SHARP DISCRETE STRICHARTZ INEQUALITY IN 2+ 1 DIMENSIONS:
AN EXPOSITION

PO-LAM YUNG

In a beautiful paper [3], Herr and Kwak proved sharp discrete Strichartz inequality for the Schrodinger
equation on T? := (R/27Z)*

Theorem 1 (Herr-Kwak). There is a universal constant ¢ so that for any finite subsets S C Z* and
any nitial data F on T? with Fourier support in S, we have

(1) ||€itAF||L4([0,27r}x1r2) < ¢(log #3)1/4“FHL2(T2)-

The power of log #S is the best possible, as seen by Bourgain’s example [1] where S = [-M, M]?>NZ?
and F(x) = ) e e, for a nice detailed explanation see Chapter 13.2 of Demeter [2].

For general finite set S C Z?, if F(z) = > ces e€_ then

2
(2) ||eitAFHi4([o72n]xT2) = Z / / it (E1—E2+E3—€4) it (161 [ —|&2*+I&s |~ [€a?) 7. 1
@62 &s et 0 T

= (2m)°N(S)
where N(S) is the number of solutions (&1, &, £3,&4) € S?* to the equations
§i+8&=8+&
617 41817 = [&l? + &l

The first (vector) equation says {; — & = {4 — &3, 1.e. (&1, &2, &3,&4) are vertices of a parallelogram. Under
this first equation, the second equation can be rearranged to say

26 —&) (& —&)=0

so one of the angles of the parallelogram (&1, &2, &3,&4) is a right angle, i.e. (&1,&2,&3,&4) is a rectangle.
Thus N(S) counts the number of rectangles in S (henceforth by a rectangle in S we mean a quadruple
(€1,62,83,&4) € S* that forms a (possibly degenerate) rectangle). Pach and Sharir [5] proved that
N(S) < #S5%log #5S; in fact, using the Szemeredi-Trotter theorem for counting incidences of lines in
the plane, they showed that for any finite set S in the plane, there are at most O(#5%log #S) many
right angled triangles whose vertices all lie in . This establishes (1) when F(z) =>4 et; the issue
is that we do not know F' extremizes the inequality (1) (the proof of Herr and Kwak does not proceed
this way).

Herr and Kwak actually proved a lot more than Theorem 1: the following is interesting even for the
example F' mentioned above.

Theorem 2 (Herr-Kwak). There is a universal constant ¢ so that for any finite subsets S C Z* and
any initial data F on T? supported on S, we have

1
log #S°

(3) ||6itAF||L4([07TO}XT2) S C||F||L2(']I‘2) fO’I" T() =

Below we explain their proof of Theorem 2 (slightly reorganized to highlight some key ideas). In fact,
we show that #S in Theorem 2, and hence Theorem 1, can be sharpened to maxcz #Si where

Sp = {€ €72 2F <|F(€)| < 281

IThroughout this note log z means max{1,log, z}.



1. INITIAL REDUCTIONS

The argument of Herr and Kwak is entirely Fourier analytic and takes advantage of the fact that the

exponent 4 is an even integer, so that one can access Fourier expansions of He”AF |4 LA([0,To] xT2) similar to

(2). Once they passed to the Fourier side, they rely on geometric ideas surrounding the Szemeredi-Trotter
theorem from incidence geometry?. Hence it is useful to introduce some shorthands: we denote by Q the
set of all (possibly degenerate) parallelograms in Z2, i.e. the set of all quadruples (&1, &, &3,&4) € (Z2)*
with & + & = & + &4. For any integer 7, let Q7 be the set of all parallelograms ) € Q with

T =167 = [& + &7 — [&l? = 2(& — &) - (& — &)
In particular, Q° is the set of all rectangles. Additionally, for Q = (&;,&,&3,&4) € Q and f: Z? — C let
Q) = f(&) [(&)f (&) f (&)

The first reduction of Herr and Kwak is in proving the following proposition.

Lemma 1. For any initial data F' on T? Fourier supported on a ﬁnite set, and any 0 < Ty < 27,

(4) HeitAFHi‘l([O,To]x’ﬂ‘? To Z |f(Q)]+ sup — Z Z (@
QeQo Me2" | |~M QeQr

~

where f(£) = F(§) = (zﬂ 5 Jpo Fx)e ™ da.

