∈Qτ

|f(Q)|.

where f(ξ) := F̂ (ξ) = 1
(2π)2

�
T2 F (x)e−ix·ξdx.

Proof. To prove the lemma, motivated by (2), one might be tempted to write

∥eit∆F∥4L4([0,T0]×T2) = (2π)2
∑

ξ1+ξ3=ξ2+ξ4

f(ξ1)f(ξ2)f(ξ3)f(ξ4)

� T0

0

eit(|ξ1|
2−|ξ2|2+|ξ3|2−|ξ4|2)dt,

and then bound the right hand side above by the right hand side of (4). But this is not what Herr and
Kwak did; instead, they pulled up a very nice trick, and estimated

∥eit∆F∥4L4([0,T0]×T2) ≤
1

T0

� 2T0

0

∥eit∆F∥4L4([0,T ]×T2)dT

(the inequality holds because

1

T0

� 2T0

0

� T

0

H(t)dt dT =

� 2T0

0

2T0 − t

T0

H(t)dt ≥
� T0

0

H(t)dt

for any nonnegative function H(t)). This gives

∥eit∆F∥4L4([0,T0]×T2) ≤ (2π)2
∑

ξ1+ξ3=ξ2+ξ4

f(ξ1)f(ξ2)f(ξ3)f(ξ4)
1

T0

� 2T0

0

� T

0

eit(|ξ1|
2−|ξ2|2+|ξ3|2−|ξ4|2)dt dT

Additionally, observe that in proving (4), without loss of generality one may assume that f is real,
because one can express f in terms of its real and imaginary parts. Under such hypothesis, one can take
the real parts of the above inequality, and obtain, with our earlier shorthands, that3

∥eit∆F∥4L4([0,T0]×T2) ≲ T0

∑
Q∈Q0

f(Q) +
∑

τ∈Z\{0}

1− cos(2T0τ)

T0τ 2

∑
Q∈Qτ

f(Q).

(4) then follows from the inequality
∣∣∣1−cos(2T0τ)

T0τ2

∣∣∣ ≲ min{T0,
1

T0τ2
}, together with

(5)
∑

τ∈Z\{0}

min{T0,
1

T0τ 2
}
∑
Q∈Qτ

|f(Q)| ≲
∑
M∈2N

min{T0M,
1

T0M
} 1

M

∑
|τ |≃M

∑
Q∈Qτ

|f(Q)|.

2It is worth noting that Herr and Kwak did not use induction on scales at all (contrary to proofs of decoupling for the
paraboloid in R3). On the other hand, they did use a pruning argument, as we will soon see.

3The key here is that via this additional averaging in time and reduction to real parts, we obtained an additional factor
of T0τ in the denominator of the second term, which we will use in (5). This gain is only possible by applying both tricks!
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It is actually possible to strengthen Lemma 1, and prove without resorting to real-valued f that

(4’) ∥eit∆F (x)∥4L4([0,T0]×T2) ≲ T0

∑
Q∈Q0

|f(Q)|+ sup
M∈2N

M≤1/T0

1

M

∑
|τ |≃M

∑
Q∈Qτ

|f(Q)|.

Indeed, let η(t) be a non-negative Schwartz function on R with Fourier support in [−1, 1], and satisfies
η(t) ≳ 1 on [0, 1]. For T0 > 0 let ηT0(t) :=

∑
n∈Z η(

t+2πn
T0

). ηT0 is a smooth 2π-periodic function of t,

and has Fourier support in Z ∩ [−T−1
0 , T−1

0 ] (as one can verify using the Poisson summation formula).
Writing u(x, t) = eit∆F (x), we have

∥u∥4L4([0,T0]×T2) ≲
�
T3

|u|4ηT0 = û ∗ û ∗ û ∗ û ∗ η̂T0(0)

=
∑
τ∈Z

û ∗ û ∗ û ∗ û(0, τ)η̂T0(−τ)

≲
∑
τ∈Z

|τ |≤1/T0

|û ∗ û ∗ û ∗ û(0, τ)|T0

where we used ∥η̂T0∥l∞(Z) ≤ ∥ηT0∥L1(T) = T0∥η∥L1(R) and the Fourier support of η̂T0 . Using further that∣∣∣û ∗ û ∗ û ∗ û(0, τ)
∣∣∣ = ∣∣∣ ∑

(ξ1,ξ2,ξ3,ξ4)∈Qτ

f(ξ1)f(ξ2)f(ξ3)f(ξ4)
∣∣∣ ≤ ∑

Q∈Qτ

|f(Q)|,

we have

∥u∥4L4([0,T0]×T2) ≲ T0

∑
Q∈Q0

|f(Q)|+ T0

∑
M∈2N

M≤1/T0

∑
|τ |≃M

∑
Q∈Qτ

|f(Q)|

which proves (4’) since T0

∑
M∈2N

M≤1/T0

M ≲ 1. □

2. From parallelograms to rectangles

Lemma 1 reduces the proof of Theorem 2 to bounding the right hand side of (4), which has two terms.
Estimating the first term involves counting rectangles, which seems manageable. Estimating the second
term seems to involve counting parallelograms, which seems harder. Magically, Herr and Kwak found a
way of estimating the second term by counting rectangles only: Let Q0

nondeg be the set of non-degenerate

rectangles, i.e. rectangles with four distinct vertices. For any vector ξ ∈ Z2 \ {0}, we denote by by
gcd(ξ) the greatest common divisor of the two components of ξ. Herr and Kwak proved:

