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Abstract

We study the analog of power series expansions on the Sierpinski gasket, for analysis based
on the Kigami Laplacian. The analog of polynomials are multiharmonic functions, which have
previously been studied in connection with Taylor approximations and splines. Here the main
technical result is an estimate of the size of the monomials analogous to x"/n!. We propose a
definition of entire analytic functions as functions represented by power series whose
coefficients satisfy exponential growth conditions that are stronger than what is required to
guarantee uniform convergence. We present a characterization of these functions in terms of
exponential growth conditions on powers of the Laplacian of the function. These entire
analytic functions enjoy properties, such as rearrangement and unique determination by
infinite jets, that one would expect. However, not all exponential functions (eigenfunctions of
the Laplacian) are entire analytic, and also many other natural candidates, such as the heat
kernel, do not belong to this class. Nevertheless, we are able to use spectral decimation to
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study exponentials, and in particular to create exponentially decaying functions for negative
eigenvalues.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Ordinary calculus is such a remarkable subject because it combines both a general
conceptual framework and a detailed understanding of basic functions. For example,
the theory of power series expansions hinges on the elementary observation that the
function f,(x) = x"/n! on [0, 1] is bounded by 1/x!. (Stated this way, it seems almost
a tautology, so perhaps it is better to say that f,, is the polynomial characterized by

the conditions f,fm>(0) = Oum-) Another example: among all linear combinations of
coshx and sinh x there is one, ¢ * = coshx —sinhx, that decays as x— o0;
moreover its rate of decay is the reciprocal of the growth rate of cosh x and sinh x.

The goal of this paper is to understand analogous facts about basic functions on
the Sierpinski gasket (SG), which should be regarded as the simplest nontrivial
example of a fractal supporting a theory of differential calculus based on a
Laplacian. Standard references are the books of Barlow [Ba] and Kigami [Ki2], and
the expository paper [S2]. The references to this paper, and the more extensive
bibliography in [Ki2], indicate an intensive development of the subject since
Kigami’s original paper [Kil] giving a direct analytic definition of the Laplacian
on SG.

Recall that SG is the attractor of the iterated functions system (IFS) consisting of
three contractions in the plane F;(x) = % (x+¢i), i=0,1,2 where ¢; are the vertices

of an equilateral triangle. In other words SG = U?:o F;(SG), and we refer to the sets
Fi(SG) as cells of order 1. More generally, we write F,, = F,, o---oF,,  for a word
w= (Wi, ..., wy) of length |w| = m, each w; = 0,1 or 2, and call F,,(SG) a cell of level
m. We regard SG as the limit of a sequence of graphs I',,, (with vertices V,, and edge
relation x~,,y) defined inductively as follows: I'y is the complete graph on V, =
{90, 91,92}, and V,,, = U?:o F;V,,_ with x~,,y if x and y belong to the same cell of
level m. Then V., = {J,_, Vi, the set of all verices, the analog of the dyadic points in
the unit interval, is dense in SG. We consider ¥V} the set of boundary points of SG,
and V,\Vy is the set of junction points. Note that every junction point in V,, has
exactly 4 neighbors in the graph I',,,. The graph Laplacian 4,, on I',, is defined by

Anu(x) = > (u(y) — u(x)) for xeV,\Vo. (1.1)

Y~mX

The Laplacian 4 on SG is defined as the renormalized limit

Au(x) = lim %5’”Amu(x). (1.2)

m— o0
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More precisely, uedom A and Au = f means u and f are continuous functions and
the limit on the right side of (1.2) converges to f uniformly on V,\ V. The Laplacian
plays the role of the second derivative on the unit interval (although it is shown in
[S5] that it does not behave like a second order operator). Thus we will define a
polynomial P to be any solution of AP = 0 for some j. More precisely, if we let #;
denote the space of solutions of A"y = 0, then H; is a space of dimension 3j + 3,
and it has an “easy” basis { fyx } for 0<n<j and k =0, 1,2 characterized by

N fur(qr) = SonOracr (1.3)

In [SU] a different basis was constructed in order to develop a theory of splines. Here
we will consider yet another basis, implicitly used in [S3] in conjunction with Taylor
expansions, to define power series.

The Laplacian is basically an interior operator, as (1.2) is not defined at the
boundary (although Au = f makes sense at boundary points by continuity). There
are also boundary derivatives. The normal derivative

Onu(q;) = lim (g) (2u(qy) — u(F"qp41) — u(F"gj-1)) (1.4)

(cyclic notation ¢g;,3 = ¢;) exists for every uedom 4 and plays a crucial role in the
theory, especially in the analog of the Gauss—Green theorem:

2
/SG(uAv — vAu) dp = Z (u(qi)0nv(q;i) — Onu(gi)v(gi)). (1.5)

i=0

Here p is the natural probability measure that assigns weight 37 to each cell of
order m. The normal derivative may be localized to boundary points of any cell, and
there is also a localized version of (1.5). At a junction point there are two different
normal derivatives with respect to the cells on either side. For uedom A we have the
matching condition that the two normal derivatives sum to zero. This leads to the
gluing property: if u and f are continuous functions and Au = f on each cell of order
m (meaning 4(uoF,) = 57"f<F, for all words w of length m), then Au = f on SG if
and only if the matching conditions hold at every junction point in V,,.
There are also tangential derivatives

Orulgy) = im 5" (u(Fy'qj1) — u(Fy'gj-1)) (1.6)
that exist if uedom A and A"u satisfies a Holder condition, and may be localized to
boundary points of cells. In this case there are no matching conditions for uedom A.
However, we will show in Section 5 that there are matching conditions involving
infinite series of tangential and normal derivatives valid for polynomials and analytic
functions. Tangential derivatives were introduced in [S3]. Their true significance is
still somewhat elusive. In this paper we will show that for polynomials and analytic
functions the sum of the tangential derivatives over the three boundary points of any
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cell must vanish. In [S3] and [T2] the idea of creating a gradient of a function out of
the normal and tangential derivatives is discussed. Here we will extend this to the
idea of a jet. For simplicity we deal with a boundary point ¢,, but the definition can
be localized to boundary points of any cell.

Definition 1.1. For uedom A" with A" satisfying a Holder condition, the n-jet of u at
qs is the (3n + 3)-tuple of values (ANu(q,),0.Nu(qs),0rNu(qs)) for 0<j<n. For
uedom A% | the jet of u at g, is the infinite set of the same values for all j=>0.

Fix a boundary point ¢,. We deﬁne polynomials P by requiring that the] -jet at

q, vanish except for one term, A’ P jl ( /) =1, 0, AJP ( /) =1 and 8TP ( /) =1,

respectively. We refer to these functions as monomzals. It is clear that the monomlals
Pj(,f) for 0<j<n form a basis of #,. It is shown in [S3] that they exhibit a prescribed
decay rate in neighborhoods of ¢g,, but the estimates established there were not
uniform in j. The first goal of this paper is to obtain sharp estimates for ||P({> ... For

P,<'i and P3 we prove decay estimates faster than any exponential. For P( the

situation is different; we prove an exponential decay of order Azj for the specific
value A, equal to the second nonzero Neumann eigenvalue. This result is sharp. In

fact we show that (—/lz)ng) converges to a certain A;-eigenfunction of 4. This result

has no analog in ordinary calculus.

We define a power series about ¢, as an infinite linear combination of the

)

monomials P’ with coefficients {c; }. We find growth conditions on the coefficients

to guarantee convergence. We study the rearrangement problem: given a convergent
power series about one boundary point, does the function also have a convergent
power series about the other boundary points? Surprisingly, we find that it is
necessary to assume a stronger growth restriction on the coefficients in order for this
to be the case, namely

k| = O(RY) for some R< 7. (1.7)

We end up defining an entire analytic function to be a function represented by a power
series with coefficients satisfying (1.7). We then prove that rearrangement is possible at
all boundary points, and in fact local power series expansions exist on all cells, with the
estimate (1.7) preserved (in fact the same R value). This choice of definition means that
there are some convergent power series that do not yield analytic functions. It also
means that eigenfunctions of the Laplacian cannot be entire analytic functions unless
the eigenvalue satisfies |1| <Z,. On the other hand it is easy to see that there are A»-
eigenfunctions that cannot be represented by convergent power series, so the definition
seems to be close to best possible. We then are able to characterize the class of entire
analytic functions in dom A® by the growth conditions

||&Vul|, = O(R) for some R< 1, (1.8)

(one could also use L? norms).
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Our definition of entire analytic function means that a basic principle of unique
analytic continuation holds. If we have a function defined on a cell and satisfying
(1.8) there, it has a unique extension to an entire analytic function on the whole
space. In fact its jet at any boundary point of the cell satisfies (1.7), and uniquely
determines the function. This implies that a nonzero entire analytic function cannot
vanish to infinite order at any junction point. We could also define local analytic
functions on a cell of order m by relaxing the condition R</, in (1.7) and (1.8) to
R<5"},. One could hope to have a notion of analytic continuation that would allow
such local analytic functions to extend to larger domains. However, we have not
been able to find any interesting examples, so we will not pursue the matter here.

It is easy to extend the notion of entire analytic function to infinite blow-ups of SG
[S1,T1]. The simplest of these is

o0
SG,. = F,"(SG), (1.9)
n=1
but more generally we could consider
PNt -1
U 55 (56) (L10)
n=1
for any choice of ji, j»,/3, ... . A function on SG satisfying (1.8) for all R>0 extends

to an entire analytic function on any blow-up (1.10). It is not clear at present which,
if any, of these functions will come to play the role of special functions
(hypergeometric, Bessel functions, etc.) in real analysis. On the other hand it is
very easy to construct many such functions simply by taking a power series with
bounded or sub-exponential growing coefficients. The negative results of [BST] mean
that none of these spaces of analytic functions is closed under multiplication, so this
precludes using many standard techniques for ordinary power series.

Although none of the eigenfunctions of the Laplacian are entire analytic functions
on the blow-ups, it is still important to understand their global behavior. In Section 6

we study this problem for the simplest example SG., and negative eigenvalues. It is
easy enough to define the analogs of the functions cosh v/Zx and sinh v/Zx. In fact
there are three, which we call C)(x), S;(x) and Q,(x), characterized among (—4)-
eigenfunctions by their 0-jet at ¢g, or equivalently by power series involving just P/(.?)

P;g), or Pfg) terms, respectively. The power series for C(x) and Q;(x) converge on all

)

of SG,, while the power series for S;(x) is only convergent on a neighborhood of ¢
(depending on Z). Fortunately, there is another method available to study these
eigenfunctions, called spectral decimation [FS,DSV,T1]. Using this method we are
able to show that they exhibit an exponential growth as x— oo (or as A— c0), and
there is one linear combination, E;(x) = C;(x) — S,(x) for the appropriate normal-
ization, that decays as x— oo at the reciprocal rate. Thus E;(x) is the analog of
e V** Tt is not clear if there is any analog of eV,

Although we do not use power series in our study of properties of eigenfunctions,
we can turn the tables and use facts about eigenfunctions to obtain information
about power series. In particular, we are able to construct specific power series that
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are divergent, or power series that are convergent but not rearrangeable. We can also
give an explanation for why the recursion relations for the size of monomials are
unstable.

It is interesting to speculate on possible future extensions and developments of our
results. It is important to understand all eigenfunctions, including those with positive
eigenvalues, on all blow-ups (1.10). There should be some sort of Liouville-type
theorem precluding nonconstant bounded entire analytic functions on blow-ups
without boundary.