Proof. To prove the lemma, motivated by (2), one might be tempted to write

||€itAFHi4([O,TO]><T2) _ (27T)2 Z f(§1>f<§2)f(f3)f(§4>/ (€12 —|€2|2+|€3|2 —|€a)? )dt

§14+83=82+E4 0

and then bound the right hand side above by the right hand side of (4). But this is not what Herr and
Kwak did; instead, they pulled up a very nice trick, and estimated

i 1 2T ;
le tAF“ZIé‘*([O,To]Xw) = TO/O e tAF|’%4([07Tle2)dT

(the inequality holds because

2T0 2T0 2TO _ t TQ
/ H(t)dtdT = / H(t)dt > H(t)dt
To 0 T 0

for any nonnegative functlon H(t)). This gives

2TO T ; 2 2 2 2
‘|€itAF‘|i4([o,To]x1r2) < (27)? Z f(&)f(&)f(&)f(&)%o/o /0 &l =& P +I& P =1€l®) gy g

&1+E€3=82+E€4

Additionally, observe that in proving (4), without loss of generality one may assume that f is real,
because one can express f in terms of its real and imaginary parts. Under such hypothesis, one can take
the real parts of the above inequality, and obtain, with our earlier shorthands, that?

. 1— 27T
6 Pl ST Y0 1@+ 32 T 5~ i)

QeQo rez\{0} 0 QeQr
(4) then follows from the inequality 1_(:;15—(725”) < min{7p, #}, together with
€2\ {0} Qeor ot |r|=M QEQT

2It is worth noting that Herr and Kwak did not use induction on scales at all (contrary to proofs of decoupling for the
paraboloid in R3). On the other hand, they did use a pruning argument, as we will soon see.
3The key here is that via this additional averaging in time and reduction to real parts, we obtained an additional factor
of To7 in the denominator of the second term, which we will use in (5). This gain is only possible by applying both tricks!
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It is actually possible to strengthen Lemma 1, and prove without resorting to real-valued f that

9 7 ]'
(4) e F (@) 11 o mopery S To > 1F(Q)] + Sup - Y@
QeQo MMfﬁTo |7|~M QeQT

Indeed, let n(t) be a non-negative Schwartz function on R with Fourier support in [—1, 1], and satisfies

n(t) 2 1 on [0,1]. For Ty > 0 let 0y (t) == >, cx n(t+§:"). N, is a smooth 27-periodic function of ¢,

and has Fourier support in Z N [~T,; ', T, '] (as one can verify using the Poisson summation formula).
Writing u(z,t) = e F(z), we have

—~

lallsqumpers 5 [ Il = @%@« 7 0)

where we used |77, [liz) < |11 || 2ry = Tol|nl| 21 (r) and the Fourier support of 777,. Using further that

i 00| = Y fef@f&fE)] < Y 11l
(61,€2,83,64)€Q7 QeQ™
we have
el aomsry S To D F@I+To > > > Q)
QeQo Me2N |T|~M QeQT
M<1/Ty
which proves (4’) since Tp Y preon M S 1. O

M<1/Ty

2. FROM PARALLELOGRAMS TO RECTANGLES

Lemma 1 reduces the proof of Theorem 2 to bounding the right hand side of (4), which has two terms.
Estimating the first term involves counting rectangles, which seems manageable. Estimating the second
term seems to involve counting parallelograms, which seems harder. Magically, Herr and Kwak found a
way of estimating the second term by counting rectangles only: Let Q?londeg be the set of non-degenerate
rectangles, i.e. rectangles with four distinct vertices. For any vector ¢ € Z?\ {0}, we denote by by

ged(€) the greatest common divisor of the two components of £. Herr and Kwak proved:

Lemma 2. For any [ € (*(Z?),

(6) s+ S S QIS Y QN 1 e

M cd(& —
Me2t |T|~M QEQT Q=(£1,62,63,64)€Q0 g (61 54)

nondeg

Proof. Indeed, note that Q = (£1,£2,83,84) € Q7 means 2(§ — &) - (& — &) = 7. So ged(& — &)|T
whenever & — & # 0 and Q = (&1,£2,&3,&4) € Q. This shows