Lemma 2. For any f ∈ ℓ2(Z2),

(6) sup
M∈2N

1

M

∑
|τ |≃M

∑
Q∈Qτ

|f(Q)| ≲
∑

Q=(ξ1,ξ2,ξ3,ξ4)∈Q0
nondeg

1

gcd(ξ1 − ξ4)
|f(Q)|+ ∥f∥4ℓ2(Z2).

Proof. Indeed, note that Q = (ξ1, ξ2, ξ3, ξ4) ∈ Qτ means 2(ξ1 − ξ2) · (ξ1 − ξ4) = τ . So gcd(ξ1 − ξ4)|τ
whenever ξ1 − ξ4 ̸= 0 and Q = (ξ1, ξ2, ξ3, ξ4) ∈ Qτ . This shows∑

Q∈Qτ

|f(Q)| ≤
∑

ξ∈Z2\{0}

∑
Q=(ξ1,ξ2,ξ3,ξ4)∈Qτ

ξ1−ξ4=ξ

|f(Q)|+
∑

ξ1,ξ2∈Z2

|f(ξ1)|2|f(ξ2)|2

=
∑

ξ∈Z2\{0}
gcd(ξ)|τ

∑
Q=(ξ1,ξ2,ξ3,ξ4)∈Qτ

ξ1−ξ4=ξ

|f(Q)|+ ∥f∥4ℓ2(Z2).
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But Cauchy-Schwarz gives∑
Q=(ξ1,ξ2,ξ3,ξ4)∈Qτ

ξ1−ξ4=ξ

|f(Q)| =
∑
σ∈Z

∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)|
∑

ξ2−ξ3=ξ
ξ2·ξ=σ+τ/2

|f(ξ2)f(ξ3)|

≤
∑
σ∈Z

( ∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)|
)2(7)

which is equal to∑
σ∈Z

∑
ξ1−ξ4=ξ
ξ1·ξ=σ

∑
ξ2−ξ3=ξ
ξ2·ξ=σ

|f(ξ1)f(ξ2)f(ξ3)f(ξ4)| =
∑

Q=(ξ1,ξ2,ξ3,ξ4)∈Q0

ξ1−ξ4=ξ

|f(Q)|

≤
∑

Q=(ξ1,ξ2,ξ3,ξ4)∈Q0

ξ1−ξ4=ξ, ξ1−ξ2 ̸=0

|f(Q)|+
∑

ξ1−ξ4=ξ

|f(ξ1)|2|f(ξ4)|2.

This shows that for τ ∈ Z, one has∑
Q∈Qτ

|f(Q)| ≤
∑

Q=(ξ1,ξ2,ξ3,ξ4)∈Q0
nondeg

gcd(ξ1−ξ4)|τ

|f(Q)|+ 2∥f∥4ℓ2(Z2).

Hence

sup
M∈2N

1

M

∑
|τ |≃M

∑
Q∈Qτ

|f(Q)| ≲ sup
M∈2N

1

M

∑
|τ |≃M

( ∑
Q=(ξ1,ξ2,ξ3,ξ4)∈Q0

nondeg

gcd(ξ1−ξ4)|τ

|f(Q)|+ ∥f∥4ℓ2(Z2)

)

≲
∑

Q=(ξ1,ξ2,ξ3,ξ4)∈Q0
nondeg

1

gcd(ξ1 − ξ4)
|f(Q)|+ ∥f∥4ℓ2(Z2).

□

3. Pruning f to remove all but one ‘heavy’ line through each point

In light of (4), (6) and Parseval which asserts that 2π∥f∥ℓ2(Z2) = ∥F∥L2(T2) when f = F̂ , Theorem 2
would follow if we could prove for all f ∈ ℓ2(Z2) that

(8)
∑
Q∈Q0

|f(Q)| ≲ 1

T0

∥f∥4ℓ2(Z2) and
∑

Q=(ξ1,ξ2,ξ3,ξ4)∈Q0
nondeg

1

gcd(ξ1 − ξ4)
|f(Q)| ≲ ∥f∥4ℓ2(Z2)

with 1
T0

= logmaxk∈Z#{ξ ∈ Z2 : 2k ≤ |f(ξ)| < 2k+1}. At this point Herr and Kwak took a shortcut:

they observed that it actually suffices to prove (8) only for those f that satisfies an additional structural
hypothesis (although with some careful bookkeeping, their methods actually proves (8) in full without
such additional hypothesis on f).