What is the behavior of an entire analytic function in a neighborhood of a generic
point? Is there any notion of power series there? Are there interesting examples of
local analytic functions with a natural domain that is not just a single cell? Is there a
meaningful notion of analytic functions on fractafolds based on SG [S4]?

We have seen that there is no restriction on the jet of an analytic function other
than the growth condition (1.7). For the larger class dom A®, is there an analog of
Borel’s theorem that an arbitrary jet may be specified at one (or all three) boundary
points?

In [OSY], the structure of level sets of harmonic functions on SG was elucidated,
with the remark that certain eigenfunctions of the Laplacian have level sets of an
entirely different nature. It is clear now that these eigenfunctions are not analytic, so
it is reasonable to ask if anything interesting can be said about level sets of entire
analytic functions. Another remark from that paper is that harmonic functions enjoy
a principle called “geography is destiny.” Roughly speaking, this says that the
restriction to a small cell of a harmonic function is essentially dictated (up to two
parameters) by the location of the cell, rather than the specific harmonic function, in
a certain generic sense. This holds because restrictions of harmonic functions are
governed by long products of matrices, so the theory of products of random matrices
makes generic predictions. For analytic functions, there is a similar description of the
transformation of jets, except that the matrices are now infinite. So if we go to a
small cell, while all jets satisfying (1.7) are possible, some may be very unlikely for
a generic analytic function. Is there some way to make this precise?

A sequel to this paper, [BSSY], will discuss functions with point singularities,
exponential functions on general blow-ups, and estimates for normal derivatives of
Dirichlet eigenfunctions and heat kernels.

The website www.mathlab.cornell.edu/"nman/ contains more numerical and
graphical data, as well as the programs used to generate them.

2. Polynomials

The space #; of (j+ l)-harmonic functions (solutions of Nt =0) has
dimension 3(j + 1) and plays the role of the space of polynomials of degree at
most 2j + 1 on the unit interval. Several different bases for J#; are known. In [SUJ, in
order to develop a theory of spline spaces, bases based on the behavior at all three
boundary points were used. In this section we will discuss properties of yet another


&ast;http://www.mathlab.cornell.edu/~nman/a4

296 J. Needleman et al. | Journal of Functional Analysis 215 (2004) 290-340

basis, based on the behavior at a single boundary point, that is more suited to the
work on power series to follow. The polynomials in this basis are analogous to the
monomials x”/n! on the unit interval. These functions were introduced in [S3], but
not much was done there to describe their behavior.

Deﬁnltlon 2.1. Fix a boundary point q,. The monomials P/ for k=1,2,3 and

j=0,1,2, ... are defined to be the functions in J#; satisfying
Aijk (q/) = 5"1_/51»'17 (21)
(9 A"P ( >(61g) - 5”’!]51(27 (2.2)
8TAmPJ(-1f) (97) = Omjos- (2.3)

When ¢ = 0 we will sometimes delete the upper exponent and just write Pj.

Note that we only need to consider m<j in (2.1)—(2.3), since A"’P](,i>

vanishes
identically otherwise. Thus there are 3(j + 1) conditions in all, and it follows from
[S3] that there is a unique solution, and the monomials Pj(.,f) for fixed / and all j<J,

form a basis for ;. We have the self-similar identities

P (Frx) = 57 P (), (2.4)
(¢) m _ 3 " —jm (¢)

Py (Fyx) = (5) 5P (), (2.5)
PR(Ex) = 570" P) (x) (2.6)

that describe the decay rate of these functions as x—»q/ (of course P01 = 1). Itis easy

s skew- symmetric under the

to see that P ) and P are symmetric while P
reflection that ﬁxes qr and permutes the other tWo boundary points. It is easy to
compute the values of monomials to any des1red precmon Fig. 1 shows the graphs
of some of them. Since we may obtain PY 'k ) from ij by simply rotating the variable
x, we will restrict our discussion to 7 = 0 from now on.

It is clear from the definition that powers of the Laplacian send monomials to
monomials, simply reducing the j index:

Aijk = P(/'—m)k~ (27)

We could use this property to give an inductive definition. When j =0 the
monomials are explicit harmonic functions, Py; =1, Py has boundary values
Pox(q0) =0, Po2(q1) = Po2(q2) = —1/2 and Po3 has boundary values Po3(qo) = 0,
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Fig. 1. The graphs of Py, for some typical values. The graphs of P;; are all qualitatively similar for j>1, so
we show only Ps; (top left). Similarly for Pj (top right). The nature of the graphs of P changes
drastically around j = 5,6,7,8, so we display all of these. The graphs of Pj for j>8 are qualitatively
similar to Pgs, (bottom right).

Py3(q1) = —Po3(q2) = 1/2. Then Py for j>0 is the unique solution of APy = P;_y
with vanishing initial conditions

Pi(q0) =0, 0nPi(q0) =0, 9rPu(qo) = 0.

In [KSS] it is shown that Py may then be written as an integral operator (with
explicit kernel) applied to P(;_1),. However, the kernel is quite singular, so we have
not been able to extract any useful information out of this representation.

There are three main goals in this section: (1) to obtain sharp estimates for the size
of the monomials, (2) to understand how to express monomials for one choice of Z in
terms of monomials for another choice of 7, (3) to obtain certain universal identities
that hold for all monomials. In pursuit of these goals we introduce some
terminology.
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Definition 2.2. For j>0 let

{ocj = j1(q1), ﬁj = jz(l]1)7 Vi = j3(q1)7 (2.8)
nj =0, Pin(q1), t; = O0rPp(q). .

Note that by symmetry we have P;i(q2) = o, Pa(q2) = f; and Pj3(q2) = —7;, s0
that all values of monomials at boundary points are expressible in terms of a’s, s
and y’s. Soon we will see that the »’s, #’s and o’s suffice to express all normal and
tangential derivatives of monomials at boundary points.

Theorem 2.3. The following recursion relations hold:

4 _

ajz—sj SZO(/;/OC/ f()r ]227 (29)

=1

4 -
ijmz %y, Jor j=1, (2.10)

(=0

1 A2, 2 4, 4 .

ﬁjzﬁ; 55 eBr =301 B+ 5 o-0B ) for j=1, (211)

with initial data o9 = 1, 0y = 1/6, g = —1/2, yo = 1/2. In particular,
7y = 3041 (2.12)

Proof. It is convenient to work in matrix notation, with all matrices being infinite
has o;; = o;_; for i=j and

o;; = 0 for i<j. We consider two linear operators on such matrices, the shift ¢ and
the dilation 7, given by

d 0 - d 0
dl d() 0 B dz d] 0
Na ay d ol |ds & d 0
d 0 - d 0
R 5d, dy 0

N @ d 0 |7 |52 sd d 0
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Let { fj1, /2, /53 }]ﬁo be the easy basis defined by (1.3). As in [SU] we let

a1 = Oufi(qr),

bioy = Oufi(gn) n#k

for /=0,1,2,.... Then the Gauss—Green formula says for />0
a; = Onfus1)1(q1)

Il
Mw

(So1(gn) O 151)1(qn) = Si11)1(4n) Onfo1(gn))

1

3
Il

:/ (fOIAf(1+1)1 *f(l-s—l)lAfOl)d/J

SG

~ [ s dn
SG
and
b; = Ouflus1)1(q2)

I
Mw

(S02(gn) O 151)1 (gn) — Si11)1(4n) Onf02(qn))

1

3
Il

= /SG(ﬁ)zAﬂl+1>1 — fusr11Moz) du

:/ Joofn du.
SG

This shows that our definition is consistent with [SU]. It is easy to see that a_; = 2,
b =1

We note here some typos from [SU]J:

(i) in (5.4) the coefficient § should be 4%;

(i) in the first line of (5.7) the coefficients 2 of a;_;_, and b;_1_, should be deleted.

Now let p;, g; be defined by
pi = f(Fiqr) i#k,
q; = Yf(Fiqs) for i j,/ distinct.

(Note that we are using the same symbol ¢g; for two different things, but it should be
clear from context which is which.)
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Then (5.7) of [SU] rearranged says

J
> (@1 + b )21+ ) + b1 =0,
1=0

J

Z (2aj—1-1 = bj1-1)(p1 — q1) + bj—1 = 0.

=0
If we set
a_q 0 b,1 0
ap a_q 0 b() b,I 0
A= aj ag a_q 0 s B = b] b() b_l 0 s
a a  a a-y -, by b1 by by
po 0 q O
pt po O q q O
P=|{p p1 po O , O9=1q@ ¢ q O

ps P2 pi pPo -, qs 42> 491 4o
Then in matrix notation this becomes

(A+B)2P+Q)+B=0, (24— B)(P—Q)+B=0. (2.13)

Now for j=0,

Pj = fo+ jZ wi—1(fn + /1),
=0 (2.14)

J
Pp = [ZO Bii(fin +112)s
so taking normal derivatives at ¢q, we have

J
a1 +2 Z aj_1bi—1 = 0,Pj1(q0) = 0,
=0

1 ifj=0,
0 otherwise.

J
2 Z Bi—ibi-1 = 9, Pp2(q0) = {
1=0
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In matrix notation this is
2B+ A=0, 28B=1,
i.e.
-1 1 -1
A= —(Xﬁ 9 B= EB

Substituting (2.15) into (2.13), we get

2P+ 0= —(4+B) 'B= —Hﬂ‘(za—n]_l 387 =m0
P-Q=—-(24-B)'B=— {—%ﬂ_l(%c +1)]l Bﬁ"} = (do+1)"

SO
(e —1)(2P+ Q) =1 = (4o + I)(P — Q).

Expanding we get
40P 4+200Q — 2P — Q = 40P — 40Q + P — Q,

ie.
P=240, and Q= (4a+1)"'Qu—1)"
Now evaluate (2.14) at Fyq;, noting that
Pii(Foqi) =57 Pu(q1) = 570,
Pp(Foq1) = %5_'in1 (1) = %5_'/.3_/
by (2.4), (2.5) and
fio(Foqr) = fir(Foqr) = 57'p1,
fo(Foq) = 5"'q1,

by the definitions of p;’s and ¢;’s. The result is

j
570y =57pi+ Y o (5 pi+ 57 a),
=0

3 J B -
5378 = > B+ 5"
1=0

301

(2.15)

(2.16)

(2.17)
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SO

j
% = pj+ Z Sy (pr + 1)
=0

and
3 S
B=> 5B+ g0,
=0

In matrix notation these read as
%= P+(a)(P+ Q)
and
3
Zp=tp)(P+0)

From (2.16) we see that
o= [20 4+ () (20 + 1] Q

and
B=1(B)(2x+1)Q
Hence
(o) = 4o — 3a
and

3
gﬁ(2oc —D(da+1)=1(p)20+ 1),
from which (2.9) and (2.11) follow.
Finally
J

Pi=> 9/ —fn),

=0

Pi3(Foqi) = 57U P (g1) = 57Uy,

and so by (2.17) we have

J
57Uy, =" (5 =57 q),
=0
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i.e.
J

I .
s =2 9 e - a),

=0

or in matrix notation

=P~ Q)

Thus t(y) = 1 (40 + I)y from which (2.10) follows.
The values of oy, f, and vy, are easy to check. Then (2.12) follows from (2.9) and

(2.10) since o; and y;_, satisfy the same recursion relation. [

Theorem 2.4. For all j =0 we have

PP (x) + P (x) + PF(x) =0 (2.18)
and
PJ<‘2>(X) = 3(PE/?L)1(X) - Pg/]'ll)l(x))' (2.19)

