
New bounds for large values of Dirichlet polynomials

Joint with James Maynard

Estimates for large values of Dirichlet polynomials appear in
analytic number theory, in connection with bounds for the
Riemann zeta function and the distribution of prime numbers in
short intervals.

We prove some new estimates for Dirichlet polynomials, which lead
to small improvements in bounds about zeta and primes.

Trying to understand large values of Dirichlet polynomials is also
interesting from the point of view of harmonic analysis.



Applications: Riemann zeta function

ζ(s) is the Riemann zeta function.

N(σ,T ) := #{s : ζ(s) = 0,<(s) > σ, |=(s)| ≤ T}.

Previous bounds for N(σ,T ):

- Ingham

- Halasz-Montgomery-Huxley: improvements for σ > 3/4.

We prove new bounds for 7/10 < σ ≤ 3/4 + little bit.

Example:

I N(3/4,T ) / T
6

10 (Ingham)

I N(3/4,T ) / T
5
9 (G-Maynard)



Applications: primes in short intervals

Prime number theorem: as x →∞,

Number of primes in [x , 2x ] = (1 + o(1))
∫ 2x
x

du
log u .

Question: Suppose x →∞. When do we have

Number of primes in [x , x + y ] = (1 + o(1))
∫ x+y
x

du
log u?

Conjecture: True if y ≥ cεx
ε for any ε > 0.

Riemann hypothesis implies: True if y ≥ cεx
1
2

+ε.

Previous bound (Huxley): True if y ≥ cεx
7

12
+ε.

New bound (G-Maynard): True if y ≥ cεx
17
30

+ε.



Setup

I D(t) =
∑2N

n=N bne
it log n

I |bn| ≤ 1.

The goal is to understand the superlevel set where |D(t)| > Nσ.



Setup
I D(t) =

∑2N
n=N bne

it log n

I |bn| ≤ 1.

I |D(t)| > Nσ for t ∈W .

I W ⊂ [0,T ] is 1-separated set.

Large value problem: Estimate |W | in terms of N,T , σ.

ID(t))

Hitt
& · ·

I
t

W

Remark: |D(t)| is morally ≈ constant on unit intervals.



Known bounds

Recall D(t) =
∑2N

n=N bne
it log n

Basic orthogonality bound. If W ⊂ [0,T ] 1-separated, and T ≥ N,
then∑

t∈W |D(t)|2 . T
∑

n |bn|2.

Proof sketch.∑
t∈W |D(t)|2 .

∫ T
0 |D(t)|2dt . T

∑
n |bn|2.



Known bounds

Setup

I D(t) =
∑2N

n=N bne
it log n

I |bn| ≤ 1.

I |D(t)| > Nσ for t ∈W .

I W ⊂ [0,T ] is 1-separated set, T ≥ N.

Orthogonality gives

|W |N2σ ≤
∑

t∈W |D(t)|2 . T
∑

n |bn|2 . TN.

Conjecture (Montgomery) If Setup and σ > 1/2, then

|W |N2σ / N2.

Orthogonality gives sharp bounds for T = N.



Known bounds beyond orthogonality

Power trick.

I D2,D3, etc. are Dirichlet polynomials.

I Can apply orthogonality bound to D2,D3, ...

I Gives strong bounds for T = N2,N3, ...

Halasz-Montgomery method.

I Shows conjecture true for large σ.

I But if σ ≤ 3/4, gives no information.

I We will describe in detail.

If N ≤ T ≤ N3/2 and σ ≤ 3/4, orthogonality was the best known
bound.



The new estimate

Setup

I D(t) =
∑2N

n=N bne
it log n

I |bn| ≤ 1.

I |D(t)| > Nσ for t ∈W .

I W ⊂ [0,T ] is 1-separated set, T ≥ N.

Theorem (G - Maynard) Suppose Setup and N6/5 ≤ T and
7

10 < σ. Then

|W |N2σ / N−ε(σ)TN,

where ε(σ) > 0 (explicit but a little messy).

Example ε(3/4) = 1/10.



General harmonic analysis setup

Φ set of frequencies. (For us, Φ = {log n}2N
n=N)

D(t) =
∑

ξ∈Φ bξe
iξt .

Want to study D(t) on a finite set W ⊂ R.

M = MΦ,W matrix
Input: the coefficients bξ
Output: D(t) for t ∈W .

Coefficients of the matrix M are:
Mt,ξ = e iξt .
(Rows indexed by t ∈W and columns are indexed by ξ ∈ Φ.)