M@l Y > F@QI+ D I EPIf &)

QeQr £€22\{0} Q=(£1,€2,£3,64)€Q" §1,62€22

1—8a=¢

D DENED DI ) ER Ve

£€Z\{0} Q=(£1,£2,63,64)€Q7
ged(§)|T §1—8=¢
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But Cauchy-Schwarz gives

> @1=> Z > &) (&)

Q=(§1:€2,§37§4)€QT 0€Z &1 —64=¢ E2—E€3=¢
(7) §1—81=¢ &1 5—0 Ea-é=0+T/2
<> ( Z ©)))
o€EZ 61
SR 5—0

which is equal to

o> > If &) fE) = Y fQ)

7 _ 3 0
R e
< > @I+ D FEPIFEP
Q=(£1,£2,3,64)€Q° £1—64=¢€

€1—81=E,61—6§27#0
This shows that for 7 € Z, one has

> (@) < > F@Q)+ 20 Fllfzz).

QEQT Q:(§17€27£37§4)eggondcg
ged(é1—&a)|m

Hence

ap = 3 S QI sup (Y @I+ Il

wet M A G5 T~M - Q=(61,62,63.60)€Q0, e
ng(El &)l

S Z W’f( )+ 11115222y

Q=(£1,62/63,60)€Q0, 4ee

3. PRUNING f TO REMOVE ALL BUT ONE ‘HEAVY’ LINE THROUGH EACH POINT

In light of (4), (6) and Parseval which asserts that 27| f||;2(z2) = || F || z2(r2) when f = F, Theorem 2
would follow if we could prove for all f € ¢(*(Z?) that

1 1
(8) Z f(Q) S E)Hf”??(z% and Z m\f(@ﬂ S HfHle(Zz)

QEQO Q (fl 52 53 64)€Qnondeg

with %O = log maxyez #{& € Z%: 28 < |f(€)] < 28F1}. At this point Herr and Kwak took a shortcut:
they observed that it actually suffices to prove (8) only for those f that satisfies an additional structural
hypothesis (although with some careful bookkeeping, their methods actually proves (8) in full without
such additional hypothesis on f).

First, given a finite set S C R?, a line ¢ in the plane is said to be heavy with respect to S, if
#( N S) > O(#S)/2 where C > 2 is a fixed universal constant to be specified. It turns out that to be
sufficient to prove:

Proposition 1. Let f € (2(Z?) and Sy, := {£ € Z2: 28 < |f(€)| < 281} for k € Z so that Sy, are disjoint
finite subsets of Z*. Assume that for each k € Z and each & € S, at most one line through & is heavy
with respect to S. Then (8) holds with TLO = log maxyez #Sk.

To see why Proposition 1 implies Theorem 2, we apply a pruning process to a general f € (*(Z?).
For k € Z, let Epo = {€ € Z%: 28 < |f(&)] < 2¥1}. If Ej, has been defined, let Ej i be the set
4



of all £ € Ej,, that lie at the intersection of at least 2 lines that are heavy with respect to Ej ,. For
n=0,1,2,..., define
gn = Z flSk,n’ Skﬂ = Ek,n \ Ek,n+1-
keZ
Then Sy, = {€ € Z*: 2% < |g,(€)| < 281}, so each g, satisfies the structural hypothesis of Proposition 1
by construction. Furthermore, since C' (#Ekvn)l/ 2 > 2 whenever Ej, is non-empty, Szemeredi-Trotter
implies

V#Ek n+1 < number of C(#Ek,n)l/2 rich lines through E,

(#Ek,n)2 #Ek:,n 1
N (C(#Ep,)72)3 + CH#E)" < 5\/%

if the absolute constant C' were chosen sufficiently large. Thus /#E; nv+1 < 2-(N+1) #E 0, from
which we have