Proof. We prove (2.18) by induction. For j = 0 the left side is a harmonic function
that vanishes on the boundary (because of the skew-symmetry of each term). Such a
function must be zero. For the induction step, assume it is true for j — 1. Then

+P =0

0) 1 2 0 (
APY + Py + Py =P+ P 2=

1
j i) =i (-1)3

by the induction hypothesis. Once again the left side is a harmonic function, and it
vanishes on the boundary by skew symmetry.
To prove (2.19) we use

J
PO ="y (fn —1n). (2.20)
/=0

On the other hand, we have

1
2
Pg,lm =fi+12 + E wi—r1(fro +fr1),
/=0

Jj+1
I
PE,-L)I = flis1 + § % r1(fro +1r2)
/=0
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so that

+1
2 I
PE/il)l - Pg,im =fir2 — S + E %11 (fr1 = fr2)
7=0

|
M»\

%1 (fr1 = fr2)

~
i

0

since ap = 1. The result follows from (2.12). O

The dihedral-3 symmetry group D3 of SG consists of reflections p,, p,, p,, where
p; preserves ¢; and permutes the other two boundary points, and rotations 7, Ry,

Ry = (R))* where Rig; = gj41 (cyclic notation).
Theorem 2.5. Any polynomial P satisfies the identity
P(x) 4+ P(R1x) + P(Ryx) = P(pyx) + P(p,x) + P(p,x), (2.21)
and more generally the local versions
P(x0) + P(x1) + P(x2) = P(y1) + P(y2) + P(y3) (2.22)

for any sextuplet of points such that

xo = F,x, x1 =F,Rix, x; = F,Rox,
{ 0 y 1 wdl] 2 w2 (223)

Yo = Fupox, y1 = Fup X, y2 = Fypyx
for some xe SG and some word w.

Proof. The local version follows from (2.21) because P-F,, is also a polynomial. To
prove (2.21) it suffices to show it holds for all monomials. Now we claim that (2.21)
is trivially true for any function that is symmetric with respect to one of the
reflections p;. Say P(x) = P(pyx) for all x. Then P(R;x) = P(p,x) and P(Ryx) =

P(p,x) because pyR; = p, and p,R, = p,. In particular, (2.21) holds for all Pj(f) and
Pg). It follows from (2.19) that it also holds for P;g). O

The same result holds for uniform limits of polynomials; in particular, the
convergent power series discussed in the next section. Note that Kigami [Ki2]
Theorem 4.3.6 has characterized the space of L? limits of polynomials by the
condition of orthogonality to all joint Dirichlet and Neumann eigenfunctions. It is
not hard to see that (2.22) implies the orthogonality to some of these eigenfunctions
(those of the /1<5>-type in [DSV]), but not others. On the other hand, it is not clear
how these orthogonality conditions imply (2.22).
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Corollary 2.6. Any polynomial P satisfies
9rP(qo) + 9rP(q1) + 9rP(q2) = 0, (2.24)

and more generally the sum of tangential derivatives at the boundary points of any cell
must vanish.

Proof. Taking x = F"q; in (2.21), we find
(P(Fy'q1) — P(Fy'q2)) + (P(F{"q2) = P(F'qo)) + (P(Fy'q0) — P(Fy'q1)) =0 (2.25)

because R Fy'q1 = F{'q2, RoF{'q1 = F3'qo, poF§'q1 = Fi'qa, p1F§'q1 = F'qu, po '
= F"qo. Multiplying (2.25) by 5" and taking the limit as m— oo yields (2.24). The
local form follows as before. [

Remark. As we observed in the proof of Theorem 2.5, any polynomial may be
written as a sum of three polynomials, each symmetric with respect to one of the
reflections p;, P = P + P) + P2 Ttis easy to see that one way to do this explicitly
is to take

PO(x) = 5 (P(x) + Plpy) — 5 (Plpyy) + P(oy) + (). (2.26)

We consider next estimates for the size of a;, f;, y;. We show that o; has rapid
decay, which we believe is fairly sharp. This gives the same decay rate for y;.

Theorem 2.7. There exists a constant ¢ such that

0<a;<c(j) 083102 for all ;. (2.27)

Proof. It is clear from (2.9) and the initial conditions that the «; are positive. Let

= (j1)°e%/°¢25, We need to show that the & are bounded, which we do by
1nduct10n If @, <c for /<, then (2.9) implies

log 5/log 2
G; <25t z ( ) .

()-()
/=0
so by Stirling’s formula and routine arguments we have

j—1 ] log 5/log 2 A
Z( /) <M5()""

/=1

It is well known that
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Table 1

J o B; (—22)B; y (ﬂ)%aj

0 1 —0.5000000000 —0.5000000000 1

1 0.1666666667 —0.04444444444 6.025427867 1.333333333
2 0.005555555556 —0.001008230453 —18.53107571 1.777777777
3 0.00006172839506 —0.8554950809 x 103 21.31713060 2.025658338
4 0.3318730917 x 107° —0.3853047646 x 1077 —13.01625411 2.178127244
5 0.1021147975 x 108 —0.9848282711 x 1010 4.510374011 2.250339083
6 0.2007235906 x 10~ —0.1933836698 x 1012 —1.200721414 2.268082964
7 0.2713115918 x 10~14 —0.7720311754 x 10~'¢ 0.06498718216 2.248411184
8 0.2656437390 x 10~ —0.1187366658 x 10~ —0.1355027558 2.201440598
9 0.1959165201 x 1020 0.7232200062 x 1020 —0.1118933095 2.134277683
10 0.1122370097 x 10-2 —0.5436238235 x 1022 —0.1140256558 2.052740417
11 0.5120236416 x 10727 0.4004514705 x 10724 —0.1138739539 1.961629028
12 0.1898528071 x 10~3° —0.2954013973 x 10726 —0.1138826233 1.864726441
13 0.5820142006 x 1034 0.2178916451 x 10-28 —0.1138822148 1.764891613
14 0.1496625756 x 10737 —0.1607201123 x 1073° —0.1138822304 1.664234594
15 0.3268360869 x 104! 0.1185495242 x 1032 —0.1138822298 1.564302197
16 0.6126918156 x 10743 —0.8744387717 x 1073° —0.1138822298 1.466232140
17 0.9952451630 x 104 0.6449989323 x 1037 —0.1138822298 1.370864839
18 0.1412543698 x 10~2 —0.4757607235 x 107%° —0.1138822298 1.278818576
19 0.1764707126 x 10~ 0.3509281252 x 104 —0.1138822298 1.190538877
20 0.1953558627 x 10~ —0.2588497599 x 10~4 —0.1138822298 1.106332006

for all j>2 for a small constant M, so O~C_/<625M(]')71/2.

so that d, <c for /<jy and ¢< (jo)]/z/SM. O

It is easy to choose ¢ and jj

Table 1 presents numerical computations of «; and f;.

It appears that 8/ (;1)°¢ %/ 2ocj remains bounded (8 is by no means the best
constant, and perhaps it could be replaced by an arbitrary positive number). It also

appears that (—/lz)j[?j converges to the constant —0.1138822298, where A, =

135.572126995788.....

is the second nonzero Neumann eigenvalue. It is easy to see

that A, is the largest value for which such an estimate could hold, because

0

Z ﬁ/(—izy diverges.

J=0
Indeed, if we did not have divergence then
> (=) Pa(x)
J=0

would be a solution to the eigenvalue equation —Au = /,u satisfying d,u(qo) = 1.
But, since 4, is not a Dirichlet eigenvalue, the space of eigenfunctions has dimension
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three, whereas the multiplicity of the 1,-Neumann eigenspace is also three, so every
eigenfunction automatically satisfies J,u(qo) = 0.

We note that the computation of f;, carried out using the recursion relation (2.11),
was done using exact rational arithmetic (the reported values are reported as decimal
approximations, of course). This is significant because this solution of (2.11) is highly
unstable. For example, if we take f, :% and f5; = 0.044444444 or 0.04444445 (the
correct value being 2/45) and then use (2.11) for j>2, we find the ratio f;/f;,,
approaching —84.0799... (this is —51?, where X? = 16.815999... is the first Dirichlet
eigenvalue). In Section 6 we will give an explanation for this phenomenon.

Next we will establish estimates for ||Pj||,,. To do this we will study the operator

Af(x) = Gf (x) = (8.(GS)(q0)) Po2, (2.28)

where Gf (x) = [ G(x,»)f (y) du(y) is the Green’s operator, satisfying —AGf = f and
Gf(¢;) =0, i=0,1,2. Note that 4 is a compact linear operator, but is not self-
adjoint. Thus the spectrum of A4 consists of isolated eigenvalues of finite multiplicity,
and zero. Note that we have

—AAf =f, Af(qo) =0 and 0,4f(qo) = 0. (2.29)
In particular, this implies
Aij = —P(]-+1>k for k = 172. (2.30)

Write A4, for the restriction of A4 to the p,-symmetric functions, where p, is the
reflection preserving ¢o.

Lemma 2.8. (2) f is an eigenfunction of Ay (Aof = Af) if and only if f is a symmetric
I -eigenfunction of A satisfying f(qo) = 0,f (q0) = 0. (b) 1 is an eigenfunction of Ay if
and only if f is a symmetric )~'-Neumann eigenfunction of A satisfying f(qo) = 0.
(¢) The Jordan block of Ay associated to any eigenvalue is diagonal.

Proof. (a) By (2.29), any eigenfunction of 4 is a A~ !-eigenfunction of A satisfying
f(qo) = 9uf(qo) = 0. For the converse, let v = Af — Jf. Then

Av = AAf —IAf = A(Gf — 0,(Gf)P>) +f = —f+f =0

so v is harmonic. But v is symmetric with v(go) = 9,v(¢qo) = 0, and this implies v = 0.

(b) The only new assertion here is that f in part (a) also satisfies 0,/ (q;) =
Ouf(q2) = 0. This requires a rather detailed knowledge of the description of
eigenfunctions of A by spectral decimination. First we observe that if |Kl| is small
enough (less than the first Dirichlet eigenvalue), then a symmetric 2~ '-eigenfunction
is uniquely determined by f(qo) and 9,/ (go). This implies that f vanishes identically
on a cell FJ}(SG) for n large enough. But an eigenfunction can vanish on a cell only if
the space of eigenfunctions has dimension greater than three, and that happens only
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Fig. 2.

if 77! is a joint Dirichlet-Neumann eigenvalue. That means its restriction to the
graph I',,, for some value of m is either a 5-eigenfunction or a 6-eigenfunction. In the
6-cigenfunction case there is nothing to prove, since all eigenfunctions are Neumann
eigenfunctions. In the 5-eigenfunction case this is not true, but the Neumann
eigenfunctions have codimension two in the space of all eigenfunctions. When we
impose the p,-symmetry condition the codimension drops to one. We know exactly
what this one function looks like (see Fig. 2 for the case m = 2). In particular, it does
not vanish identically in any small cell F{"(SG). Since f does (and so do all symmetric
joint Dirichlet-Neumann eigenfunctions), it follows that f must be Neumann
eigenfunction (in the 5-eigenfunction case it is also a Dirichlet eigenfunction, but not
necessarily in the 6-eigenfunction case).