Sanity check:

(M~b)t =
∑

ξ∈Φ Mt,ξbξ =
∑

ξ∈Φ bξe
iξt = D(t).
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General harmonic analysis setup

Φ set of frequencies. (For us, {log n}2N
n=N)

D(t) =
∑

ξ∈Φ bξe
iξt .

To study D(t) on a set W ⊂ R.

M = MΦ,W matrix
Input: the coefficients bξ
Output: D(t) for t ∈W .

The singular values of MΦ,W control how D(t) can behave on W .
Singular values of M are s1(M) ≥ s2(M) ≥ ...∑

t∈W |D(t)|2 = ‖MΦ,W
~b‖2 ≤ s1(MΦ,W )2

∑
n |bn|2.

The problem boils down to estimating s1(MΦ,W ) for all possible W .



The TT ∗ method

To understand s1(M), it helps to look at MM∗ or M∗M.

We have

s1(M)2 = λ1(MM∗) = λ1(M∗M).

We will apply this to our matrix MΦ,W .



The TT ∗ method

s1(M)2 = λ1(MM∗) = λ1(M∗M).

M = MΦ,W matrix
Input: the coefficients bξ
Output: D(t) for t ∈W .
Coefficients of the matrix M are:
Mt,ξ = e iξt .
(Rows indexed by t ∈W and columns are indexed by ξ ∈ Φ.)

Can compute MM∗ and M∗M, and they have nice formulas for the
coefficients.

The formulas are in terms of

Ŵ (ξ) :=
∑

t∈W e−itξ;
Φ∨ :=

∑
ξ∈Φ e itξ.



The TT ∗ method

s1(M)2 = λ1(MM∗) = λ1(M∗M).

M = MΦ,W matrix
Input: the coefficients bξ
Output: D(t) for t ∈W .
Coefficients of the matrix M are:
Mt,ξ = e iξt .
(Rows indexed by t ∈W and columns are indexed by ξ ∈ Φ.)

Ŵ (ξ) :=
∑

t∈W e−itξ;
Φ∨ :=

∑
ξ∈Φ e itξ.

MM∗ has rows and columns indexed by t ∈W .
(MM∗)t1,t2 = Φ∨(t1 − t2).

M∗M has rows and columns indexed by ξ ∈ Φ.
(M∗M)ξ1,ξ2 = Ŵ (ξ1 − ξ2).



The Halasz-Montgomery method

M = MΦ,W matrix, Φ∨ :=
∑

ξ∈Φ e itξ

MM∗ has rows and columns indexed by t ∈W .
(MM∗)t1,t2 = Φ∨(t1 − t2).

Bound entries of MM∗. Φ∨(0) = N.

Conjecture A. |Φ∨(t)| / N1/2 for 1 ≤ |t| ≤ NO(1).
(Know |Φ∨(t)| / |t|1/2 for ”)

Conjecture A implies s1(MΦ,W )2 = λ1(MM∗) / N + N1/2|W |.

In our Setup, this gives
|W |N2σ / N2 + N3/2|W |.

For σ > 3/4, this implies the Montgomery conjecture.
For σ ≤ 3/4, this gives no information on W .



Pause to reflect

If N ≤ T ≤ N3/2 and σ ≤ 3/4, then basic orthogonality was the
best known bound.

I’m quite struck by how difficult it is to improve on this simple
argument.



Pause to reflect

The TT ∗ method appears in many places in harmonic analysis.

I Kolmogorov-Seliverstov-Plessner (convergence of Fourier
series 1920s)

I Halasz-Montgomery (late 1960s)

I Tomas-Stein and Strichartz (restriction theory 1970s)

I Mattila (geometric measure theory 1980s)

I Bourgain (periodic version of Strichartz 1990s)

In the last two applications, the results of TT ∗ are only sharp
above a threshold, analogous to σ > 3/4.
Sharp estimates below the threshold were proven by Wolff and
Bourgain-Demeter using different methods, like wave packets.

Fu-G-Maldague tried to study Dirichlet polynomials with wave
packets, no progress on main question.



Almost counterexample

In our problem, it is hard to improve on orthogonality because there
is a cousin of our problem where orthogonality is actually sharp.

This almost counterexample helped motivate some of our
approach.



Almost counterexample

ΦC = {
√

n
N }

2N
n=N . (Many properties similar to Φ = {log n}2N

n=N .)