First, given a finite set S ⊂ R2, a line ℓ in the plane is said to be heavy with respect to S, if
#(ℓ ∩ S) ≥ C(#S)1/2 where C ≥ 2 is a fixed universal constant to be specified. It turns out that to be
sufficient to prove:

Proposition 1. Let f ∈ ℓ2(Z2) and Sk := {ξ ∈ Z2 : 2k ≤ |f(ξ)| < 2k+1} for k ∈ Z so that Sk are disjoint
finite subsets of Z2. Assume that for each k ∈ Z and each ξ ∈ Sk, at most one line through ξ is heavy
with respect to Sk. Then (8) holds with 1

T0
= logmaxk∈Z#Sk.

To see why Proposition 1 implies Theorem 2, we apply a pruning process to a general f ∈ ℓ2(Z2).
For k ∈ Z, let Ek,0 = {ξ ∈ Z2 : 2k ≤ |f(ξ)| < 2k+1}. If Ek,n has been defined, let Ek,n+1 be the set
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of all ξ ∈ Ek,n that lie at the intersection of at least 2 lines that are heavy with respect to Ek,n. For
n = 0, 1, 2, . . . , define

gn :=
∑
k∈Z

f1Sk,n
, Sk,n := Ek,n \ Ek,n+1.

Then Sk,n = {ξ ∈ Z2 : 2k ≤ |gn(ξ)| < 2k+1}, so each gn satisfies the structural hypothesis of Proposition 1
by construction. Furthermore, since C(#Ek,n)

1/2 ≥ 2 whenever Ek,n is non-empty, Szemeredi-Trotter
implies √

#Ek,n+1 ≤ number of C(#Ek,n)
1/2 rich lines through Ek,n

≲
(#Ek,n)

2

(C(#Ek,n)1/2)3
+

#Ek,n

C(#Ek,n)1/2
≤ 1

2

√
#Ek,n.

if the absolute constant C were chosen sufficiently large. Thus
√

#Ek,N+1 ≤ 2−(N+1)
√
#Ek,0, from

which we have∥∥∥f −
N∑

n=0

gn

∥∥∥
ℓ2
=

∥∥∥∑
k∈Z

f1Ek,N+1

∥∥∥
ℓ2
≤ 2

∥∥∥∑
k∈Z

2k1Ek,N+1

∥∥∥
ℓ2
≤ 2−N

∥∥∥∑
k∈Z

2k1Ek,0

∥∥∥
ℓ2
≤ 2−N∥f∥ℓ2 → 0

as N → ∞. This gives a decomposition

(9) f =
∞∑
n=0

gn.

By a similar token, we also have

(10) ∥gn∥ℓ2 ≤
∥∥∥∑

k∈Z

f1Ek,n

∥∥∥
ℓ2
≤ 21−n∥f∥ℓ2 .

Now let T0 := (logmaxk∈Z#Sk)
−1 and write F−1 for the inverse Fourier transform on Z2. By (9) and

the Minkowski inequality,

(11) ∥eit∆F−1f∥L4([0,T0]×T2) ≤
∞∑
n=0

∥eit∆F−1gn∥L4([0,T0]×T2),

and if (8) holds for each gn in place of f , then the above is

≲
∞∑
n=0

(
T0 logmax

k∈Z
(#Sk,n) + 1

)1/4

∥gn∥ℓ2 ≲ ∥f∥ℓ2

by Lemma 1, Lemma 2, the trivial bound #Sk,n ≤ #Sk for all n, and (10). This yields the desired
bound (3) for F = F−1f with our claimed improvement for T0.

4. Geometric lemmas

The previous section reduces our goal to proving Proposition 1. Interestingly, Herr and Kwak managed
to do so by proving something apparently weaker, as we see below.

First we introduce some key concepts. A set of two perpendicular lines {ℓ1, ℓ2} in the plane will be
called a cross. To each cross one associates a crossing, which is the point where the two lines in the
cross intersect. The mass of a cross {ℓ1, ℓ2} with respect to a finite set S ⊂ R2 is defined to be

mS({ℓ1, ℓ2}) := max{#(ℓ1 ∩ S),#(ℓ2 ∩ S)}.
If the crossing of a cross {ℓ1, ℓ2} lies in a set S, then the cross is said to be of

type 1 with respect to S if mS({ℓ1, ℓ2}) ≥ C(#S)1/2

type 2 with respect to S if 2 ≤ mS({ℓ1, ℓ2}) < C(#S)1/2

type 3 with respect to S if mS({ℓ1, ℓ2}) = 1.
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Here C is the absolute constant chosen during the pruning process in the last section. If Q ∈ Q0
nondeg is

a non-degenerate rectangle and ξ is a vertex of Q, then Cξ,Q is the cross obtained by extending the two
sides of Q that meet at ξ into indefinite lines. If S1, S2, S3, S4 are subsets of R2, and Q = (ξ1, ξ2, ξ3, ξ4) ∈
Q0

nondeg ∩ (S1 × S2 × S3 × S4) is a rectangle whose vertices ξ1, ξ2, ξ3, ξ4 are in the sets S1, S2, S3, S4

respectively, then Q is said to be of type (α, β) if Cξj ,Q is type α with respect to Sj for j = 1, 2, and
type β with respect to Sj for j = 3, 4. The set of all Q ∈ Q0

nondeg ∩ (S1 × S2 × S3 × S4) of type (α, β) is

then denoted Q0
α,β(S1, S2, S3, S4).