(c) Suppose 4 is an eigenvalue of Ay, and (A4y — )L)zg = 0. Then 2! is a Neumann

eigenvalue of 4, and (4+27")?g=0. Also ¢ is symmetric and satisfies g(go) =
9:9(q0) = 0. By similar reasoning as before, g is a Neumann eigenfunction of 4,
hence the Jordan block associated with A is diagonal. [

Theorem 2.9. (a) For any r< oo there exists ¢, such that

1Pall. <er, (2.31)
or more precisely
1
lim —log||Pji]|,, = —o0. (2.32)
jo o
(b) There exists ¢ such that
1Pyl <€y, (2.33)
and
lim (=LY Pp =0, (2.34)

J=> X
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1

0 0 1

Fig. 3.

where ¢ is a Jy-Neumann eigenfunction of A which is py-symmetric and vanishes on
Fo(SG) (a multiple of the eigenfunction shown in Fig. 3 on I'y), the limit existing
uniformly and in energy.

Proof. (a) Consider the norm

1A= (A1 + &N (2.35)

and define ¥ and &> as the closures in this norm of the spans of {P;;} and {P},
respectively. By (2.30), A preserves both spaces. Denote by 4, and A, the restriction
of Ay to ¥ and ¥,. We claim ¢(4;) = {0}. Indeed, otherwise A4; would have to
have a nonzero eigenvalue 4 because A; is compact. Since this would also be an
eigenvalue of 4y, by Lemma 2.8 .~ would have to be a Neumann eigenvalue of A.
So 4>0, and we may choose it to be the largest eigenvalue of A;. Then i*jA]i
converges to a projection (not necessarily orthogonal) B; onto the finite dimensional
A-eigenspace of A;. Note that B, Py, cannot be the zero function, because that would
imply B;P;; =0 for all j, contradicting the fact that B; is nonzero. But then
}v*jA’iP()l =) Pj; would converge to a nonzero eigenfunction of A4;. By Theorem
2.7 this eigenfunction would vanish at ¢; and ¢,, and of course it vanishes at ¢, since
Pj; does for j=1. So it would have to be a joint Dirichlet-Neumann eigenfunction of
A. But Theorem 4.3.6 of [Ki2] asserts that all Py are orthogonal to all joint
Dirichlet-Neumann eigenfunctions.
Thus we have shown that a(A4;) = {0}, so the spectral radius of A4, is zero,

lim ||4}[|"7 = 0.
]4}0(}

Applying this to Py; we obtain (2.32) (the norm (2.35) dominates the L* norm),
which implies (2.31).
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(b) The result of Kigami used above moreover says that ¥ = ¥ @® %, contains
all py-symmetric Neumann eigenfunctions of A that are orthogonal to all joint
Dirichlet-Neumann eigenfunctions (note that Kigami uses the L?> norm rather than
(2.35), but the same argument applies). In particular, it contains the 4,-eigenfunction
shown in Fig. 3 (this is a Neumann eigenfunction, so it is orthogonal to all Neumann
eigenfunctions with different eigenvalues, and there are no joint Dirichlet-Neumann
eigenfunctions with the same eigenvalue). By Lemma 2.8 and the explicit description
of Neumann eigenfunctions, A, l'is the largest eigenvalue of Ay, and ¢ spans this

multiplicity one eigenspace. Thus, as before, };éAf converges to a one-dimensional
projection operator B;{l, and B751P01 = 0. That means B;{]Poﬁéo, for otherwise

B,_1 =0.So

“

lim (—/lz)jpjz = hm ;\,éAjPOQ = B)flp()z
Jj—o 2

jow
which is (2.34). This implies (2.33). O

The estimate (2.33) is sharp, but (2.32) falls short of what we would have if we
knew ||P;1||,, = @, in view of (2.27). One approach to establish this would be to
prove the following conjecture:

Conjecture 2.10. For all x+#qy and all j,
Pji(x)>0. (2.36)

We have numerical evidence for this conjecture for moderate values of j. To show
that (2.36) implies ||P;1||,, = o is easy using the following well-known fact (we
provide a proof since it does not appear explicitly in the literature).

Proposition 2.11. If uedom A, Au(xy) >0 and x¢ is not a boundary point, then u does
not achieve its maximum value at x.

Proof. If x( is a vertex in V, the result follows immediately from the pointwise
definition of Au(xp). If not, then we can find a cell F,,K such that x; is in the interior
of F,,K and Au>0 on F,K. Let v = uoF,,. Then Av>0, and we have

o(x) = h(x) - /K G(x,y)Ao(y) dy

where G is the Dirichlet Green’s function and /A(x) is the harmonic function with the
same boundary values as v(x). Since the Green’s function is positive in the interior,
we have v(x) <h(x) in the interior. Since / attains its maximum on the boundary, it
follows that v cannot attain its maximum in the interior, so u(xp) is not a
maximum. [J
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Next we study the normal and tangential derivatives of monomials at boundary
points.

Theorem 2.12. We have initial values ng = 0, to = —1/2, and recursion relations
5 +1 v ,
n=——a;+2 ; nB;, for j=1, (2.37)
j-1
G=B—6Y oy sty for j=1. (2.38)
/=0

Moreover, we have

l — lf ;o O

OnPp(qr) = OpPp(g) =42 0 /=5 (2.39)
—oy i j=1,

0P (q1) = —0uP;3(q2) = 3nj1, (2.40)

OrPi(q) = —0rPp(g) =<6 Y77 " (2.41)

0 if j#1,

OrPi(q1) = —0rPi(q2) = 2 YI/=5 (2.42)

0 ifj=1.

Proof. As in the proof of Theorem 2.3 we introduce matrices n, 77 and ¢, where
7ii; = 0,Pj2(q1). When we evaluate the normal derivatives on both sides of (2.14) at ¢,
we see that

J
ny =bj_1 + Z aj_i(ai—y + b;—y) for all j,
=0
or in matrix notations
n= B+ u(4+ B).
Using (2.15) this yields

n= g B2 =) = 1T~ x(e) ) 24

which implies (2.37).
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By the same reasoning

J
fj = Z Bi—i(ar—1 + b;—y) for all j.
1=0

Then
i=p(A+ B)
and hence by (2.15) we obtain
A= 1I — o, (2.44)
2

which implies (2.39).
Finally, the same reasoning shows

J
=Y pT; forallj,
=0

where T; = Orfn(q1). Now Pj3 = Zj):o 7;-1(fn — fin), so taking tangential derivatives
at go we get

j
2 9 Ti=0rPp(qo) =

{1 if j =0,
=0

0 otherwise.

In matrix notations these become

1= pT,
1
T ==1.
)
Together we have
f =2yt = 60(a)t, (2.45)

where the last equality follows from (2.12).

This proves (2.38). The initial values of ng, /iy and ¢y are easy to check.

Note that the skew-symmetry implies 0rPj3(q1) = OrPj3(q2), so (2.2) implies
OrPj3(qo) + 207 Pj3(¢q1) = 0, which yields (2.42). Then (2.41) follows from (2.19) and
(2.42), and similarly (2.19) implies (2.40). O

Theorem 2.13. For any r< oo there exists ¢, such that, for all j>1,

| <e,r. (2.46)
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Also
<2y, (2.47)

Proof. From the Gauss—Green formula we have

2
/Au du = Z Ouu(q;).
i=0

We apply this tou = B/(?), noting that 8,,}’](.(1)) (90) = 0 and 6,,}’](.(1)) (q1) = 8,,}’](.?) (g2) = nj.
It follows that
_1 [ po
ny = E/P(ifl)l du, (2.48)

and (2.46) follows from (2.31).
Similarly, (2.47) will follow from (2.33) and the estimate (taking u = P))

Orulg<cllull . +11Aull, + [|A%]].,). (2.49)

In [S3] it is shown that Oru(q;) exists if uedom A and Au satisfies a Holder condi-
tion, and (2.49) is just a quantitative version of this fact. For the convenience of the
reader we outline the argument. For simplicity take i = 0. Let g,, (see Fig. 4 for
m = 2) denote the level m piecewise harmonic function satisfying g,,(qo) = 0 and
gn(F¥q1) = 3% and g,,(F§q,) = —3* for all k<m. Then

[ ombude =5 @)~ u(EP @) - Stula) ~uax))  (250)

by the Gauss—Green formula, since the sum of the normal derivatives of g,, at F{j'q,
is (14/3)5™ (there are no terms involving normal derivatives of u at F{'g; because u
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Table 2

j n f 3 (=) ,%

0 0 —0.50000000 0 —0.50000000 18

1 0.50000000 —0.027777778 3 3.7658925 —432.0

2 0.027777778 0.00010288066 2.5000000 1.8909261 1439.0526
3 0.00041152263 —0.70062097 10—° 2.2222222 1.7457996 —1679.0103
4 0.27287343 x 1073 0.50952342 x 108 2.0555556 1.7212575 1027.9833
5 0.98752993 x 108 —0.37481616 x 1010 1.9341564 1.7166051 —356.40392
6 0.22167060 x 10~10 0.27632364 x 10712 1.8405958 1.7156968 94.889369
7 0.33533009 x 1013 —0.20379909 x 10~ 1.7656562 1.7155176 —5.1358463
8 0.36203261 x 10716 0.15032210 x 10716 1.7035627 1.7154821 10.708638
9 0.29106143 x 101 —0.11087934 x 1018 1.6507112 1.7154750 8.8428158
10 0.18012308 x 10722 0.81786167 x 10721 1.6048457 1.7154736 9.0113344
11 0.88115370 x 1026 —0.60326673 x 1072 1.5644762 1.7154734 8.9993459
12 0.34823920 x 10% 0.44497842 x 1072 1.5285491 1.7154734 9.0000311
13 0.11321107 x 103 —0.32822264 x 10777 1.4962768 1.7154734 8.9999988
14 0.30738762 x 1036 0.24210186 x 10729 1.4670507 1.7154734 9.0000000
15 0.70615767 x 104 —0.17857790 x 103! 1.4403911 1.7154735 9.0000000
16 0.13880322 x 10743 0.13172169 x 10733 1.4159159 1.7154735 9.0000000
17 0.23573795 x 1047 —0.97159864 x 1036 1.3933188 1.7154736 9.0000000
18 0.34893132 x 103! 0.71666548 x 10738 1.3723521 1.7154736 9.0000000
19 0.45359082 x 10~ —0.52862303 x 104 1.3528138 1.7154736 9.0000000
20 0.52141937 x 10~% 0.38992014 x 10~4? 1.3345373 1.7154737 9.0000000

satisfies matching conditions). Let #; = Au. Note that g,, is odd, so only the odd part
of u; contributes to the integral in (2.50). So (2.49) will follow from (2.50) and the
estimate

[ ontin —wrepu) | <cllall. + 18w, (2.52)

But (2.52) is routine, because on the cells FXF|(SG) and FEF>(SG) (0<k<m) of

measure 37! the function g,, is of size 3X, and u; — ujop, can be estimated by
k

@"lAwm]],. O

In Table 2 we display the results of solving the recursion relations for n; and ;. The
data suggests that (—iz)itj converges, in fact quite a bit faster than for f;, and
lim;, oo B;/1;+1 = 9. Moreover n; is always positive and satisfies

1 < ¢joy. (2.53)

If Conjecture 2.10 holds, then |[P;_1y|| . = @1 so (2.48) implies n; <} o1, which is
only slightly weaker than (2.53).
We also have found that the recursion relation for #; is unstable, and any slight

perturbation produces a decay rate O((4”)™), which is even slower than the decay
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rate for ; and #;. Also a slight perturbation of the ¢ recursion relation produces a

decay rate of O((42)™). We will explain this in Section 6.

Next we describe the change of basis formula to pass between {P](,i)} for different

values of /, an immediate consequence of Theorem 2.12.