D(t) :=
∑2N

n=N bne
it
√

n
N .

Normalize:
∑

n |bn|2 = N.
|D(t)| > Nσ on W ⊂ [0,T ] 1-separated.

Orthogonality gives |W |N2σ . TN.

Conjecture B. |Φ∨C (t)| / N1/2 for 1 ≤ |t| ≤ NO(1).
HM Method: Conj B implies that |W |N2σ / N2 for σ > 3/4.

For every σ ≤ 3/4, the bound |W |N2σ . TN is sharp!

We will write down the example for σ = 3/4.



Almost counterexample

ΦC = {
√

n
N }

2N
n=N . (Many properties similar to Φ = {log n}2N

n=N .)

D(t) :=
∑2N

n=N bne
it
√

n
N .

Normalize:
∑

n |bn|2 = N.
|D(t)| & N3/4 on W ⊂ [0,T ] 1-separated.

The key fact is that ΦC contains an arithmetic progression of
length ∼ N1/2.

The arithmetic progression comes from n of the form m2.√
m2

N = m√
N

.



Almost counterexample

D(t) :=
∑2N

n=N bne
it
√

n
N .

Normalize:
∑

n |bn|2 = N.
|D(t)| & N3/4 on W ⊂ [0,T ] 1-separated.

bn =

{
N1/4 if n = m2

0 else
.

D(t) = N1/4
∑

m∼N1/2 e
it m√

N .

D(0) ∼ N3/4. And D(t) is
√
N-periodic.

W =
√
NZ ∩ [0,T ].



Almost counterexample

Setup of almost counterexample

D(t) :=
∑2N

n=N bne
it
√

n
N .

Normalize:
∑

n |bn|2 = N.
|D(t)| & N3/4 on W ⊂ [0,T ] 1-separated.

This setup is different from our actual setup in two ways:

I Frequencies are
√

n
N instead of log n.

I
∑

n |bn|2 = N instead of |bn| ≤ 1 for all n.

Some methods are not sensitive to these differences and so cannot
help us.

Our new method will use both. In particular, it will distinguish
log n from

√
n
N .



Singular values of matrices again

For any matrix M we have

s1(M)2 = λ1(MM∗) = λ1(M∗M),

and so for any integer r ≥ 1,∑
i si (M)2r = Trace((MM∗)r ) = Trace((M∗M)r ).

For M = MΦ,W we can compute these.

Recall Φ∨ :=
∑

ξ∈Φ e itξ; Ŵ (ξ) :=
∑

t∈W e−itξ.

Trace((MM∗)r ) =
∑

t1,...,tr∈W Φ∨(t1− t2)Φ∨(t2− t3)...Φ∨(tr − t1).

Trace((M∗M)r ) =
∑

ξ1,...,ξr∈Φ Ŵ (ξ1− ξ2)Ŵ (ξ2− ξ3)...Ŵ (ξr − ξ1).
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Singular values of matrices again

For any integer r ≥ 1,∑
i si (M)2r = Trace((MM∗)r ) = Trace((M∗M)r ).

For M = MΦ,W we can compute

Trace((MM∗)r ) =
∑
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Trace((M∗M)r ) =
∑

ξ1,...,ξr∈Φ Ŵ (ξ1− ξ2)Ŵ (ξ2− ξ3)...Ŵ (ξr − ξ1).

If r = 2, closely related to Halasz-Montgomery method.
So r = 2 gives no information if σ ≤ 3/4.
We use r = 3.

Remark. If r = 2 all terms are positive.
If r ≥ 3, they are not positive, and we cannot afford to use the
triangle inequality.
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Cannot afford the triangle inequality∑
i si (M)2r = Trace((M∗M)r ) =∑
ξ1,...,ξr∈Φ Ŵ (ξ1 − ξ2)Ŵ (ξ2 − ξ3)...Ŵ (ξr − ξ1).

≤
∑

ξ1,...,ξr∈Φ

∣∣∣Ŵ (ξ1 − ξ2)Ŵ (ξ2 − ξ3)...Ŵ (ξr − ξ1)
∣∣∣ = (∗).

Recall Ŵ (ξ) =
∑

t∈W e−itξ.

Best hope is |Ŵ (ξ)| / |W |1/2. (True for random W )

Recall |Φ| = N.

Best hope for |(∗)| ∼ N r |W |r/2. Too big for our application.

So we need to prove some cancellation.
Tricky because we need to do it for every set W .