Proposition 1 follows from the following proposition, which is apparently weaker4:

Proposition 2. Let {Sk}k∈Z be finite pairwise disjoint subsets of R2. Suppose for each k ∈ Z and each
ξ ∈ Sk, at most one line through ξ is heavy with respect to Sk. Then for (α, β) ̸= (2, 2),

(12)
∑

(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4#Q0
α,β(Sk1 , Sk2 , Sk3 , Sk4) ≲

(∑
k∈Z

22k#Sk

)2

For (α, β) = (2, 2),

(13)
∑

(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4#Q0
α,β(Sk1 , Sk2 , Sk3 , Sk4) ≲ log(max

k∈Z
#Sk)

(∑
k∈Z

22k#Sk

)2

and

(14)
∑

(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4
∑

Q∈Q0
α,β(Sk1

,Sk2
,Sk3

,Sk4
)

1

gcd(ξ1 − ξ4)
≲

(∑
k∈Z

22k#Sk

)2

.

Proof of Proposition 1. Let f , Sk and T0 be as in the statement of Proposition 1. Following the proof
of Lemma 2 up to (7), we have

(15) T0

∑
Q∈Q0

|f(Q)|+ sup
M∈2N

1

M

∑
|τ |≃M

∑
Q∈Qτ

|f(Q)| ≲ T0G(0) + sup
M∈2N

1

M

∑
|τ |≃M

G(τ) + ∥f∥4ℓ2(Z2)

where

G(τ) :=
∑

ξ∈Z2\{0}
gcd(ξ)|τ

∑
σ∈Z

( ∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)|
)2

.

We will see that Proposition 2 implies

(16) G(0) ≲ log(max
k∈Z

#Sk)∥f∥4ℓ2(Z2) and sup
M∈2N

1

M

∑
|τ |≃M

G(τ) ≲ ∥f∥4ℓ2(Z2).

Since T0 = (logmaxk∈Z#Sk)
−1, this will conclude the proof of Proposition 1.

To prove (16), we write C(ξj, ξ) for the cross given by ξj + ξR and ξj + ξ⊥R, for j = 1, 4. Then∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)| ≲
∑

1≤α,β≤3

∑
(k1,k4)∈Z2

2k1+k4
∑

ξ1−ξ4=ξ
ξ1·ξ=σ

1
S
(ξ,α)
k1

(ξ1)1S(ξ,β)
k4

(ξ4)

where S
(ξ,α)
k1

is the set of all ξ1 ∈ Sk1 so that C(ξ1, ξ) is of type α with respect to Sk1 , and similarly for

S
(ξ,β)
k4

. Then( ∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)|
)2

≲
∑

1≤α,β≤3

∑
(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4
∑

ξ1−ξ4=ξ
ξ1·ξ=σ

∑
ξ2−ξ3=ξ
ξ2·ξ=σ

1
S
(ξ,α)
k1

(ξ1)1S(ξ,α)
k2

(ξ2)1S(ξ,β)
k3

(ξ3)1S(ξ,β)
k4

(ξ4)

4Weaker because (8) requires one to sum, e.g.,
∑

(k1,k2,k3,k4)∈Z4 2k1+k2+k3+k4#(Q0
nondeg∩ (Sk1

×Sk2
×Sk3

×Sk4
)) which

includes rectangles where say one vertex is type 1, another vertex is type 2, and the remaining vertices are type 3; those
do not appear explicitly in the Proposition 2.
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so summing over σ,∑
σ∈Z

( ∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)|
)2

≲
∑

1≤α,β≤3

∑
(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4
∑

(ξ1,ξ2,ξ3,ξ4)∈Q0

ξ1−ξ4=ξ

1
S
(ξ,α)
k1

(ξ1)1S(ξ,α)
k2

(ξ2)1S(ξ,β)
k3

(ξ3)1S(ξ,β)
k4

(ξ4).

To proceed further we classify (ξ1, ξ2, ξ3, ξ4) ∈ Q0 according to whether ξ1 − ξ2 = 0. If ξ1 = ξ2 then
1
S
(ξ,α)
k1

(ξ1)1S(ξ,α)
k2

(ξ2) is non-zero only if k1 = k2, in which case it is ≤ 1Sk1
(ξ1); similarly 1

S
(ξ,β)
k3

(ξ3)1S(ξ,β)
k4

(ξ4)

is non-zero only if k3 = k4, in which case it is ≤ 1Sk4
(ξ4). On the other hand, if (ξ1, ξ2, ξ3, ξ4) ∈ Q0, ξ1 −

ξ4 = ξ ̸= 0, and ξ1 − ξ2 ̸= 0, then (ξ1, ξ2, ξ3, ξ4) ∈ Q0
nondeg, and 1

S
(ξ,α)
k1

(ξ1)1S(ξ,α)
k2

(ξ2)1S(ξ,β)
k3

(ξ3)1S(ξ,β)
k4

(ξ4) = 1

if and only if (ξ1, ξ2, ξ3, ξ4) ∈ Q0
α,β(Sk1 , Sk2 , Sk3 , Sk4), and equals 0 otherwise. Thus for ξ ̸= 0,∑