Corollary 2.14. We have

() /+1
le j P§(1+ )
P =2 M| P
¢ k=0 (/+1)
P]('3) Pis
for matrices M; given by
O(j I’lj 0
Alj = ﬁ/ % t] fOV j>2a
301 3 O
1 oo no 0
o np - 1
_ 6 _| B - 1o
Ml - :Bl —o H 3 MO - 2 |
30(2 31’12 0 30(] 31’1] —z
Similarly
() /-1
le j chl )
o | _ 7 /-1
LN Z M| PG
‘ k=0 (/-1)
Py P
for
% 1y 0
Mi=| u o =y | for j22,
—3aj+1 3nj+1 0
1 oo no 0
o n - 1
vV, — 6 Vo — Bo S—o —lo
Mi=1 g a0 M= 2 |
—30(2 —3]12 0 —30(1 —31’11 —5

(2.54)

(2.55)

(2.56)

(2.57)
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3. Power series

A formal power series about ¢, is an expression of the form

3
PRI /A (3.1)

k=1 j=0

We call {c;} the coefficients, and we seek growth conditions on the coefficients that
will make (3.1) converge nicely.

Theorem 3.1. If the coefficients satisfy
lcit| and |c3) = O((J))") for some r<log5/log2, (3.2)
and
lcin| = O(R)) for some R<J (3.3)

then (3.1) converges uniformly and absolutely to a function uedom (A°), and (3.1)
may be “differentiated term-by-term”,

3 0
A'u(x) =D 3" P (). (3.4)
Jj=n

k=1

Moreover, the coefficients are given by the infinite jet of u at q,:

i = Nu(qy),
cip = 0N u(qy), (3.5)
¢3 = OrNu(qy).

Proof. The estimates in Theorem 2.9 conspire with the growth rates (3.2) and (3.3) to
make (3.1) converge uniformly and absolutely. Call the limit u. Note that the right
side (3.4) is also a formal power series, in fact

3 0
P

k=1 j

4
c(/’+n)kPj(‘k) (x)

whose coefficients also satisfy the growth rate conditions (3.2) and (3.3). So the right
side of (3.4) converges uniformly and absolutely. By terminating the sums at j = N
and letting N - oo we obtain the equality in (3.4) by a routine argument using the
Green’s function [Ki2].

It suffices to prove the jet formulas (3.5) when j = 0 in view of (3.4), and for this it
suffices to show that if ¢o; = cpp = o3 = 0 then u(g,) = d,u(q,) = Oru(g,) =0. Of
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course u(q,) = 0 directly from (3.1). For simplicity put / = 0. Then (since u(qy) = 0)

Ouatan) == fim (3) ) + (P

m— o0

But we have
3 ) m )
u(Fy'x) Z ¢ 5" Pji(x +c,z(55 ) Pp(x) + ¢S Ps(x). (3.6)

Using the estimates for the coefficients and monomials we see that
u(Fy'x) = 0(5™), (3.7)
and this suffices to prove d,u(qy) = 0. This by itself does not suffice for the tangential

derivative, which has a factor of 5. However, for the tangential derivative we can
restrict attention to the skew-symmetric part

i(x) = % (u(x) — u(pyx)) Z c3Pp3(x (3.8)

so the analog of (3.6) shows
A(F'x) = O(57™), (3.9)
which implies Oru(qo) =0. O
As a corollary of the proof we can characterize rates of vanishing of power series.

Definition 3.2. A function f is said to vanish to order r (any positive real) at ¢,
provided

fEl., = O(5™™). (3.10)

If (3.10) holds for all r then we say f vanishes to infinite order at q,.

Corollary 3.3. If u is represented by a power series (3.1) with coefficients satisfying
growth conditions (3.2) and (3.3), then u vanishes to order N (a positive integer) at q; if
and only if ¢y = 0 for all j<N. In that case A’y vanishes to order N — / for all / <N.
Moreover, the odd part i vanishes to order N + 1. In particular, if u is not identically
zero then it cannot vanish to infinite order.

Next we consider rearrangement of power series, moving from one boundary
point g, to another. It turns out that we need to make stronger assumptions on the
coefficients, requiring c;; and c;3 to satisfy the same exponential growth rate as cj>.
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Theorem 3.4. Suppose the coefficients of a power series (3.1) about one boundary point
qr satisfy

lexl = O(R)) for some R<la, k =1,2,3, (3.11)

Then the function may also be represented by power series about the other boundary
points with coefficients also satisfying (3.11). More precisely, the coefficients at ¢,

are given by
o0

(1 €y €ra) Z CHN C i3 My (3.12)
Jj=0

and similarly at q,_1 with M; replaced by A~1j (see (2.55) and (2.57)).

Proof. The key observation is that the right side of (3.12) converges absolutely and
the new coefficients again satisfy (3.11) (in fact with the same value of R) because the
entries in M; are 0(2;] ) by Theorem 2.13. Of course (3.11) is exactly what we get if
we substitute (2.54) into (3.1) and interchange the order of summation, which is
easily justified using the estimates of Theorem 2.9. [J

Note that we could not allow slower growth rates like (3.2) for the ¢;; and ¢j3
coefficients and still rearrange, because the second column of M; has positive entries.
In Section 6 we will present an example to show that rearrangement fails when

¢ji = O(%,). However, condition (3.11) is not sharp. We could replace it by
o .
> i el < o0, (3.13)
=0

and the rearranged coefficients would satisfy the same growth condition. However,
not all subsequent results would be valid under this hypothesis.

Definition 3.5. An entire analytic function is a function given by a power series (3.1)
with coefficients satisfying (3.11).

We can also consider local power series expansions on any cell F,,(SG) with
respect to a boundary point F,,g, of the cell, namely

o0 . 3 . m , _
> (5'"’0111’_,(-1/)(le)€)+ <§5"> cnPY) (F,'x)
=0
+ 5 0+me, P()(lex)> (3.14)

where m = |w|.

Theorem 3.6. An entire analytic function has a local power series expansion (3.14) for
any w and ¢ with coefficients satisfying (3.11). Conversely, suppose u(x) is a function
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defined on F,,(SG) given by a local power series expansion (3.14) with coefficients
satisfying (3.11). Then u has a unique extension to an entire analytic function.

Proof. Suppose first that m =1, say w = (0). If / =0 then the local and global
power series are identical, with identical coefficients. Moreover, ucF,, is an entire
analytic function with coefficients satisfying (3.11) (in fact with R<2,/5). The
rearrangement for uoF,, about ¢, and ¢, guaranteed by Theorem 3.4 gives the local
power series of u in Fy(SG) about Fygq; and Fyq,, with the same coefficient estimates.
We may then iterate this argument to get local power series about any boundary
point in any cell.

Conversely, suppose u is given in F,,(SG) by a local power series about F,.q,/, with
coefficients satisfying (3.11). Write w = (w', w,,,) with |w'| = m — 1. If w,,, #/ then use
Theorem 3.4 to rearrange the power series of uoF,, about ¢,,,. So we end up with a
local power series of u about F,F,q, in the cell F,,F,;(SG). But F,,F,q, = F,,q, and
the power series makes sense in the cell F,/(SG). Use this power series to extend the
definition of u. By iterating the argument, we obtain the desired extension. Note that
the estimates (3.11) on the coefficients are reproduced in each extension or
rearrangement step. It is clear that the extension is unique because the rearranged
coefficients are determined by (3.12). O

By the same reasoning, if a local power series has coefficients satisfying
¢k = O(R)) for some R<5"},, (3.15)

then the function can be also represented by a power series on a level my cell.
One might hope that this ‘‘analytic continuation” might extend somewhat
beyond the cell, with the domain of analyticity growing as R decreases
toward 5™~!2,. However, the experimental evidence we have seen does not
support this at all. On the contrary, we will see in Section 6 that there are
power series (3.1) with coefficients 0(&2) where we have divergence outside
F,(SG). We might describe this as a ‘“quantized radius of convergence.” Of
course, this does not rule out a different type of behavior for special classes of power
series.

Theorem 3.7. An entire analytic function satisfies the estimate

[|A"ul|., = O(R") for some R< 1. (3.16)

Proof. We have

3 o0
AN'u = Z Z CjkPEQn)k
j=n

k=1
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SO

3 0

©
[1A"]] <M ) Z RIPC <M >~ RIS = O(R")
k=1 Jj=n
for Rin (3.11). O

Condition (3.16) obviously implies the same estimate in L? norm:
[|A"u]|, = O(R") for some R< ;. (3.17)

But conversely, (3.17) implies (3.16), because ||f||., <c(||f||, + ||Af]|,). Estimate
(3.17) is technically more convenient, since we can compute L> norms exactly from
eigenfunction expansions.

It follows immediately from the definition that an eigenfunction of 4 is an entire
analytic function if and only if the eigenvalue satisfies |4| </,. Theorem 3.7 shows us
that many other functions that we might believe to be entire analytic functions are
not. Indeed, suppose u is represented by a Dirichlet (or Neumann) eigenfunction
expansion

) =3 @), (3.18)
k=1

where {¢, } is an orthonormal basis of Dirichlet (or Neumann) eigenfunctions. If the
coefficients are rapidly decreasing,

ar = O(k™) for all n, (3.19)

then we may differentiate term-by-term,

Mb

V' arpi(x (3.20)

T
I

It follows that

k=1

. 1/2
|| A ul], = (Z (%) 2”Iakl2> ~ (3.21)

If (3.18) is non-trivial in the sense that an infinite number of coefficients are non-
zero, then not only does (3.17) fail to hold, but the estimate cannot hold for any finite
R. So u cannot be represented by a local power series with (3.14) holding on any cell.
In particular this applies to the heat kernel.

This observation stands in striking contrast to the situation on the unit interval,
where analyticity properties of a function may be characterized by decay properties
of the coefficients of its Fourier series expansion.
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4. Characterization of analytic functions
The main purpose of this section is to prove the following theorem.

Theorem 4.1. u is an entire analytic function if and only if ue dom (A*) and (3.16) (or
equivalently (3.17)) holds.

We first consider the case when u is even with respect to p,. In that case we would
like a Taylor expansion with remainder about gy,

u(x) = Tru(x) + Ri(x) (4.1)
for
k=1
Tiu(x) = Nu(go)Pii (x) + (0,8u(g0)) Pra(x) (4.2)
=0

and Ry (x) the remainder term. While we can use (4.1) to define the remainder, to be
useful we need some explicit expression for it. We are only able to do this for x = ¢
(or ¢2).

Lemma 4.2. Let vy be a function in #_, that is even with respect to p, satisfying

No(q)) =0 for j<k —1, (4.3)

0  forj<k-—2,

Ot = 4.4
vk (q1) 1 forj—k—1. (4.4)
2

Then
Rlar) = Relg) = [ oidudy (45)
SG

for even functions ue dom (4¥).

Proof. Note that A*u = A*(u — Tu) = A*R,. We apply the Gauss—Green formula
k times to obtain

/vakud,uz /l)kAkde,u

b

=2 (Noe(q1)0:A 7 Re(q1) — 0u¥ vk (1) A7 Rec(q1))

J

Il
S
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since Ak_j_le(qO) = 6,,Ak_j_1Rk(qo) = 0. By (4.3) and (4.4) all terms vanish except
when j = k — | and we obtain exactly Ri(gq;). O

Lemma 4.3. The function
Uk = (_ﬂk—/—lpg”ol) + o1 PY) (4.6)

satisfies the conditions of Lemma 4.2.