Special features of our frequency set

For Dirichlet polynomials, Φ = {log n}n∼N .
Plugging into our last formula, we get∑

i si (MΦ,W )6 =∑
n1,n2,n3∼N Ŵ (log n1− log n2)Ŵ (log n2− log n3)Ŵ (log n3− log n1)

=
∑

n1,n2,n3∼N Ŵ
(

log(n1
n2

)
)
Ŵ
(

log(n2
n3

)
)
Ŵ
(

log(n3
n1

)
)

Since we sum over integers n, it helps to use Poisson summation.



Special features of our frequency set∑
i si (MΦ,W )6 =∑
n1,n2,n3∼N Ŵ

(
log(n1

n2
)
)
Ŵ
(

log(n2
n3

)
)
Ŵ
(

log(n3
n1

)
)

=
∑

n1,n2,n3∈Z ψ
(
n
N

)
Ŵ
(

log(n1
n2

)
)
Ŵ
(

log(n2
n3

)
)
Ŵ
(

log(n3
n1

)
)
,

where n = (n1, n2, n3) and ψ is a cutoff function.

Now we can do Poisson summation.



Special features of our frequency set∑
i si (MΦ,W )6 =

=
∑

n1,n2,n3∈Z ψ
( n

N

)
Ŵ

(
log(

n1

n2
)

)
Ŵ

(
log(

n2

n3
)

)
Ŵ

(
log(

n3

n1
)

)
︸ ︷︷ ︸

G(n)

=
∑

m∈Z3 Ĝ (m).

The frequency m = 0 is special.
It can be computed precisely. It only depends on |W |.
It describes the average behavior of a set W of given cardinality.

So we have to estimate Ĝ (m) for m 6= 0.
We will write it out carefully and find a cancellation that depends
on special structure of log n.



Special features of our frequency set∑
i si (MΦ,W )6 =

=
∑

n1,n2,n3∈Z ψ
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Special features of our frequency set∑
i si (MΦ,W )6 =

=
∑

n1,n2,n3∈Z ψ
( n

N

)
Ŵ

(
log(

n1

n2
)

)
Ŵ

(
log(

n2

n3
)

)
Ŵ

(
log(

n3

n1
)

)
︸ ︷︷ ︸

G(n)

Ĝ (m) =
∫
R3 e

imxG (x)dx =∫
R3 e

imxψ
(
x
N

)
Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)
dx .

First observation: Ŵ factors only really depend on two variables.

v1 = x1
x3

and v2 = x2
x3

, so

Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)

=

Ŵ
(

log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)



Special features of our frequency set

Ĝ (m) =
∫
R3 e

imxψ
(
x
N

)
Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)
dx .

New variables: v1 = x1
x3

and v2 = x2
x3

and x3.

∫
R3 e

imxψ Ŵ
(

log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)
Jac dv1dv2dx3.

Which integral should we do first?



Special features of our frequency set

Ĝ (m) =
∫
R3 e

imxψ
(
x
N

)
Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)
dx .

New variables: v1 = x1
x3

and v2 = x2
x3

and x3.

∫
R3 e

imxψ Ŵ
(

log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)
Jac dv1dv2dx3.

=
∫ (∫

e imxψJacdx3

)
Ŵ
(

log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)
dv .

The red integral doesn’t depend on W . It has cancellation.



Special features of our frequency set

Ĝ (m) =
∫
R3 e

imxψ
(
x
N

)
Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)
dx .

New variables: v1 = x1
x3

and v2 = x2
x3

and x3.

=
∫ (∫

e imxψJac dx3

)
Ŵ
(

log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)
dv .

The function ψJac is a nice function of x3: picture a smooth bump
on [N, 2N].

Now v1, v2 are fixed and x3 is changing.

e imx = e i(m1x1+m2x2+m3x3).

We have to write it in terms of v1, v2, x3. It works out in a special
way.



Special features of our frequency set
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∫
R3 e
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Ŵ
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Ŵ
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log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)
dv1dv2.

The function ψJac is a smooth bump on [N, 2N].

Note x1 = v1x3 and x2 = v2x3.

e imx = e i(m1x1+m2x2+m3x3) = e i(m1v1+m2v2+m3)x3 .

So the red integral is TINY unless |m1v1 + m2v2 + m3| / 1
N !



Special features of our frequency set

Ĝ (m) =
∫
R3 e

imxψ
(
x
N

)
Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)
dx .

New variables: v1 = x1
x3

and v2 = x2
x3

and x3.

