A few simple perspectives on Fourier uncertainty

Alex losevich

May 2024: MATRIX CONFERENCE

Fourier Uncertainty Principle

- The Fourier Uncertainty Principle says that a suitably regular function and its Fourier transform cannot be simultaneously localized, even in the approximate sense.

Fourier Uncertainty Principle

- The Fourier Uncertainty Principle says that a suitably regular function and its Fourier transform cannot be simultaneously localized, even in the approximate sense.
- The precise formulation depends on context, but some version of this idea is present in every problem where the Fourier transform is involved.

Fourier Uncertainty Principle

- The Fourier Uncertainty Principle says that a suitably regular function and its Fourier transform cannot be simultaneously localized, even in the approximate sense.
- The precise formulation depends on context, but some version of this idea is present in every problem where the Fourier transform is involved.
- One of our key points of emphasis today is connections between Fourier uncertainty and exact signal recovery.

Restriction Conjecture

Conjecture

(Restriction conjecture) The restriction conjecture says that if S is the unit sphere, then

$$
\left(\int_{S}|\widehat{f}(\xi)|^{r} d \sigma_{S}(\xi)\right)^{\frac{1}{r}} \leq C_{p, r}\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

whenever

$$
p<\frac{2 d}{d+1}, r \leq \frac{d-1}{d+1} p^{\prime}
$$

where p^{\prime} is the conjugate exponent to p.

Restriction Conjecture

Conjecture

(Restriction conjecture) The restriction conjecture says that if S is the unit sphere, then

$$
\left(\int_{S}|\widehat{f}(\xi)|^{r} d \sigma_{S}(\xi)\right)^{\frac{1}{r}} \leq C_{p, r}\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

whenever

$$
p<\frac{2 d}{d+1}, r \leq \frac{d-1}{d+1} p^{\prime},
$$

where p^{\prime} is the conjugate exponent to p.

- This conjecture is solved in two dimensions and in spite of a lot of brilliant work by Bourgain, Guth, Ou, Stein, Tao, Tomas, Wang and many others, the problem is still open in higher dimensions.

A signal recovery perspective on restriction

- Suppose that A is a compact set in $\mathbb{R}^{d}, d \geq 2,|A|>0$, and $\widehat{\chi}_{A}(\xi)$ is known except for $\xi \in S^{\delta}$, the annulus of radius 1 and thickness δ (small). Can we recover $\chi_{A}(x)$ exactly?

A signal recovery perspective on restriction

- Suppose that A is a compact set in $\mathbb{R}^{d}, d \geq 2,|A|>0$, and $\widehat{\chi}_{A}(\xi)$ is known except for $\xi \in S^{\delta}$, the annulus of radius 1 and thickness δ (small). Can we recover $\chi_{A}(x)$ exactly?
- We have

$$
\chi_{A}(x)=\int e^{2 \pi i x \cdot \xi} \widehat{\chi}_{A}(\xi) d \xi
$$

A signal recovery perspective on restriction

- Suppose that A is a compact set in $\mathbb{R}^{d}, d \geq 2,|A|>0$, and $\widehat{\chi}_{A}(\xi)$ is known except for $\xi \in S^{\delta}$, the annulus of radius 1 and thickness δ (small). Can we recover $\chi_{A}(x)$ exactly?
- We have

$$
\begin{gathered}
\chi_{A}(x)=\int e^{2 \pi i x \cdot \xi} \widehat{\chi}_{A}(\xi) d \xi \\
=\int_{\xi \notin S^{\delta}}+\int_{\xi \in S^{\delta}}=I(x)+I I(x) .
\end{gathered}
$$

A signal recovery perspective on restriction

- Suppose that A is a compact set in $\mathbb{R}^{d}, d \geq 2,|A|>0$, and $\widehat{\chi}_{A}(\xi)$ is known except for $\xi \in S^{\delta}$, the annulus of radius 1 and thickness δ (small). Can we recover $\chi_{A}(x)$ exactly?
- We have

$$
\begin{aligned}
& \chi_{A}(x)=\int e^{2 \pi i x \cdot \xi} \widehat{\chi}_{A}(\xi) d \xi \\
= & \int_{\xi \notin S^{\delta}}+\int_{\xi \in S^{\delta}}=I(x)+I I(x) .
\end{aligned}
$$

- By assumption, we have no information about $I(x)$, so we must estimate it and hope for the best.