Proof. Clearly vy € #x_ and is even. Since

k—j—1
Ny = —Br—jm1—rPr1 + k—j1-rPp
/=0
we obtain
' k—j—1
Nu(q1) = (=Br—j-1-¢2 + o—jm1-sB,) =0
/=0
which is (4.3). Similarly
' k—j—1 |
N ve(q1) = ; (_ﬁk—j—l—/n/ - Ofk—j—l_/a/) + zﬁxk—j—l

by (2.35). Whenj — k — 1 this is just
k—1 5 1 1
OnN"""0i(q1) = —Pono — o +§o¢0 =—

For j<k — 2 we have

k—j—1 5k—j—1 +1
Z ﬁk—jflffnf:_ 4 Ae—j—1

/=

[=1

by (2.37) (this uses k —j — 1>=1), and

k=j—1 ski-1 43
Z Of—j1-1 0 = (f) Olfe—j—1

/=

(=]

by (2.9). Thus 8,Avi(q1) = 0, proving (4.4). O

Lemma 4.4. If u is an even function in dom (Ak) satisfying (3.16), and i is the entire
analytic function whose expansion about qy has coefficients c; = Nu(qo), cp =
OnNu(qo) and cj3 = 0, then u(q,) = 1i(q1) and u(q>) = 1(q2).
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Proof. First we observe that (3.16) implies the coefficients of i satisfy (3.11). This is
obvious for ¢k and ¢3, but it follows for ¢, because 9,/ (¢o) fhf du for a fixed
harmonic function 4. Now apply Lemma 4.2 to the function u — # to obtain

wm>—mmn:y/wAww—md4<dﬁwmw

But we easily obtain ||v|| . = O(2;%) from (4.6) and Theorem 2.9. Letting k — co we
obtain u(q;) —i(q;) =0. O

Proof of Theorem 4.1. We begin by proving u = & under the assumption that u is
even and R<},? . Since ANu satisfies the same hypotheses as u, we conclude from
Lemma 4.4 that 4/(u — i) vanishes at all three boundary points, for any j. Let
G(x,y) denote the Green’s function and G/(x,y) the j-fold iteration of G. The
vanishing at boundary points means that

) = i) = [ G (x.0) 4 uly) — 1) du(r). (@7)
We have an explicit representation
Gxn) = (D) o)) (48
k=1

for an orthonormal basis of Dirichlet eigenfunctions {¢,} with —Ag, = A2 ¢,. This
yields the estimate

12 o 1/2
(//|Gfxy|du ¥) du(y ) (Z (2)- ) <cP)? (49)

by the Weyl asymptotics of {/”}. Thus
llu = all, <c(20) 7| A (u = @)|[,<e(27) 'R

Letting j— oo we obtain ||u — #||, = 0 hence u = i as desired.

Next we can remove the assumption that u be even by writing u as a sum of even
functions about each of the three boundary points using (2.26). It is clear that the
hypotheses on u are inherited by the three summands, and a sum of three entire
analytic functions is entire analytic.

Finally, we need to relax the assumption that R</” to R</,. To do this we
consider uoF,, for all words of length 2 (because 5’2/12<11D ). Then uoF, satisfies
(3.16) with R<)v? , so by the previous argument it is entire analytic. This means for
each w there exists 4, entire analytic with u =i, on F,(SG). Next we claim that
tgo = ty; = tlpp- To see this we may assume without loss of generality that iy, = 0 by
replacing u by u — . So u is assumed to vanish on Fg(SG), and we need to show
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that it vanishes on F(SG). By Lemma 4.4 we have u(Foq1) = u(Foq2) = 0, and more
generally Nu(Fyq;) = Nu(Fyqy) = 0 by the same reasoning for Au. Let us consider
do1 which equals u on FyF;(SG). At the point Fiq; where the cells FoF(SG) and
F2(SG) intersect, we have A'u vanishing and also 9,A’u vanishing (obvious for the
normal derivative with respect to F§(SG), and then true with respect to FyF; (SG) by
the matching condition for normal derivatives). Thus the local power series
expansion in FyF;(SG) of iy about the point Fiq; contains only Pj; terms, so iy
and more generally Ny must be odd, so the vanishing of Ny at the second
boundary point Fyg; implies the vanishing at the third boundary point FyFg;. So
our previous argument shows that i is identically zero.

The same argument works in the other two cells of level one, so we now know that
there exist entire analytic functions #y, iy, i, such that u = ii; on F;(SG). We need to
show Iy = i} = i, and by subtracting i, we may assume without loss of generality
that @y = 0. At this point we cannot simply repeat the argument of the previous
paragraph because the cell F;(SG) is too big. Of course we can argue as before that
i, and more generally AVif; vanishes on all three boundary points of F; (SG), and that
it is odd about the vertex Fyq;. It is this oddness that saves the argument. Instead of
(4.7) for #,oF; we have

BeF(0) = [ G2 @) )G (4.10)

where G/ denotes the j-fold iteration of the odd part of the Green’s function. Instead
of (4.8), G/ has the same representation where the sum is restricted to the odd
eigenfunctions. The eigenfunction associated to )v? is even, so the smallest eigenvalue
appearing is Zf ~55.8858.... . Thus we obtain the estimate

l@eFi|l, <e(27) /57 R,

and this shows i7; = 0 because )»2<5/1§). O

It is interesting that the growth conditions (3.16) imply the specific identities
(2.22). There is nothing analogous to this in the theory of real analytic functions. In
some way it is reminiscent of the Cauchy integral formula for complex analytic
functions. But we do not want to read too much into this, since (2.22) holds for
nonanalytic functions as well.
Corollary 4.5. If u is defined on a cell F,,(SG) and satisfies

||Ai”||Lw(Fw(SG)) = O(R)) for some R< (4.11)

then u has a unique extension to an entire analytic function.

Proof. The theorem shows uoF,, is entire analytic. Then apply Theorem 3.6. [
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We can also consider entire analytic functions on any infinite blow-up of SG. The
coefficients must satisfy (3.11) for all R>0, and the characterization requires the
estimate (3.16) to hold locally for all R>0.

5. Expansions about junction points

A junction point is a boundary point of two cells, so an entire analytic function
will have two different local power series (3.14) centered at the point, each valid in a
different cell. Since each local power series determines the function, it also
determines the other local power series. Since the coefficients of the local power
series are just the jets at the point with respect to each cell, these jets determine each
other. The first goal of this section is to make this determination explicit.

To be specific, consider the junction point Fyq, = Figqo. We will write Foq, = go1
and write

(Nu(go), N u(qo1), OrNu(qor)) (5.1)
for the jet associated with the cell Fy(SG), and Fiqy = g9 and
(N u(q10), . u(q10), IrN u(qno)) (5.2)

for the jet associated with the cell F;(SG). We know some relationships between the
jets (5.1) and (5.2), namely

Nu(go1) = Nu(qio) and 9,Nu(qor) = —0.Nu(q10). (5.3)

Note that (5.3) is valid for all uedom A*, but there should be no connections
between tangential derivatives without the assumption that u is an entire analytic
function. On the other hand, for entire analytic functions, we expect an identity of
the form

o0

Oru(qgo) + Oru(qi) = Y, 0,A u(qo1) (5.4)
=0

to hold for certain coefficients Y,. Note that (5.4) applied to AVu yields

OrNu(qo) + OrNu(qio) = Z Y/,janA/u(qm), (5.5)
(=j

and (5.3) and (5.5) show how the jets (5.1) and (5.2) determine each other. We may
also interpret (5.4) as a matching condition for tangential derivatives.

Our strategy for determining the Y coefficients will be to first consider the case
when u is a polynomial, making the sum finite. It is convenient to consider the
monomials P;,?, because the p, symmetry is also a symmetry about gy;. For even
functions, both sides of (5.4) are zero regardless of the Y coefficients: the left side
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vanishes because of the oddness of the tangential derivative, and the right side
because of the matching condition anA/u(qm) = —8,1A/u(q01) and the evenness of
the normal derivative and Laplacian. Thus we need only check (5.4) for the
monomials P]<.§>.

Lemma 5.1. The matching condition (5.4) holds for all polynomials for the Y coeffi-
cients satisfying Yy = 4 and recursively

J t J—1 3 50
YVi=—o— 18 /z:; nj+17/§+ /Z:; Y, (5—7)’7/#1
=t
+ (50(j+1,/,knk57k — 3nj+1/kcxk5k)> for j=1. (5.6)
k=0

Proof. When j =0 we compute directly that aTP(%) (qo1) +8TP(()23)(6110) = —4 and

8,1P§)23)(q01) = —1,s0 Yy = 4. Forj>1 we use Corollary 2.14 to rearrange Pj(.2) around
qo- By (2.54) we obtain

2 1 o : 0 0
P =3P +3 /z; () AR ) (5.7)

Because PJ(?) i1s odd we have

0P (qor) + 0rPS (q10) = 200 P (qon).
By (5.7) and Theorem 2.12 we have

J
2 Z 4
28TP]<<3>((,101) =0 + 18 £ nj+1,/? (58)

and

31 ! - -
8nPj(»§>(6101) = (E - 55 />nj+1 + E (Sojp1—rmiS k_ 30 1—k0S k). (5.9)
k=0

Since A’ Pj(._f) = PE]ZE 3

we have that (5.4) for u = P1<32> yields
J—1 5 5

=Y Yzanpbzm(%l) - 28TPJ('3)(q01)'
/=0

Substituting (5.8) and (5.9) yields (5.6). O
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Table 3

J Y; (_,12)/;{].

0 —4 —4

1 —0.08838888889 12.05085573
2 0.0002304526749 4.235674447
3 —0.1434871749 x 1073 3.575397353
4 0.1023938272 x 1077 3.459038654
5 —0.7503519662 x 1010 3.436505741
6 0.5527533783 x 10712 3.432052039
7 —0.4076138308 x 10~ 3.431166398
8 0.3006465014 x 1016 3.430989845
9 —0.2217590148 x 10~18 3.430954602
10 0.1635723837 x 102 3.430947563
11 —0.1206533528 x 1022 3.430946155
12 0.8899568485 x 10~25 3.430945874
13 —0.6564452839 x 1027 3.430945818
14 0.4842037197 x 10~%° 3.430945807
15 —0.3571558034 x 103! 3.430945805
16 0.2634433871 x 10~ 3.430945805
17 —0.1943197270 x 103 3.430945805
18 0.1433330961 x 10737 3.430945805
19 —0.1057246052 x 10=3° 3.430945805
20 0.7798402782 x 1042 3.430945805

Conjecture 5.2. The coefficients Y; satisfy

Y| <chy’. (5.10)

The numerical evidence for Conjecture 5.2 is presented in Table 3.

Theorem 5.3. Assume Conjecture 5.2. If u is any entire analytic function, then (5.4)
and (5.5) hold for the Y coefficients given in Lemma 5.1. More generally, if x is any
Junction point in V1 1\Vy, then

OrNu(x) + Oy Nu(x) =Y 3"5" Y, 0, u(x), (5.11)
’=j

where Or and 0, are derivatives with respect to the left cell at x and 0} is the derivative
with respect to the right cell.