N
=S, = 5] <2 S 2
n=0 keZ keZ

as N — oo. This gives a decomposition

9) F=Y g

By a similar token, we also have

(10) lonlle < || Fls |,
keZ

L < 2*NH > 25, , <27 flle 0
keZ

<2 flles

Now let Tj := (log maxyez #S5k) ' and write F ! for the inverse Fourier transform on Z?. By (9) and
the Minkowski inequality,

(11) e F 7 Fllrsomixr < Y €™ F " gall zao.m)xr)s

n=0

and if (8) holds for each g, in place of f, then the above is

e 1/4
S (Tologmax(#5ka) +1)  ligallie < 1111

n=0

by Lemma 1, Lemma 2, the trivial bound #5Sk, < #Si for all n, and (10). This yields the desired
bound (3) for F' = F~! f with our claimed improvement for Tj.

4. GEOMETRIC LEMMAS

The previous section reduces our goal to proving Proposition 1. Interestingly, Herr and Kwak managed
to do so by proving something apparently weaker, as we see below.

First we introduce some key concepts. A set of two perpendicular lines {/1,¢5} in the plane will be
called a cross. To each cross one associates a crossing, which is the point where the two lines in the
cross intersect. The mass of a cross {1, (s} with respect to a finite set S C R? is defined to be

ms({l1,l2}) := max{#({, NS), #(l2 N S)}.
If the crossing of a cross {{1, (>} lies in a set S, then the cross is said to be of
type 1 with respect to S if mg({ly, ls}) > C(#5)"/?
type 2 with respect to S if 2 < mg({l1,6}) < C(#S)'/?

type 3 with respect to S if mg({f1,l2}) = 1.
5



Here C' is the absolute constant chosen during the pruning process in the last section. If @) € Qnondeg is
a non-degenerate rectangle and ¢ is a vertex of @), then Cf ¢ is the cross obtained by extending the two
sides of @ that meet at £ into indefinite lines. If S, S, S3, Sy are subsets of R? and Q = (&1, &, &3,&4) €

?wndeg N (S; x Sy x S3 x Sy) is a rectangle whose vertices i, &y, 3,8y are in the sets Sy, S, 53,5,
respectively, then @ is said to be of type (o, 8) if C¢, g is type o with respect to S; for j = 1,2, and
type 8 with respect to S; for j = 3,4. The set of all Q € Q7 N (S1 X Sy x S3 x Sy) of type (a, f) is

then denoted QY (51, S2, Ss, Sy).

nondeg

Proposition 1 follows from the following proposition, which is apparently weaker®:

Proposition 2. Let {Si}rez be finite pairwise disjoint subsets of R?. Suppose for each k € Z and each
€ € Sy, at most one line through & is heavy with respect to Sy. Then for (a, 5) # (2,2),

2
(12) Z 2k1+k2+k3+k4#Qg,g(5k1, Skg) Sk37 Sk4) 5 (Z 22k#5k>
(k1,k2,k3,ke)€Z4 kezZ
For (o, B) = (2,2),
2
(13) Z fitkaths b QO (Skys Skys Skys Ska) S 1og(rkngzx #5S) ( Z 22k#5k>
(kl,kz,kg,k4)ez4 kEZ
and
(14) Z 2k1+k’2+k3+k4 Z - ( Z 22k#5 >
(’Cl,k2,k3,k4)€z4 QGQg,B(SkI,Sk2,Sk3,Sk4) ng(gl kEZ

Proof of Proposition 1. Let f, Si and Ty be as in the statement of Proposition 1. Following the proof
of Lemma 2 up to (7), we have

1) T Y @1+ swp 5 3 3 Q) STHGO) + sup 57 3 6(r) + [z

N
QeQo | |~M QeQT Me2 |r|~M

> (X el

£€Z?\{0} 0€EZ  &1—Ea=¢
ged(&)|T §1-§=0

where

We will see that Proposition 2 implies

4 4
(16) G(0) 510g(1£gzx#5k)||f||e2(z2) and  sup — M Z ) Sl ze)-

Me2N 7|~ M
Since Ty = (log maxgez #5S5) !, this will conclude the proof of Proposition 1.