σ∈Z

( ∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)|
)2

≲
∑

1≤α,β≤3

∑
k⃗∈Z4

2k⃗
∑

(ξ1,ξ2,ξ3,ξ4)∈Q0
α,β(Sk⃗

)

ξ1−ξ4=ξ

1 +
∑

(k1,k4)∈Z2

22k1+2k4
∑

(ξ1,ξ4)∈(Z2)2

ξ1−ξ4=ξ

1Sk1
(ξ1)1Sk4

(ξ4)

where we wrote 2k⃗ for 2k1+k2+k3+k4 and Sk⃗ = (Sk1 , Sk2 , Sk3 , Sk4) if k⃗ = (k1, k2, k3, k4) ∈ Z4. As a result,

G(τ) =
∑

ξ∈Z2\{0}
gcd(ξ)|τ

∑
σ∈Z

( ∑
ξ1−ξ4=ξ
ξ1·ξ=σ

|f(ξ1)f(ξ4)|
)2

≲
∑

1≤α,β≤3

∑
k⃗∈Z4

2k⃗
∑

(ξ1,ξ2,ξ3,ξ4)∈Q0
α,β(Sk⃗

)

gcd(ξ1−ξ4)|τ

1 +
(∑

k∈Z

22k#Sk

)2

Now
∑

k∈Z 2
2k#Sk ≲ ∥f∥2ℓ2(Z2). Since the condition gcd(ξ1 − ξ4)|τ is vacuous when τ = 0, this shows

G(0) ≲
∑

1≤α,β≤3

∑
k⃗∈Z4

2k⃗#Q0
α,β(Sk⃗) + ∥f∥4ℓ2(Z2).

We also see that for M ∈ 2N

1

M

∑
|τ |≃M

G(τ) ≲
∑

1≤α,β≤3

∑
k⃗∈Z4

2k⃗
∑

(ξ1,ξ2,ξ3,ξ4)∈Q0
α,β(Sk⃗

)

1

gcd(ξ1 − ξ4)
+ ∥f∥4ℓ2(Z2).

As a result, (16) follows from Proposition 2. □

The geometric ingredients needed in proving Proposition 2 are captured in the following lemmas.

Lemma 3. Let S1 be a finite subset of R2, so that through any point of S1 there passes at most one
line that is heavy with respect to S1. Then for every ξ1 ∈ S1 and every ξ3 ∈ R2, there exists at most
two choices of (ξ2, ξ4) ∈ R2 such that Q := (ξ1, ξ2, ξ3, ξ4) is in Q0

nondeg and the cross C(ξ1, Q) is of type
1 with respect to S1.

Lemma 4. Let S1, S2, S3, S4 be finite subsets of R2, so that for j = 1, 2, 3, 4, through any point of Sj

there passes at most one line that is heavy with respect to Sj. Then for all (θ1, θ2, θ3, θ4) in some open
neighborhood U of the point (1

2
, 1
2
, 1
2
, 1
2
) in the 2 dimensional plane θ1 + θ3 = θ2 + θ4 = 1, the following

is true. If (α, β) = (3, 3), (2, 3) or (3, 2), then

(17) #Q0
α,β(S1, S2, S3, S4) ≲ (#S1)

θ1(#S2)
θ2(#S3)

θ3(#S4)
θ4

If (α, β) = (2, 2), then

(18) #Q0
α,β(S1, S2, S3, S4) ≲ log( max

j=1,2,3,4
#Sj)(#S1)

θ1(#S2)
θ2(#S3)

θ3(#S4)
θ4

and

(19)
∑

Q∈Q0
α,β(S1,S2,S3,S4)

1

gcd(ξ1 − ξ4)
≲ (#S1)

θ1(#S2)
θ2(#S3)

θ3(#S4)
θ4 .

In the next two sections, we first deduce Proposition 2 from Lemma 3 and Lemma 4, and then prove
the lemmas. We note that the proof of Proposition 2 via Lemma 4 resembles somewhat an interpolation
argument of Keel and Tao [4].
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5. Schur’s test

Proof of Proposition 2. First consider the case α = 1. Write S =
⋃

k∈Z Sk. Then by Lemma 3, there
exists a function K(ξ1, ξ2, ξ3, ξ4) defined on S4, such that for any (k1, k2, k3, k4) ∈ Z4,

(20)
∑

1≤β≤3

1Q0
1,β(Sk1

,Sk2
,Sk3

,Sk4
)(ξ1, ξ2, ξ3, ξ4) ≤ 1Sk1

(ξ1)1Sk2
(ξ2)1Sk3

(ξ3)1Sk4
(ξ4)K(ξ1, ξ2, ξ3, ξ4),

with

(21) sup
ξ1,ξ3∈S

∑
ξ2,ξ4∈S

K(ξ1, ξ2, ξ3, ξ4) ≤ 2 and sup
ξ2,ξ4∈S

∑
ξ1,ξ3∈S

K(ξ1, ξ2, ξ3, ξ4) ≤ 2.