Applying the conjectured restriction inequality

- By Holder, if the restriction theorem holds with exponents (p, r), then

$$
|I I(x)| \leq\left|S^{\delta}\right| \cdot\left(\frac{1}{\left|S^{\delta}\right|} \int_{S^{\delta}}\left|\widehat{\chi}_{A}(\xi)\right|^{r} d \xi\right)^{\frac{1}{r}} \leq C_{p, r} \cdot\left|S^{\delta}\right| \cdot|A|^{\frac{1}{p}}
$$

Applying the conjectured restriction inequality

- By Holder, if the restriction theorem holds with exponents (p, r), then

$$
|I I(x)| \leq\left|S^{\delta}\right| \cdot\left(\frac{1}{\left|S^{\delta}\right|} \int_{S^{\delta}}\left|\widehat{\chi}_{A}(\xi)\right|^{r} d \xi\right)^{\frac{1}{r}} \leq C_{p, r} \cdot\left|S^{\delta}\right| \cdot|A|^{\frac{1}{p}}
$$

- If the right hand side is $<\frac{1}{2}$, i.e if $|A| \lesssim \delta^{-p}$ with suitable constants, then we can take the modulus of $I(x)$ and round it up to 1 , or down to 0 , whichever is closer, and thus recover $\chi_{A}(x)$ is exactly.

Applying the conjectured restriction inequality

- By Holder, if the restriction theorem holds with exponents (p, r), then

$$
|I I(x)| \leq\left|S^{\delta}\right| \cdot\left(\frac{1}{\left|S^{\delta}\right|} \int_{S^{\delta}}\left|\widehat{\chi}_{A}(\xi)\right|^{r} d \xi\right)^{\frac{1}{r}} \leq C_{p, r} \cdot\left|S^{\delta}\right| \cdot|A|^{\frac{1}{p}}
$$

- If the right hand side is $<\frac{1}{2}$, i.e if $|A| \lesssim \delta^{-p}$ with suitable constants, then we can take the modulus of $I(x)$ and round it up to 1 , or down to 0 , whichever is closer, and thus recover $\chi_{A}(x)$ is exactly.
- For any r, the restriction theorem always holds for $p=1$, but according to the restriction conjecture, it holds for any

$$
p<\frac{2 d}{d+1}
$$

which gives us a much less stringent recovery condition.

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.
- Suppose that $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ and \widehat{f} is supported in S is a k-dimensional submnaifold of \mathbb{R}^{d}. Suppose further that $f \in L^{p}\left(\mathbb{R}^{d}\right)$ for some $p \leq \frac{2 d}{k}$. Then $f \equiv 0$.

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.
- Suppose that $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ and \widehat{f} is supported in S is a k-dimensional submnaifold of \mathbb{R}^{d}. Suppose further that $f \in L^{p}\left(\mathbb{R}^{d}\right)$ for some $p \leq \frac{2 d}{k}$. Then $f \equiv 0$.
- A natural question is whether the exponent $\frac{2 d}{k}$ is sharp, and what does it have to with restriction theory?

Another version of the uncertainty principle

- The following beautiful version of the Fourier uncertainty principle was obtained by Agranovsky and Narayanan.
- Suppose that $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ and \widehat{f} is supported in S is a k-dimensional submnaifold of \mathbb{R}^{d}. Suppose further that $f \in L^{p}\left(\mathbb{R}^{d}\right)$ for some $p \leq \frac{2 d}{k}$. Then $f \equiv 0$.
- A natural question is whether the exponent $\frac{2 d}{k}$ is sharp, and what does it have to with restriction theory?
- After all, if $k=d-1$ and S is the unit sphere, $\frac{2 d}{d-1}$ is the sharp conjectured exponent for the dual of the restriction conjecture.

Space curves

Theorem

(S. Guo, A. losevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \geq 2$ be a positive integer and suppose that $1 \leq p<\frac{d^{2}+d+2}{2}$. If $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and \widehat{f} is supported on

$$
\left\{\left(t, t^{2}, \ldots, t^{d}\right): t \in(0,1)\right\}
$$

then $f \equiv 0$. The exponent $\frac{d^{2}+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

Space curves

Theorem

(S. Guo, A. losevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \geq 2$ be a positive integer and suppose that $1 \leq p<\frac{d^{2}+d+2}{2}$. If $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and \widehat{f} is supported on

$$
\left\{\left(t, t^{2}, \ldots, t^{d}\right): t \in(0,1)\right\}
$$

then $f \equiv 0$. The exponent $\frac{d^{2}+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

- Note that the Agranovsky-Narayanan theorem yields the same conclusion for $p<2 d$ in this case.