To prove (16), we write C(&;,€) for the cross given by & + ¢R and & + ¢+ R, for j = 1,4. Then

Do s Y, Y, 2tk Z 1S<aa (&)1 aa)(&)

§1—84=¢ 1<, B<3 (k1,ks)€Z? &1—
§1-6=0 &1 §—

where S,gf’a) is the set of all & € Sy, so that C'(£1,€) is of type a with respect to Sy,, and similarly for
S,gi”g ). Then

( Z |f(&)f > Z Z gfthathstha Z Z 1S<sa> (&)1 S(sa>(§2) S(&B)(&i) S(sﬁ)(&;)

1—€1=¢ 1<, <3 (k1,k2,k3,ks)EZ* §1—8a=E §2—E3=¢
§1-6=0 §1:§=0 &2:&=0

“Weaker because (8) requires one to sum, e.g., Z(kl o e ) €24 2k1+k2+k3+k4#(Qnondeg (Sk, X Sk, X Sk, X Sk, )) which
includes rectangles where say one vertex is type 1, another vertex is type 2, and the remaining vertices are type 3; those
do not appear explicitly in the Proposition 2.
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SO summing over o,

Z( > IrE€s ) > Y oththeth 37 Logear (€)1 (§2)Lggem (€3 Lggem (&a)-

o€Z &1—E4=¢ 1<, B<3 (k1,k2,k3,ka) €24 (€1,62,63,64)€Q°
&1-6=0 §1—E€4=¢

To proceed further we classify (&;,&s,&3,&) € Q° according to whether & — & = 0. If & = & then
Ly (€ (&)1 s (&) is non-zero only if ky = ko, in which case it is < ls,, (&1); similarly 1 (€ (53) (&) (&)

is non Zero only if k3 = ky, in which case it is < 1g, (). On the other hand, if (£1, &2, 53, &) € QO & —

€4 - f 7é 07 and 51 52 7é 0 then (517§27€37§4) € Qnondeg’ and 15}257“) (51) 51(6570‘) (§2) S/(f’ﬂ) (§3> 51(657/3) (54) =1
1 2 3 4

if and only if (&, &9, &3,&4) € Qaﬁ(Skl, Skas Skss Sk, ), and equals 0 otherwise. Thus for £ # 0,

Z < Z )|>2 S Z Z 2E Z 1+ Z 22k1+2k4 Z 1Sk1 (51)131@4 (54)

o€L  &1- 1Sa,f<3Eezt  (61,62.63,64)€Q0 5(Sp)  (k1ka)EZ? (€1,64)€(2?)?
ISE 5—0 &1 —E4=¢ §1—84=¢

where we wrote 2F for 2F1+k2+haths anq Sz = (Skys Ska> Sky» Sky) if k= (ky, ko, ks, k) € Z*. As a result,
-3 (T vere) s X XF 3 (D)

€cz2\{0} 0€Z &1—bu= 1Sa,f<3kezt  (61.6263,64)€Q) 5(S7) kez
ged(8)|7 3 5_0 ged(&1—€a)|T

Now Yo7 22 #Sk S ||f||?2(zz)~ Since the condition ged (& — &4)|7 is vacuous when 7 = 0, this shows
Z Z Qk#Q ) + ||f||1z2 72)-
1<0,B<3 fega

We also see that for M € 2N

1 7 1

R ST LTI Sl SEAND S S

~ T 0 gc (5 é- )
IT|l~M 1Sef<3 ezt (61,62:63,64)€Q0 5(Sp)

As a result, (16) follows from Proposition 2. O

The geometric ingredients needed in proving Proposition 2 are captured in the following lemmas.

Lemma 3. Let S; be a finite subset of R?, so that through any point of S; there passes at most one
line that is heavy with respect to Sy. Then for every & € Sy and every & € R2, there exists at most

two choices of (€2,€4) € R? such that Q = (&1, &2, &3, &4) s in Q4 and the cross C(&,Q) is of type
1 with respect to Si.