In fact, given (ξ1, ξ3) ∈ S2, first choose k1 ∈ Z so that ξ1 ∈ Sk1 . Define K1(ξ1, ξ2, ξ3, ξ4) = 1 if
Q := (ξ1, ξ2, ξ3, ξ4) ∈ Q0

nondeg and the cross C(ξ1, Q) is of type 1 with respect to Sk1 , and define

K1(ξ1, ξ2, ξ3, ξ4) = 0 otherwise. Similarly, given (ξ2, ξ4) ∈ S2, let k2 ∈ Z so that ξ2 ∈ Sk2 . Define
K2(ξ1, ξ2, ξ3, ξ4) = 1 if Q := (ξ1, ξ2, ξ3, ξ4) ∈ Q0

nondeg and the cross C(ξ2, Q) is of type 1 with respect to
Sk2 , and define K2(ξ1, ξ2, ξ3, ξ4) = 0 otherwise. Then K := K1K2 satisfies (20) by construction, and (21)
holds by Lemma 3. Now using (20),∑

(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4#Q0
α,β(Sk1 , Sk2 , Sk3 , Sk4)

≤
∑

(ξ1,ξ3)∈S2

∑
(ξ2,ξ4)∈S2

( ∑
(k1,k3)∈Z2

2k1+k31Sk1
(ξ1)1Sk3

(ξ3)
)( ∑

(k2,k4)∈Z2

2k2+k41Sk2
(ξ2)1Sk4

(ξ4)
)
K(ξ1, ξ2, ξ3, ξ4)

which by (21) and Schur’s test on ℓ2(S2) is

≤ 2
∑

(ξ1,ξ3)∈S2

( ∑
(k1,k3)∈Z2

2k1+k31Sk1
(ξ1)1Sk3

(ξ3)
)2

= 2
(∑

k∈Z

22k#Sk

)2

.

This completes the proof of Proposition 2 when α = 1, and the case β = 1 is similar.

Next, for (α, β) = (3, 3), (2, 3) or (3, 2), we use (17) and estimate∑
(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4#Q0
α,β(Sk1 , Sk2 , Sk3 , Sk4) ≲

∑
(k1,k2,k3,k4)∈Z4

2k1+k2+k3+k4 inf
θ∈U

#Sθ1
k1
#Sθ2

k2
#Sθ3

k3
#Sθ4

k4
.

By shrinking U , we may assume that U is symmetric under permutation of the ξ1 and ξ3 coordinates,
as well as permutation of the ξ2 and ξ4 coordinates. So the above is

≤ 4
∑

(k1,k2,k3,k4)∈Z4

k1≤k3,k2≤k4

2k1+k2+k3+k4#S
1
2
−δ

k1
#S

1
2
−δ

k2
#S

1
2
+δ

k3
#S

1
2
+δ

k4

= 4
( ∑

(k1,k3)∈Z2

k1≤k3

2k1+k3#S
1
2
−δ

k1
#S

1
2
+δ

k3

)2

= 4
( ∑

k1,k3∈Z
k1≤k3

22δ(k1−k3)(22k1#Sk1)
1
2
−δ(22k3#Sk3)

1
2
+δ
)2

(22)

for some δ ∈ (0, 1/2]. Now Schur’s test gives∑
k1,k3∈Z
k1≤k3

22δ(k1−k3)ak1bk3 ≤
( ∑

k1∈Z

apk1

)1/p( ∑
k3∈Z

bqk3

)1/q

if δ > 0 and 1
p
+ 1

q
= 1. Applying this with 1

p
= 1

2
− δ, 1

q
= 1

2
+ δ, we have (22) ≤ 4

(∑
k∈Z 2

2k#Sk

)2

, as

desired. Finally, the same proof above establishes (13) and (14) when (α, β) = (2, 2); we only need to
use (18) and (19) in place of (17). □
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6. Proof of the geometric lemmas

Proof of Lemma 3. Since through any point of S1 there passes at most one line that is heavy with respect
to S1, once we pick ξ1 ∈ S1, then any rectangle Q := (ξ1, ξ2, ξ3, ξ4) ∈ Q0

nondeg with Cξ1,Q being of type 1
with respect to S1 has a fixed orientation. Thus once ξ1 and ξ3 are fixed, (ξ2, ξ4) are determined up to
permutation, and this establishes Lemma 3. □

Proof of Lemma 4. Fix S1, S2, S3, S4 as in the lemma, and abbreviate Q0
α,β(S1, S2, S3, S4) by Q0

α,β.

First we count #Q0
3,3: we have

#Q0
3,3 ≤ min{#S1#S2,#S2#S3,#S3#S4,#S4#S1}.

This is because once two consecutive vertices of Q ∈ Q0
3,3 are chosen, the orientation of Q is fixed, and

there can only be 1 choice for each of the remaining two vertices (otherwise that vertex would not be
type 3). Since (1

2
, 1
2
, 1
2
, 1
2
) is in the interior5 of the convex hull of (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1) and

(1, 0, 0, 1), and the four vectors affine span the plane θ1 + θ3 = θ2 + θ4 = 1, this proves the lemma when
(α, β) = (3, 3).