Proof. Note that the right side of (5.4) converges absolutely. The issue is then
whether the term—by—term differentiation of power series extends to normal
and tangential derivatives at points other than the expansion point. For
normal derivatives this is easy to see because of the integral representation. But in
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any case this follows by combining Theorem 3.4 (the explicit expression (3.12)
for the rearranged coefficients) with Theorem 3.1 (the jet formula (3.5) at the
expansion point). We then obtain (3.10) by applying (3.5) to the function ucF,, for
w=m. O

Next we consider the question of what would be a natural notion of a power series
expansion centered about a junction point. We will see that there is no completely
satisfactory answer. Again to be specific we consider the point gy; = ¢19. We would
like to have at least the following four conditions holding:

(i) every entire analytic function has an expansion;

(ii) the expansion is valid in a neighborhood of ¢g, perhaps Fy(SG)u F;(SG);

(iii) the individual terms are polynomials that vanish to higher and higher order
near ¢goi;

(iv) the rate of growth of the coefficients should be characterized for entire analytic
functions.

The local power series with respect to one of the cells, say Fy(SG), gives a
satisfactory answer only on that cell, but if we continue those monomials around we
will find that the vanishing rate near g0 is not satisfactory. In fact the tangential
derivatives will have to be nonzero by Lemma 5.1. For this reason we consider

carefully what it takes to meet condition (iii). We denote by P;,?l) the monomials of
the Fy(SG) local power series about ¢g;, so that

A{ (901) = /01,
On A/ (401) ir0k2,

8TA/B;('1?1)(QO1) = 0j/0k3
or more precisely

01 i p()
P )(x):SfB/(1>(F0 ),

01 i 1 _
PV (x) = 571 P (Fy ).

Note that P ) and P o1

extend to even polynomials about ¢, so they will have the
same vanishing rate on both cells. We want to replace P<01) by a different polynomial

01) that will have the same j-jet (except for drA u(go1)), but will extend to be odd.
ThlS will give it the correct order of vanishing, but in exchange we have to take a
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higher order polynomial. The lowest possible order is 2;:

j

plon
Z aj(j~¢) (/+/2+b Piiirys) (5.12)
/=0

01)
G+0)1

because we want the possibility of odd extension. We will take a; =1 in order to

for the appropriate choice of constants. Note that we can exclude P! terms

obtain the correct j-jet. The odd extension means BTA"PJ(.S 1>(l]01) aTA” (qlo)

so we have 2j + 1 equations of the form (5.5) to satisfy, and these will determme the
remaining 2j 4+ 1 constants. The equations are

%
20rA" P (q10) = Y Vi B (g02), (5.13)
k=n

and when 0<n<j the left side is zero and we obtain

% %

0= Z Yk—nanAkﬁj('gl)(qm) = Z Yk—naj(2j7k)
k=n k=j
SO
J
0= Z Yzj_/_,,aj/. (514)
/=0

We use these equations to solve for aj,. When n<;j<2j the left side of (5.13) is
2bj’(2j*’1) SO

%
2bj5-n) = D Ye-ntjij-n),
k=n
and by letting / = 2j — n we have
1 (
by = 3 Z Yidjs—ky for 0</<). (5.15)

In Table 4 we show the values of a;, and b;, for small values of j. It is difficult to

(on)

discern a pattern in these results. We have obtained graphs of ﬁjz for small values

of j using (5.12), but it appears that round-off error becomes significant before any

pattern emerges, so we are not able to offer any conjectures about the growth rate of
these functions as j— oo.
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1

6461.417615
—39.86777272

1

0.1631072895 x 107
48581.69671
—109.6002902

1

—0.1623039023 x 10'°
—0.6442287860 x 108
—299734.8354
—347.4611669

1

0.1010368178 x 10'
0.4380632964 x 102
0.3374174349 x 10'°
0.1015644445 x 108
—909.3198857

1

—0.1389829261 x 10'®
—0.6247328496 x 1016
—0.5605362673 x 10!
—0.2151475440 x 10'?
—0.2169919676 x 10°
—1787.130925

1

1.999249011
12922.83523
—295.1161326
9563.195714
0.3262145790 x 107
42794.29693
0.2411384099 x 107
86782.07999
—0.3246078045 x 1010
—0.7474445645 x 108
—0.2399788368 x 1010
—0.1101312661 x 10°
—751724.7199
0.2020736356 x 10'
0.5393372002 x 10'2
0.1494085527 x 104
0.7403235769 x 10'2
0.7249040413 x 10'°
0.1921254540 x 108
—0.2779658521 x 10'8
—0.7861892790 x 10'°
—0.2055333917 x 10'8
—0.1051115464 x 10"7
—0.1159983908 x 10"
—0.4257054009 x 102
—0.4383706038 x 10°

O O O O O O O O O O X0 X0 0 0 0 0 000 1 3 3 3 93 2 232

O 00 1 O W A W= OO0 L A W —= O 390K AW —O

0.6084736857 x 10"
0.2707503937 x 10'7
0.4581523610 x 10"
0.2620127789 x 10'!
3880.162356

1

—0.2849367688 x 10%
—0.1352864496 x 10%*
—0.1478090302 x 10?2
—0.7540725789 x 10"
—0.1760661536 x 107
—0.1895987908 x 10
—0.7756675150 x 10'°
—3618.462380

1

0.4817483229 x 10%
0.2289760048 x 102
0.2513117964 x 1026
0.1299020030 x 102
0.3154544064 x 102!
0.3859718201 x 10'8
0.2325380299 x 10'5
0.5539946952 x 10'!
—6592.977986

1
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Table 4

Jloap by Jloa bir
1 2 0.1330959781 x 10%  0.2661919562 x 10%
0.02252966406 0.04505932812 0.6141913960 x 10>!  0.7847295317 x 102!

0.1968365718 x 102
0.1030137030 x 10*
0.1231428577 x 102
0.5414059059 x 10'7
0.9158266227 x 10
0.5243561927 x 10'!
—0.5698735375 x 10%
0.1755939762 x 10%*
—0.4214174069 x 10%°
—0.2261525660 x 10%*
—0.2930516976 x 10?2
—0.1511819510 x 102
—0.3520528934 x 107
—0.3790729379 x 10"
—0.1552676258 x 10!
0.9634966458 x 102
0.2973692352 x 103
0.7125008828 x 10%
0.3827224251 x 10%8
0.4977745865 x 1026
0.2600348690 x 102
0.6310751388 x 102!
0.7717084596 x 10'8
0.4652032965 x 103
0.1107495241 x 102

=2

. Exponentials

Eigenfunctions of the Laplacian give us a natural class of special functions on SG.
Until now, most attention has been paid to eigenfunctions satisfying Dirichlet or
Neumann boundary conditions, which forces the eigenvalue to be positive. In
contrast, we will mainly explore negative eigenvalues in this section, so we are
exploring the analog of the functions cosh v/A¢ and sinh /¢ on the unit interval and
their extension to the positive real line. Of particular interest is the linear

combination that yields eV , the unique choice that exhibits exponential decay
(either as A— oo or as t— o0) as opposed to exponential growth. It is embarrassing
to note that the exponential eV does not distinguish itself among linear
combinations of coshv/A¢ and sinh /¢, if one is forbidden to use odd order
derivatives. So we have not been able to find its analog on SG.
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The space of all eigenfunctions with a fixed eigenvalue has dimension three, as
long as one avoids Dirichlet eigenvalues. For fixed A >0 we can choose a basis C;, S,
0, for the space of solutions to

—Au=—Ju (6.1)

determined by the conditions that C; and S; are even and Q, is odd with respect to
Po> and

Ci(q0) =1, 0,Ci(q0) =0, (6.2)
Si(q0) =0,  0,S,(q0) = a;, (6.3)
0rQi(qo) = 1, (6.4)

where the normalization factor a; will be chosen later. This means that we have
global power series representation

o0

i p(0
Ci(x) =Y /PP (x) (6.5)
=0
and
5 pl0)
0i(x)=>_ VP (x), (6.6)
=0
and a local power series representation
[e¢]
Sy(x)=a; y_ VP (x) (6.7)
j=0

valid on F§J(SG) provided 4 <5"%,. We may also use (6.5) and (6.6) on the blow-ups
F;"(SG) for any n. Of course, none of these functions are entire analytic for 21> /,.

We will consider the infinite blow-up SG., = J,~, F,"(SG) to play the role of the
positive reals vis-a-vis the unit interval. Of course there are uncountably many
infinite blow-ups of SG. We have chosen the simplest one to study first. To
understand the “behavior at infinity” of these functions it suffices to study the values
at the points x, = Fjq; as n— — oo, for we may then get the values at the points
yn = F§g> by parity, and then fill in by spectral decimation.

For SG.,, we have graphs I', for any integer n. Since —/A is negative we never
encounter the exceptional eigenvalues 2, 5 and 6. Thus the method of spectral
decimation says that u satisfies (6.1) on SG, if and only if the restriction of u to I, is
a graph eigenfunction with eigenvalue 4,, where {/,},., is a sequence of negative
numbers characterized by

Tt = 25 — ) (6.8)
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and

—A = lim E5”2,1. (6.9)
n— o0 2

Note that 4,—0 as n— o0 and 4,—» — o0 as n— — oo. It is easy to see that the
sequence {/;} is uniquely characterized by these conditions, and the values may be
effectively computed to any desired accuracy by replacing the limit in (6.9) by
the value for a fixed large n and then using (6.8) to run n down.

The fact that u restricted to I', is a A,-eigenfunction means that if we take any cell
of level n — 1 with boundary points «a, b, ¢, and if d is the midpoint between a and b,
then

(4= ) (u(a) +u(b)) + 2u(c)
u(d) = 2= )5 =) (6.10)
(see [DSV, Algorithm 2.4]).
Lemma 6.1. The recurrence relations
(A=) + (6 — 4) Ci(xn1)
Ci(xy) = 2= G =) , (6.11)
(6= 4n)Si(xn-1)
and
o Q).(xnfl)
Q/l(xn) = 5_7)% (6.13)

hold for all integers n.
Proof. Apply (6.10) for a =qo, b = F ' (q1), c = F§ ' (¢q2) and d = F}(q1). O

Lemma 6.2. The function C, is positive. The function S,, with the appropriate
choice of ay, is positive everywhere except at qoy where it vanishes. The function Q;
vanishes on the symmetry line through qo and is positive on the q, half of the symmetry
line.

Proof. Because 1, <0 for all n, the coefficients in (6.10)—(6.13) are all positive. That
means that if u is nonnegative on the boundary of a cell and strictly positive at one of
the boundary points then it is strictly positive in the interior. Thus it suffices to show
that C)(x,), S,(x,) and Q,(x,) are positive. For S; and Q; it suffices to show S(¢;)
and Q;(q1) are positive, since we can solve (6.12) and (6.13) for S;(x,-1) and
0,(x,—1) with positive coefficients. But we can make S;(¢;) >0 by the appropriate
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choice of sign (negative) for a;, and Q,(q;)>0 follows easily from 9rQ,(qo) = 1.
When we solve (6.11) we obtain

2= 2)(5 =) Co(x) — (4 — Ay)

C/l(xn—l) - 6_

(6.14)

which contains a negative coefficient. Nevertheless, if C;(x,)>1 then (6.14) implies

C=in)(S =) = (4=1a) _|

Ci(xn-1)> 6/ ;

so it suffices to show C;(q;)>1. This follows because the contrary assumption
C,(g1)<1 and (6.11) would imply 9,C;(q0)>0. O

Theorem 6.3. (a) For all n we have

Cy(xy) = 1 _% (6.15)

(b) For the appropriate choice of a; we have

2 (o) = 4f[< ) (6.16)

and hence
lim S (0,)/Cl) = 1. (6.17)
(c) For all n<0 we have
0i(xn) = —%%” (6.18)
and hence
im0,(0)/ i) = > (6.19)

Proof. (a) A direct calculation using (6.8) shows that 1—%” satisﬁes the same
recurrence relation (6.11) as C(x,). Thus if we define ¢ (xp)=1-—2 Ci(qo) =1

and extend C; to all of SG., using (6.10), we will have an even )L—elgenfunctlon. But a
direct computation shows

because 4, = O(57) as j— o0. So C, = C;, proving (6.15).
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(b) First we observe that the infinite product in (6.16) converges, because of the
rapid growth of 4, as n— — oo. Since (6.12) may be written (using (6.8))

Si(xa) _ (1 +2_4&n>%, (6.20)

it follows that the right side of (6.16) satisfies (6.12). Since S, was only defined
up to a multiplicative constant, we may choose a; to make (6.16) hold. Note
that from (6.20) we obtain S;(x,) = O((3)") as n— oo, which is consistent with
S,(g0) =0 and 9,S,(q0)#0. Then (6.17) follows from (6.15) and (6.16) by
inspection.