Lemma 4. Let Sy, S0, 53,5, be finite subsets of R?, so that for j = 1,2,3,4, through any point of S;
there passes at most one line that is heavy with respect to S;. Then for all (01,0s,05,64) in some open

netghborhood U of the point (;, ;, ;, l) in the 2 d@menswnal plane 61 + 05 = 0, + 0, = 1, the following

is true. If (o, B) = (3,3), (2,3) or (3,2), then

(17) #Q0 5(51, 52,53, S1) S (#51)7 (#52) 7 (#53)% (#:54)™

If (o, B) = (2,2), then

(18) #Q0,5(S1, 52, 95, 84) 5 log( max #55)(#:51)" (#92)" (#:95)" (#:2)"
and

(19) S qE Ty S WSS S (S

QEQ, 5(51,52,53,54)

In the next two sections, we first deduce Proposition 2 from Lemma 3 and Lemma 4, and then prove
the lemmas. We note that the proof of Proposition 2 via Lemma 4 resembles somewhat an interpolation
argument of Keel and Tao [4].
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5. SCHUR’S TEST

Proof of Proposition 2. First consider the case a = 1. Write S = (J;c; Sx- Then by Lemma 3, there
exists a function K (&, &, &3,&,) defined on S*, such that for any (ki, ko, k3, ky) € Z2,

(20) > 100 | (Sky,8ky iy Sy (615 62, €3, 64) < 1y (61) s, (§2) s, (€3)Ls,, (§4) K (&1, €2, &3, €4),
1<B8<3

with

(21) sup Z K(&,62,83,64) <2 and  sup Z K(&1,62,83,84) <

51 £3€S£ fES 52 £4€S£ fES

In fact, given (&,&3) € S?, first choose ky € Z so that & € Sy,. Define Ki(&1,8&,8,&) = 1 if
Q = (£,6,63,61) € Qnaee and the cross C(&1,Q) is of type 1 with respect to S,, and define
Ki(&1,8,83,&) = 0 otherwise. Similarly, given (&,&) € S?, let ky € Z so that & € Sy,. Define

K5(&1,82,83,&) = 1if Q = (&1,&,83,8) € ngndeg and the cross C(&, Q) is of type 1 with respect to
Sk,, and define K5(&1, &s, &3, &) = 0 otherwise. Then K := K K, satisfies (20) by construction, and (21)
holds by Lemma 3. Now using (20),

Z Qlrthathatbigy Q8 5(Skis Skas Sy Sa)

(k1 ko,ks, k4)EZ4
<Y X (X I @, @) (D 2, (@)1s, () K (6 6.6 61)
(51 £3)€S2 (£2,64)€S52  (k1,k3)€Z? (k2,ka)€22

which by (21) and Schur’s test on £2(S5?) is

<2 3 (X ot @, &) =2 ows)

(€1,83)€S8%  (k1,k3)€Z? keZ
This completes the proof of Proposition 2 when o = 1, and the case § =1 is similar.
Next, for (o, 5) = (3,3), (2,3) or (3,2), we use (17) and estimate
. 0 % 0 0
Z 2k1+k2+k3+k4#93,ﬁ(5k17 Ska» Skys Ska) S Z QR thathstha ;g[f] HSp H S H Sy # Sy -
(k1,k2,ks,ka)€Z4 (k1,k2,k3,kq) €22
By shrinking U, we may assume that U is symmetric under permutation of the & and &3 coordinates,
as well as permutation of the & and &4 coordinates. So the above is
1 5 1_5 1as a5
<4 Z 2k1+k2+k3+k4#5131 #57 #Skz;‘ #Skz:

(k1,k2,k3,ka)€Z*
k1<k3,ko<ky

1_ 1 2
=4 > s Tasi)
(k1,ks)€Z?
k1<ks

1 1 2
(22) — 4( Z 226(1{17]63)(22161#5]{1)576(22]63#5163)54’6)

k1,k3€Z
k1<ks

for some § € (0,1/2]. Now Schur’s test gives

1/p 1/q
2 B i < (3 d) (1)

k1,k3€Z k1€Z ks€Z
k1<ks

2
if6>0and L+ 1 =1 Applying this with 1 =1 — 4§, L = 1 + 6, we have (22) < 4( e 22k#8k) as
desired. Finally, the same proof above establishes (13) and (14) when (a, 8) = (2,2); we only need to

use (18) and (19) in place of (17). O
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6. PROOF OF THE GEOMETRIC LEMMAS