Next, for a⃗ ∈ Z4
≥0 let Q0(⃗a) be the set of all Q = (ξ1, ξ2, ξ3, ξ4) ∈ Q0

nondeg ∩ S1 × S2 × S3 × S4 so that

2aj ≤ mSj
(Cξj ,Q) < 2aj+1 for j = 1, 2, 3, 4. The key fact is that when 2 ≤ 2a1 ≤ C(#S1)

1/2,

(23) #Q0(⃗a) ≲ (#S1)
22−2a1+a2 min{2a3 , 2a4}.

This is because Szemeredi-Trotter6 implies that there are ≲ (#S1)
2/(2a1)3 + #S1/2

a1 ≲ (#S1)
2/(2a1)3

lines7 that contain ≥ 2a1 points from S1, and on each such line there are ≤ 2a1+1 choices for ξ1. Once
ξ1 and the 2a1 rich line through ξ1 are chosen, the orientation of the rectangle in Q0(⃗a) is fixed, and
the rectangle is determined by ξ2 and ξ3 (≲ 2a2+a3 choices), or ξ2 and ξ4 (≲ 2a2+a4 choices). Thus (23)
follows.

By the same argument we used to count #Q0
3,3, we also have

(24) #Q0(⃗a) ≲ #Sj#Sj+1min{2aj+2 , 2aj+3}
where we used cyclic notation and identify indices that are congruent mod 4.

When 2 ≤ 2aj ≤ C(#Sj)
1/2 for j = 1, 2 and a3 = a4 = 0, (23) and (24) gives

#Q0(⃗a) ≲ min{(#S1)
22−2a1 , (#S2)

22−2a2 ,#S3#S42
a1 ,#S3#S42

a2}.
Interpolating,

#Q0(⃗a) ≲ ((#S1)
22−2a1)

1
6
+δ((#S2)

22−2a2)
1
6
+δ(#S3#S42

a1)
1
3
−δ(#S3#S42

a2)
1
3
−δ

for all sufficiently small δ > 0, so summing over a1, a2 ≥ 1 we obtain

Q0
2,3 ≲ (#S1)

1
3
+2δ(#S2)

1
3
+2δ(#S3)

2
3
−2δ(#S4)

2
3
−2δ

for all sufficiently small δ > 0. We also have

Q0
2,3 ≲ min{#S1#S2,#S2#S3,#S4#S1}

by the argument used to count #Q0
3,3. Since (

1
2
, 1
2
, 1
2
, 1
2
) is in the interior8 of the convex hull of (1, 1, 0, 0),

(0, 1, 1, 0), (1, 0, 0, 1) and (1
3
, 1
3
, 2
3
, 2
3
), and the four vectors affine span the plane θ1 + θ3 = θ2 + θ4 = 1, by

continuity the same is true when the last point is replaced by (1
3
+ 2δ, 1

3
+ 2δ, 2

3
− 2δ, 2

3
− 2δ) whenever

δ is sufficiently close to 0. In other words, the convex hull of (1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1) and
(1
3
+ 2δ, 1

3
+ 2δ, 2

3
− 2δ, 2

3
− 2δ) contains an open neighbourhood of the point (1

2
, 1
2
, 1
2
, 1
2
) in the plane

5e.g. ( 12 ,
1
2 ,

1
2 ,

1
2 ) =

1
4 (1, 1, 0, 0) +

1
4 (0, 1, 1, 0) +

1
4 (0, 0, 1, 1) +

1
4 (1, 0, 0, 1)

6We used 2a1 ≥ 2 here.
7The last inequality used 2a1 ≤ C(#S1)

1/2.
8e.g. ( 12 ,

1
2 ,

1
2 ,

1
2 ) =

1
8 (1, 1, 0, 0) +

1
4 (0, 1, 1, 0) +

1
4 (1, 0, 0, 1) +

3
8 (

1
3 ,

1
3 ,

2
3 ,

2
3 )
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θ1+θ3 = θ2+θ4 = 1. This proves the lemma when (α, β) = (2, 3), and the argument when (α, β) = (3, 2)
is similar.

When 2 ≤ 2aj ≤ C(#Sj)
1/2 for j = 1, 2, 3, 4, (23) gives

(25) #Q0(⃗a) ≲ min
1≤j≤4

min
l=1,2

(#Sj)
22−2aj+aj+1+aj+l .

Since the vectors

v1 := (2, 0, 0, 0,−2, 1, 1, 0), v2 := (2, 0, 0, 0,−2, 1, 0, 1),

v3 := (0, 2, 0, 0, 0,−2, 1, 1), v4 := (0, 2, 0, 0, 1,−2, 1, 0)

v5 := (0, 0, 2, 0, 1, 0,−2, 1), v6 := (0, 0, 2, 0, 0, 1,−2, 1),

v7 := (0, 0, 0, 2, 1, 1, 0,−2), v8 := (0, 0, 0, 2, 1, 0, 1,−2)

span the 6 dimensional plane {θ1+θ2+θ3+θ4 = 2 and ϕ1+ϕ2+ϕ3+ϕ4 = 0}, and (1
2
, 1
2
, 1
2
, 1
2
, 0, 0, 0, 0) is in

the interior9 of the convex hull of v1, . . . , v8, for any (θ1, θ2, θ3, θ4) in a sufficiently small neighbourhood Ũ
of (1