(c) We may rewrite (6.13) as

Q/l (xn) _ Q). (xnfl )

j-n )bnfl

using (6.8), hence Q,(x,) = 2,0, (x¢) for all n. But then
1= 0r0:(go) = lim 5'(Q:(x) — ()
=20;(x0) lim‘ 5" A

= — %)LQ;L(X()).

This proves (6.18), and then (6.19) follows by inspection. [

We can compute the value of a; = 9,5,(qo) exactly. From the definition and (6.16)
we have

8,1Si(q0) = —2 lim (g) Sz(x,1)

n— o0

o a5\ A 4
Jlim 7(3) ,H(”z-zn_k)

—_—

|

|
[SCY =N

Y
T»—‘

3
L=
s
/;\
+

N
N———

Il
|
W —
Y
—
VRS
—
+
(]
|
PN
d
N——
T—‘
28
==
N
SaINoN
L
o9
RES
N———

1 & 4\l 6— i
- - LThO . 6.21
3 H( +2—z_,>k1_[1<6—3)vk> (6.21)
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Definition 6.4. For 1<0 define the decaying exponential function E; by

E;(x) = Ci(x) — Sy(x). (6.22)

Theorem 6.5. E;(x,) = O(),") as n— — oo. In fact

lim A,E;(x,) = —1 (6.23)
n——0o0
and
. 5 , o1
lim C(x,)" — Si(xy) =5 (6.24)
n——aoo
More precisely
2 A 47
Ej(xn) = ot - +0(3,%). (6.25)

2—Jn 2="Ip1 (2=20)(2 = no1)
Proof. From (6.16) we obtain

A 4 4 s
Si(xa) = —4(1 + 5 zn> (1 +5— inl) + 0057 (6.26)

because 4,/4, 2 = O(J, ). Substituting (6.26) into (6.22) and using (6.15) we obtain
(6.25). Using (6.8) we see that the first two terms on the right side of (6.25) sum to

2 A 1
+ L =——+00.7).
A s, 2 5t O

The third term is clearly O()L;Z), so we obtain (6.23). From (6.26) we find S;(x,) =
~% 4 0(1) and this yields (6.24). O

Note that (6.26) and (6.25) allow for the efficient computation of S; and E) for n
sufficiently negative. On the other hand (6.22) is computationally unstable since it
involves subtracting values that are large and nearly identical. In Table 5 we present
some numerical computations of these functions.

Instead of fixing 4 and taking the limit as n— — oo, we could look at values at x
and let A—> — c0. As long as |4o| is large, (6.25) and (6.26) will be good estimates.
Table 6 shows this behavior. We could also allow 4 to be complex, as long as the real
part is positive to avoid the exceptional values for 4.

We now turn our attention to eigenfunctions with positive eigenvalues, with the
goal of using information gleaned from spectral decimation to shed some light on
the recursion relations from Section 2. Keeping the same notation as before, we are
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Table 5

Values of functions at x_; for 4 = 10.70160380

-J g Ci(x-)) Sy ()

0 -10 3.500000000 3.421641174

-1 —150.0 38.50000000 38.49346321

-2 —23250.0 5813.500000 5813.499957

-3 —0.540678750 x 10° 0.1351696885 x 10° 0.1351696885 x 10°
—4 —0.2923335134 x 10'8 0.7308337835 x 107 0.7308337835 x 107
-5 —0.8545888306 x 103 0.2136472076 x 103 0.2136472076 x 103
-6 —0.7303220694 x 107 0.1825805173 x 107 0.1825805173 x 1070
-7 —0.5333703250 x 104 0.1333425813 x 1040 0.1333425813 x 10'%
-8 —0.2844839036 x 10280 0.7112097590 x 1027 0.7112097590 x 1027
-9 —0.8093109142 x 10%%° 0.2023277285 x 10°% 0.2023277285 x 10°%
-10 —0.6549841558 x 10118 0.1637460389 x 10'18 0.1637460389 x 10'18
- 0:(x) Ej(x) AjEp(x)

0 0.7008295323 0.07835882554 —0.7835882554

-1 10.51244298 0.006536787301 —0.9805180952

-2 1629.428662 0.00004300520387 —0.9998709899

-3 0.3789236353 x 108 0.1849527089 x 108 —0.9999999945

—4 0.2048759594 x 10'7 0.3420750458 x 10~V —1.0000000000

-5 0.5989210902 x 10%* 0.1170153370 x 1073* —1.0000000000

-6 0.5118312741 x 109 0.1369258909 x 10~ —1.0000000000

-7 0.3738016753 x 10'% 0.1874869960 x 10~1% —1.0000000000

-8 0.1993747210 x 1027 0.3515137367 x 1027 —1.0000000000

-9 0.5671889891 x 10358 0.1235619071 x 10~ —1.0000000000

-10 0.4590322393 x 10'117 0.1526754489 x 10-1117 —1.0000000000
Table 6

Values of functions at x( for various A values

o A E;(x0) First 2 terms First 3 terms

in (6.25) in (6.25)
—100 44.19536761 0.009711493217 0.01008584733 0.009712435727
-500 87.71437197 0.001988095160 0.002003881410 0.001988103065
—1000 112.0105482 0.0009970119472 0.001000985089 0.0009970129413
—5000 182.0354932 0.0001998800959 0.0002000398801 0.0001998801039
—10000 218.2833208 0.00009997001199 0.0001000099850 0.00009997001299
—50000 317.2473555 0.00001999880010 0.00002000039988 0.00001999880010
Ao A S5 (x0) First 2 factors First 3 factors

in (6.26) in (6.26)
—100 44.19536761 25.99028851 25.98039216 25.99028756
—500 87.71437197 125.9980119 125.9960159 125.9980119
—1000 112.0105482 250.9990030 250.9980040 250.9990030
—5000 182.0354932 1250.999800 1250.999600 1250.999800
—10000 218.2833208 2500.999900 2500.999800 2500.999900
—50000 317.2473555 12500.99998 12500.99996 12500.99998
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interested in the function

Z )/P/I

J=0

and its values at the special points xy = ¢; and x; = Fyq;. It is convenient to define
An (here we only care about n>0) to satisfy (6.8) but to remove the minus sign in
(6.9). For the Dirichlet and Neumann eigenfunctions we know exactly what these
values are, and then we can use Theorem 6.3 (a) to conclude that C_;(xy) =1 — %0

and C_;(x;) = 1 — 7. (Strictly speaking, we need to use an analytic continuation and
limit argument to get this for the values we are interested in.) In particular, if
Ao = —6 then C_;(xo) =5/2, or

S Pia) =S (i =572,
=0 =0

This happens when 4 = 4, the second nonzero Neumann eigenvalue (not to be
confused with the 4, in (6.8) and (6.9)). This allows us to compute the limit of §;/#;
as j— oo. Indeed, from (2.45) we have

J J+1 f1 s
=6 —
e o) o (5)

/=0 ljt

We expect to have

byi-¢ . q2>z
L1
and so
B; - / 5
lim —L =6 o(—4) —6=6-=——6=09.
j— o0 lf/‘Jrl ; /( 2) 2
This is confirmed by the data in Table 2.
We are also interested in the solutions of the equation
D (=2 == (6.27)
/=0
This holds for z = 4,/5, because in this case 4; = 6, and
o0
=2 wl=2/5)
/=0

But it also holds for z = A7, because in this case 1o = 6. In fact it is easy to see that
lf) is the smallest solution of (6.27) (there are infinitely many other choices of 4 with
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572 =172 -1/2

=122 -2 172 0 1/4 -1/2

1 -1/2 572 1 112 -1/2 1 1/4 -1/2
(a) () (©)

Fig. 5. The values of C_;(x) on V; vertices for (a) o = —6and 1, =6, (b) lg=6and 1, =2,(c) o =6
and 4, = 3.

either A; = 6 or 4y = 6). Fig. 5 shows the values on V; of the function C_; in these
cases.

We can now explain why the recursion relation (2.11) for f; is unstable. It is clear
by inspection that the middle term on the right side of (2.11) is much larger than the
other terms, so we would expect that a solution of (2.11) would be close to a
solution of

~ 2 ~
fi=— o 5",
/=0
which may be rewritten as
RN Brs
—= Z a5 B (6.28)
= B

If we look for a solution of (6.28) of the form f; = (—5z)7 then we obtain
ZJ@O a(—z) = —1, which is very close to (6.27) in view of the very rapid decay of
os. The solution to (6.28) should thus be an infinite linear combination of
exponential solutions with z a solution to (6.27). In the generic case the dominant
term should correspond to the smallest solution of (6.27). Thus we expect the
solution to (6.28) to behave like a multiple of (—5/1{) )7j , and numerical computations
confirm this. This pseudo-solution of (2.11) attracts any approximate solution of
(2.11) that strays from the exact solution.

A related observation is that 32 a,(—z)" = 1 holds for z = 12 ~55.885828.... by
(6.15), since in this case Ao =0 and 4; = 5. In the form ) 7, o,(—10) =0 this
suggests that the entries of the matrix o*(oc)fl7 which are just 67}, should decay like
(—=/2)7. The numerical data in Table 7 confirms this. This explains the instability in
the recursion relation for {¢}.

We also observe that the values of C_;,(x) given in Fig. 5 (a) show that the
rearranged power series at ¢; does not converge to C_;, outside the cell Fi(SG).
Indeed, the even part of the power series about ¢, if it converged in SG, would have
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Table 7

J T (=23)'T;

0 1 1

1 —0.03333333333 1.862860915
2 0.0007407407407 2.313500526
3 —0.00001433691756 2.502423700
4 0.2637965601 x 10~° 2.573213790
5 —0.4766054541 x 1078 2.598169232
6 0.8556101104 x 10-1° 2.606669803
7 —0.1532663873 x 10~ 2.609508520
8 0.2743475872 x 1013 2.610445492
9 —0.4909650195 x 101> 2.610752605
10 0.8785480907 x 10~17 2.610852844
11 —0.1572060595 x 108 2.610885478
12 0.2812997595 x 102 2.610896085
13 —0.5033478852 x 10722 2.610899530
14 0.9006721805 x 10~24 2.610900647
15 —0.1611629185 x 102° 2.610901010
16 0.2883788845 x 10727 2.610901127
17 —0.5160143489 x 1072 2.610901165
18 0.9233366935 x 103! 2.610901177
19 —0.1652183992 x 1032 2.610901182
20 0.2956355963 x 103+ 2.610901182

to be %Z(—ig)"P](.lw(x), which gives the incorrect value of 25/4 for 1(C_;,(q0) +
Cfi.g <q2)) = 7/4
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