Proof of Lemma 3. Since through any point of S; there passes at most one line that is heavy with respect
to Sy, once we pick & € Sj, then any rectangle @ := (&;,&2,&3,&4) € Qnondeg with C¢, ¢ being of type 1
with respect to S; has a fixed orientation. Thus once & and &3 are fixed, (&;,&,) are determined up to
permutation, and this establishes Lemma 3. [

Proof of Lemma 4. Fix Sy, S5, Ss, Sy as in the lemma, and abbreviate Q) 5(S1, Sa, S3,54) by Q0 4-

First we count #0939 ;: we have

#Q5 5 < min{#S1#S2, #5243, #9334, #Su# 51}

This is because once two consecutive vertices of ) € QF 5 are chosen, the orientation of @ is fixed, and

there can only be 1 choice for each of the remaining two vertices (otherwise that vertex would not be

type 3). Since (%, %, %, %) is in the interior® of the convex hull of (1,1,0,0), (0,1,1,0), (0,0,1,1) and

(1,0,0,1), and the four vectors affine span the plane 0; + 5 = 05 + 0, = 1, this proves the lemma when
(o, B) = (3,3).

Next, for @ € Z%, let Q°(@) be the set of all Q = (£1,83,83,&) € Qnaeg N S1 X S X S5 x Sy so that
2% < mg,(Cg, q) < 2“]Jrl for j = 1,2,3,4. The key fact is that when 2 < 29 < C(#5,)"/?,

(23) #0%@) < (#5)%2 2t min{293 294},

This is because Szemeredi-Trotter® implies that there are < (#51)%/(29)3 + #51/29 < (#51)%/(2¢1)3
lines” that contain > 2% points from S;, and on each such line there are < 241+ choices for &;. Once
¢ and the 2% rich line through & are chosen, the orientation of the rectangle in Q°(@) is fixed, and
the rectangle is determined by & and & (< 29279 choices), or & and & (< 2727 choices). Thus (23)
follows.

By the same argument we used to count #Qg’g, we also have

(24) £Q7(@) < #S,5,11 min{242, 2059}

where we used cyclic notation and identify indices that are congruent mod 4.

When 2 < 2% < O(#5;)/% for j = 1,2 and a3 = ay = 0, (23) and (24) gives

#Q°(@) S min{(#51)727°7, (#:52)?27°2, #S5#:512" , #.539:542 .
Interpolating,

#Q°(@) S ((FS1)727200) 50 ((#£82)27292) 540 (F.5y 45421 ) 570 (#5595, 272) 57

for all sufficiently small § > 0, so summing over ay, as > 1 we obtain

Q)y S (#5))5 T2 (#5,)5 T2 (#:55)5 2 (.5,)5
for all sufficiently small § > 0. We also have

2 3~ S min{#S1#.S2, #52#53, #S4#51 }
by the argument used to count #Q&g. Since (%, %, %, %) is in the interior® of the convex hull of (1,1,0,0),
(0,1,1,0), (1,0,0,1) and (%, %, %, %), and the four vectors affine span the plane 6, + 603 = 6, +6, = 1, by
continuity the same is true when the last point is replaced by (% + 20, % + 20, 2 20, 2 — 2§) whenever
d is sufficiently close to 0. In other words, the convex hull of (1,1,0,0), ( 1,1 O) (1,0,0,1) and
(% + 25,% + 26,% — 26,% — 20) contains an open neighbourhood of the point (% % %, %) in the plane
eg (3,3.4.1)=12(1,1,0,0) + 1(0,1,1,0) + 1(0,0,1,1) + 1(1,0,0,1)
6We used 291 > 2 here
7The last inequality used 2% < C(#51)'/2.
111 1y_1 1 1 3(1 122
Se.g. (3:3,3:3) = §(1,1,0,0) + £(0,1,1,0) + 5(1,0,0,1) + (35, 5, 5. 3)
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01+ 03 = 0340, = 1. This proves the lemma when (o, 5) = (2, 3), and the argument when (a, §) = (3, 2)
is similar.