2
, 1
2
, 1
2
, 1
2
) in the 3 dimensional plane θ1+θ2+θ3+θ4 = 2, and any (ϕ1, ϕ2, ϕ3, ϕ4) in a neighbourhood

V of (0, 0, 0, 0) in the 3 dimensional plane ϕ1 + ϕ2 + ϕ3 + ϕ4 = 0, one has

#Q0(⃗a) ≲ (#S1)
θ1(#S2)

θ2(#S3)
θ3(#S4)

θ42a1ϕ1+a2ϕ2+a3ϕ3+a4ϕ4 .

Now for any (θ1, θ2, θ3, θ4) ∈ Ũ ,

#Q0
2,2 ≲

∑
2≤2aj≤C(#Sj)1/2

#Q0(⃗a)

≲ (#S1)
θ1(#S2)

θ2(#S3)
θ3(#S4)

θ4
∑

2≤2aj≤C(#Sj)1/2

inf
(ϕ1,ϕ2,ϕ3,ϕ4)∈V

2a1ϕ1+a2ϕ2+a3ϕ3+a4ϕ4 ,

and for sufficiently small δ > 0, V contains the point (−δ, 0, 0, δ), as well as its images under any
permutation of its four coordinates. By symmetry, the summation in the last display is

≤ 16
∑

log(maxj #Sj)≳a1≥a2≥a3≥a4≥0

2−δ(a1−a4) ≲ log( max
j=1,2,3,4

#Sj),

establishing (18) (in fact, we showed a little more than required, since Ũ is a neighbourhood of (1
2
, 1
2
, 1
2
, 1
2
)

in the 3 dimensional plane θ1 + θ2 + θ3 + θ4 = 2).

Finally, when 2 ≤ 2aj ≤ C(#Sj)
1/2 for j = 1, 2, 3, 4,

(26)
∑

(ξ1,ξ2,ξ3,ξ4)∈Q0(a⃗)

1

gcd(ξ1 − ξ4)
≲ (#S1)

22−2a1+a2+a4/2.

This is because when ξ1, ξ2 are fixed ((#S1)
22−2a1+a2 choices), then ξ3 is determined by ξ4. Furthermore,

the set of possible ξ4 is a subset of an arithmetic progression and has at most 2a4 elements. So summing
over (ξ3, ξ4) and using

max
S⊂N

#S≤2a4

∑
m∈S

1

m
≲ a4 ≲ 2a4/2

gives (26). One can also bound the left hand side of (26) by #Q0(⃗a), which we bounded by (25).

Let v9 = (2, 0, 0, 0,−2, 1, 0, 1/2). Then v1, . . . , v9 span the 7 dimensional plane θ1+ θ2+ θ3+ θ4 = 2 in
R8, and (1

2
, 1
2
, 1
2
, 1
2
, 0, 0, 0,−ε) is in the interior10 of the convex hull of v1, . . . , v9 for all sufficiently small

ε > 0. Fix one such ε. Thus for any (θ1, θ2, θ3, θ4) in a sufficiently small neighbourhood Ũ of (1
2
, 1
2
, 1
2
, 1
2
)

in the plane θ1 + θ2 + θ3 + θ4 = 2, and any (ϕ1, ϕ2, ϕ3, ϕ4) in a neighbourhood Vε of (0, 0, 0,−ε) in R4,
one has ∑

(ξ1,ξ2,ξ3,ξ4)∈Q0(a⃗)

1

gcd(ξ1 − ξ4)
≲ (#S1)

θ1(#S2)
θ2(#S3)

θ3(#S4)
θ42a1ϕ1+a2ϕ2+a3ϕ3+a4ϕ4 .

9e.g. ( 12 ,
1
2 ,

1
2 ,

1
2 , 0, 0, 0, 0) =

1
8

∑8
i=1 vi

10( 12 ,
1
2 ,

1
2 ,

1
2 , 0, 0, 0,−ε) = 1

8

∑8
i=1 vi +

ε
2 (v9 − v8)
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Hence for sufficiently small δ > 0,∑
Q∈Q0

2,2

1

gcd(ξ1 − ξ4)
≲

∑
2≤2aj≤C(#Sj)1/2

∑
Q∈Q0(a⃗)

1

gcd(ξ1 − ξ4)

≲ (#S1)
θ1(#S2)

θ2(#S3)
θ3(#S4)

θ4
∑

a1,a2,a3,a4≥1

inf
(ϕ1,ϕ2,ϕ3,ϕ4)∈Vε

2a1ϕ1+a2ϕ2+a3ϕ3+a4ϕ4

≲ (#S1)
θ1(#S2)

θ2(#S3)
θ3(#S4)

θ4
∑

a1≥a2≥a3≥a4≥1

2−δ(a1−a4)−εa4

≲ (#S1)
θ1(#S2)

θ2(#S3)
θ3(#S4)

θ4 .

This completes the proof of (19). □
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