
Reflections on Hodge decomposition

Let M be a compact Riemannian manifold without boundary, d and d∗ be
the densely defined closed operators on L2(ΛpTM∗), so that domain of d is
the set of all forms u with L2 coefficients such that du (defined in the sense of
distributions) has L2 coefficients, etc.

Theorem 1 (Hodge decomposition on L2). There is an orthogonal decomposi-
tion

L2(ΛpTM∗) = H⊕ Im(d)⊕ Im(d∗)

into closed subspaces, where H = ker(d)∩ ker(d∗). Also H is finite dimensional.

Proof. It is immediate that the three subspaces are orthogonal to each other;
indeed

(Im(d)⊕ Im(d∗))⊥ = H.

(If u ⊥ Im(d∗), then 〈u, d∗v〉 = 0 for all smooth forms v, so du = 0 in distribu-
tion, and u ∈ Dom(d) with du = 0.) It follows that

L2(ΛpTM∗) = H⊕ Im(d)⊕ Im(d∗).

It remains to prove that Im(d) and Im(d∗) are both closed subspaces of L2, and
that H is finite dimensional. We need two lemmas:

Lemma 1 (Rellich). H1(ΛpTM∗) embeds compactly into L2(ΛpTM∗).

Lemma 2 (Elliptic estimate). For any form u ∈ Dom(d) ∩Dom(d∗),

‖u‖H1 ≤ C(‖du‖L2 + ‖d∗u‖L2 + ‖u‖L2).

One then argues, using compactness arguments, that

Lemma 3 (Special elliptic estimate). For u ∈ Dom(d) orthogonal to the kernel
of d, we have

‖u‖H1 ≤ C‖du‖L2 .

Indeed we need only the weaker estimate

‖u‖L2 ≤ C‖du‖L2

that holds for all u that satisfies the same conditions. By functional analytic
arguments, this already implies that the closed operator d has closed range in
L2. (If dui → v in L2, then taking ui to be orthogonal to the kernel of d
(which is possible since the kernel of d is a closed subspace of L2), we have
‖ui − uj‖L2 ≤ C‖dui − duj‖L2 so ui → u for some u ∈ L2, and by closedness of
d we have u ∈ Dom(d) with du = v.) Same for Im(d∗).

Finally, on H we have, by elliptic estimate, that ‖u‖H1 ' ‖u‖L2 . Thus the
unit ball of H in L2, which is contained in some ball in H1, is compact in the
L2 topology by Rellich. This proves that H is finite dimensional.

Proof of Lemma 3. Suppose the inequality does not hold for any C. Then there
is a sequence ui, all in Dom(d) and orthogonal to the kernel of d, with

‖ui‖H1 = 1, ‖dui‖L2 → 0.
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Then by Rellich, we may assume ui → u in L2 for some u ∈ L2. But then
dui → du in distribution, while dui → 0 in L2. Thus u ∈ Dom(d) with du = 0.
Also u ⊥ ker(d), because each ui does and ui → u in L2. It follows that u = 0,
and that ui → 0 in L2. Note also ui ∈ Dom(d∗) with

d∗ui = 0,

since for all smooth forms v, 〈ui, dv〉 = 0 by orthogonality of u to the kernel of
d (here d(dv) = 0). Hence by elliptic estimate,

‖ui‖H1 ≤ C(‖dui‖L2 + ‖ui‖L2)→ 0

while this is impossible since all ‖ui‖H1 = 1.

It is clear from the theorem that the kernel of d is H⊕ Im(d), and that the
kernel of d∗ is H⊕ Im(d∗). One has the corresponding solution operators for d
and d∗:

Corollary 1 (Solving d and d∗). If f ∈ L2, f ⊥ H and df = 0, then there
exists u ∈ L2 such that

du = f.

Moreover, u can be chosen to be orthogonal to the kernel of d; this determines
u uniquely, and such u satisfies the special elliptic estimate

‖u‖H1 ≤ C‖du‖L2 .

We call this u the canonical solution to the equation. Same for d∗.

By techniques in elliptic PDEs, one can also show that H consists of smooth
forms, and that there is a corresponding Hodge decomposition for the Sobolev
spaces and the C∞ spaces.

Next, let ∆ be the densely defined closed operator on L2(ΛpTM∗) defined
by ∆ = dd∗ + d∗d so that the domain of ∆ consists of all u with u ∈ Dom(d) ∩
Dom(d∗), du ∈ Dom(d∗) and d∗u ∈ Dom(d). Then

Corollary 2 (Hodge decomposition for L2). Ker(∆) = H, and there exists an
orthogonal decomposition

L2(ΛpTM∗) = H⊕ Im(∆)

into closed subspaces.

Proof. Ker(∆) = H is clear: if u ∈ Ker(∆), then

〈du, du〉+ 〈d∗u, d∗u〉 = 〈u,∆u〉 = 0,

which implies du = d∗u = 0. The converse is even easier. Also

Im(∆)⊥ = H :

indeed if u ∈ Im(∆)⊥, then ∆u = 0 in distribution, so u is smooth and u ∈ H. It
remains to see that Im(∆) is a closed subspace of L2. The argument is analogous
to the above; indeed the elliptic estimate

‖u‖H2 ≤ C(‖du‖H1 + ‖d∗u‖H1 + ‖u‖H1)
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implies
‖u‖H2 ≤ C(‖∆u‖L2 + ‖u‖H1),

because

‖u‖2H2 ≤ C(‖du‖2H1 + ‖d∗u‖2H1 + ‖u‖2H1)

= C(〈∆u, u〉H1 + ‖u‖2H1)

≤ C(‖∆u‖L2‖u‖H2 + ‖u‖2H1)

≤ ε‖u‖2H2 + C(‖∆u‖2L2 + ‖u‖2H1).

Thus we can play the same compactness argument as before, proving that

‖u‖H2 ≤ C‖∆u‖L2

for u ∈ Dom(∆) orthogonal to kernel of ∆. The rest is a direct analogue of the
case for d and d∗.

There is also a corresponding solution operator for ∆.

Corollary 3 (Solving ∆). If f ∈ L2 and f ⊥ H, then there exists u ∈ L2 such
that

∆u = f.

Moreover, u can be chosen to be orthogonal to the kernel of ∆; this determines
u uniquely, and such u satisfies the special elliptic estimate

‖u‖H2 ≤ C‖∆u‖L2 .

We call this u the canonical solution to the equation, and write u = Nf .

For f ⊥ H with df = 0, u = d∗Nf is the canonical solution to du = f . Thus

‖d∗Nf‖H1 ≤ C‖f‖L2 .

This estimate is true without the condition that df = 0: (oh but this can be
seen as the corollary of that N maps L2 to H2)

Proposition 1. For f ∈ L2, f ⊥ H,

‖d∗Nf‖H1 ≤ C‖f‖L2 .

Same for d.

Proof. This is because d∗Nf is orthogonal to the kernel of d, and the special
elliptic estimate applies:

‖d∗Nf‖H1 ≤ C‖dd∗Nf‖L2 .

Now

‖dd∗Nf‖2L2 = 〈d∗dd∗Nf, d∗Nf〉 = 〈d∗∆Nf, d∗Nf〉
= 〈d∗f, d∗Nf〉 = 〈f, dd∗Nf〉
≤ ‖f‖L2‖dd∗Nf‖L2

which implies the desired estimate.

Finally, note that as long as some subelliptic estimates hold in place of
the elliptic estimate, we can get some versions of all the above theorems (with
suitable modifications in regularities of the solution operators).
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