∫ (∫
e imxψJac dx3

)
Ŵ
(

log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)
dv1dv2.

The function ψJac is a smooth bump on [N, 2N].

e imx = e i(m1x1+m2x2+m3x3) = e i(m1v1+m2v2+m3)x3 .

So the red integral is TINY unless |m1v1 + m2v2 + m3| / 1
N !

This key fact is a special feature of log n.
If we had frequencies

√
n
N , then we would have different formulas

for v1, v2, and e imx = e igm,v1,v2 (x3) with gm,v1,v2(x3) nonlinear!



Special features of our frequency set

Ĝ (m) =
∫
R3 e

imxψ
(
x
N

)
Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)
dx .

New variables: v1 = x1
x3

and v2 = x2
x3

and x3.

∫ (∫
e imxψJac dx3

)
Ŵ
(

log( v1
v2

)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)
dv1dv2.

The red integral is TINY unless |m1v1 + m2v2 + m3| / 1
N !

Triangle inequality:
∣∣∫ e imxψJac dx3

∣∣ . N3.

So |Ĝ (m)| .
N3
∫
|m1v1+m2v2+m3|/ 1

N

∣∣∣Ŵ (
log( v1

v2
)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)∣∣∣ dv1dv2.

At this point, we do have to deal with |Ŵ |.



Special features of our frequency set

Ĝ (m) =
∫
R3 e

imxψ
(
x
N

)
Ŵ
(

log( x1
x2

)
)
Ŵ
(

log( x2
x3

)
)
Ŵ
(

log( x3
x1

)
)
dx .

New variables: v1 = x1
x3

and v2 = x2
x3

and x3.

=
∫ (∫

e imxψJac dx3

)
Ŵ (v1)Ŵ (v2/v1)Ŵ (1/v2)dv1dv2.

The red integral is TINY unless |m1v1 + m2v2 + m3| / 1
N !

Triangle inequality:
∣∣∫ e imxψJac dx3

∣∣ . N3.

So |Ĝ (m)| .
N3
∫
|m1v1+m2v2+m3|/ 1

N

∣∣∣Ŵ (
log( v1

v2
)
)
Ŵ (log(v2)) Ŵ

(
log( 1

v1
)
)∣∣∣ dv1dv2.

Special case |Ŵ (ξ)| / |W |1/2 for all ξ (away from 0).
Plug in and we get an improved bound for our main problem.



Additive energy

E (W ) := #{t1, t2, t3, t4 ∈W : |t1 + t2 − t3 − t4| ≤ 1}.

Classical fact from additive combinatorics: E (W ) is approximately∫
|ξ|≤1 |Ŵ (ξ)|4dξ.

Small energy case

I |Ŵ (ξ)| is small most of the time.

I Plug that in to bound |Ŵ | factors in our bound for |Ĝ (m)|.

Large energy case

I The large number of additive quadruples helps us.

I Connected to work of Heath-Brown from the 70s.



Why does additive structure help?

Theorem (Heath-Brown):
If D(t) =

∑
n∼N bne

it log n and |bn| ≤ 1,
and T ⊂ [0,T ] 1-separated,
and N ≤ T ≤ N4/3

then
∑

t1,t2∈T |D(t1 − t2)|2 / |T |2N + N2|T |.

Bound is sharp.
We have |T |2 terms with |D(t)| ∼ N1/2.
If bn = 1 for all n, then we have |T | terms with t1 = t2 and
|D(t1 − t2)| = N.

This gives a sharp bound for W of the form T − T .

And it leads to good bounds whenever W has large energy.



Why does additive structure help?

Theorem (Heath-Brown):
If D(t) =

∑
n∼N bne

it log n and |bn| ≤ 1,
and T ⊂ [0,T ] 1-separated,
and N ≤ T ≤ N4/3

then
∑

t1,t2∈T |D(t1 − t2)|2 / |T |2N + N2|T |.

Heath-Brown’s proof has several cool ideas. We will describe the
first step.
Recall D(t) =

∑
n∼N bne

it log n and let D0(t) =
∑

n∼N e it log n.

By Plancherel∑
t1,t2∈T |D(t1 − t2)|2 =

∑
n1,n2∼N bn1 b̄n2 |Ŵ (log n1 − log n2)|2

≤
∑

n1,n2∼N |Ŵ (log n1 − log n2)|2 =
∑

t1,t2∈T |D0(t1 − t2)|2.

So it suffices to study D0!
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