When 2 < 29 < O(#5;)'/% for j = 1,2,3,4, (23) gives
(25) #0°(@) < min min(#S5;)?2 729 Tt

1<5<41=1,2
Since the vectors
= (2,0,0,0,-2,1,1,0), v :=(2,0,0,0,-2,1,0,1),
v :=(0,2,0,0,0,—2,1,1), wv4:=(0,2,0,0,1,—2,1,0)
5 :=(0,0,2,0,1,0,—2,1), wvg:=(0,0,2,0,0,1,—2,1),
;= (0,0,0,2,1,1,0,—2), wvs:=(0,0,0,2,1,0,1,~2)
span the 6 dimensional plane {0, +6;+03+60, = 2 and ¢+ da+d3+¢4 = 0}, and (%, ;, %, ;, 0,0,0,0) is in
the interior® of the convex hull of vy, .. ., vg, for any (61, 64, 03, 6,) in a sufficiently small neighbourhood U
of (1 % % %) in the 3 dimensional plane 6; + 65+ 603+ 6, = 2, and any (¢1, ¢2, ¢3, ¢4) in a neighbourhood
V of (0,0,0,0) in the 3 dimensional plane ¢; + ¢o + ¢35 + ¢4 = 0, one has
HQU@) S (#5) (5212 ()P (e estssoasins,
Now for any (61,605, 65,0,) € U,
#99, S > #Qa)
2<2% <C(#8;)'/?
S S H#S)HS)EHS)" Y inf et

2<2% <C(#5;)1/2 (¢1,02,¢3,04)EV

and for sufficiently small 6 > 0, V contains the point (—4,0,0,0), as well as its images under any
permutation of its four coordinates. By symmetry, the summation in the last display is

< 1 75(a17a4) <
< 16 > 2 S log( max #5;),
log(max; #S;)2a1>a2>a3>a4>0

1

establishing (18) (in fact, we showed a little more than required, since U is a neighbourhood of (%, 35 %, %)

in the 3 dimensional plane 0; + 6, + 03 + 0, = 2).
Finally, when 2 < 2% < C(#5;)'/2 for j = 1,2,3,4,

1
(26) Z W S (#51)22*2a1+a2+a4/2.
(€1,62,63,64)€Q0(q) 1

This is because when &1, &, are fixed ((#51)?272%1792 choices), then &3 is determined by &,. Furthermore,
the set of possible &, is a subset of an arithmetic progression and has at most 2% elements. So summing
over (&3,&,) and using
1
< g, < 90a/2
oy 2SS
#5<2% meS

gives (26). One can also bound the left hand side of (26) by #Q°(a@), which we bounded by (25).

Let vg = (2,0,0,0,—2,1,0,1/2). Then vy, ..., vy span the 7 dimensional plane 0; + 03 + 03+ 60, = 2 in

R®, and (;, ;, ;, ;, 0,0,0, —¢) is in the interior'® of the convex hull of vy, ..., vy for all sufficiently small
e > 0. Fix one such e. Thus for any (61, 6,63, 60,) in a sufficiently small neighbourhood U of (%, %, %, %)

in the plane 6, + 0y + 03 + 0, = 2, and any (¢y, ¢o, ¢3, ¢4) in a neighbourhood V. of (0,0,0, —¢) in R*,
one has

1
Z W S (#51)91 (#52)92(#53)93 (#5’4)942“1¢1+‘12¢2+a3¢3+a4¢4.
(€1,62,£3,64)€Q0() 1 4
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Hence for sufficiently small 6 > 0,

1
Z ged(§r — &) ™ s Z Z g dfl )

Qe QO 2<2% <C(#5;)1/2 QeQ0(a@

< (#Sl>91<#52>92<#53> B#S)" Y inf

9a1 P1+az2¢2+-a3p3+asda

(p1,02,03,04)EVe

a1,a2,a3,a4>1

S A (#S)2 (#S) 2 (HS)" Y 2 ima-ce

aj>az>az>ags>1

< (#51)" (#82)" (#55)™ (#:52)™
This completes the proof of (19).
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