Space curves

Theorem

(S. Guo, A. losevich, R. Zhang, and P. Zorich-Kranich (2023)) Let $d \geq 2$ be a positive integer and suppose that $1 \leq p<\frac{d^{2}+d+2}{2}$. If $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and \widehat{f} is supported on

$$
\left\{\left(t, t^{2}, \ldots, t^{d}\right): t \in(0,1)\right\}
$$

then $f \equiv 0$. The exponent $\frac{d^{2}+d+2}{2}$ is best possible, up to the endpoint. Moreover, the conclusion is still valid for small perturbations of this curve.

- Note that the Agranovsky-Narayanan theorem yields the same conclusion for $p<2 d$ in this case.
- We also note that $\frac{d^{2}+d+2}{2}$ is the optimal extension exponent.

Finite Signals and Discrete Fourier transform

- The following approach was employed by Donoho and Stark (1989).

Finite Signals and Discrete Fourier transform

- The following approach was employed by Donoho and Stark (1989).
- Let f be a signal of finite length, i.e

$$
f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}
$$

Finite Signals and Discrete Fourier transform

- The following approach was employed by Donoho and Stark (1989).
- Let f be a signal of finite length, i.e

$$
f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}
$$

- Suppose that f is transmitted via its Fourier transforms, with

$$
\widehat{f}(m)=N^{-d} \sum_{x \in \mathbb{Z}_{N}^{d}} \chi(-x \cdot m) f(x) ; \chi(t)=e^{\frac{2 \pi i t}{N}}
$$

Finite Signals and Discrete Fourier transform

- The following approach was employed by Donoho and Stark (1989).
- Let f be a signal of finite length, i.e

$$
f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}
$$

- Suppose that f is transmitted via its Fourier transforms, with

$$
\widehat{f}(m)=N^{-d} \sum_{x \in \mathbb{Z}_{N}^{d}} \chi(-x \cdot m) f(x) ; \chi(t)=e^{\frac{2 \pi i t}{N}}
$$

- Fourier Inversion says that we can reconstruct (or recover) the signal completely by using the Fourier inversion:

$$
f(x)=\sum \chi(x \cdot m) \widehat{f}(m) .
$$

Exact recovery problem

- The basic question is, can we still recover f exactly from its discrete Fourier transforms if

$$
\{\widehat{f}(m): m \in S\}
$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_{N}^{d}$?

Exact recovery problem

- The basic question is, can we still recover f exactly from its discrete Fourier transforms if

$$
\{\widehat{f}(m): m \in S\}
$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_{N}^{d}$?

- The answer turns out to be YES if f is supported in $E \subset \mathbb{Z}_{N}^{d}$, and

$$
|E| \cdot|S|<\frac{N^{d}}{2}
$$

with the main tool being the Fourier Uncertainty Principle (FUP).

An elementary point of view: setup

- Suppose that $E \subset \mathbb{Z}_{N}^{d}$ and $f(x)=E(x)$, the indicator function of E.

An elementary point of view: setup

- Suppose that $E \subset \mathbb{Z}_{N}^{d}$ and $f(x)=E(x)$, the indicator function of E.
- Suppose that the Fourier transform E is transmitted, and the frequencies in $S \subset \mathbb{Z}_{N}^{d}$ are unobserved.

An elementary point of view: setup

- Suppose that $E \subset \mathbb{Z}_{N}^{d}$ and $f(x)=E(x)$, the indicator function of E.
- Suppose that the Fourier transform E is transmitted, and the frequencies in $S \subset \mathbb{Z}_{N}^{d}$ are unobserved.
- By Fourier Inversion,

$$
E(x)=\sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{E}(m)
$$

An elementary point of view: setup

- Suppose that $E \subset \mathbb{Z}_{N}^{d}$ and $f(x)=E(x)$, the indicator function of E.
- Suppose that the Fourier transform E is transmitted, and the frequencies in $S \subset \mathbb{Z}_{N}^{d}$ are unobserved.
- By Fourier Inversion,

$$
\begin{gathered}
E(x)=\sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{E}(m) \\
=\sum_{m \notin S} \chi(x \cdot m) \widehat{E}(m)+\sum_{m \in S} \chi(x \cdot m) \widehat{E}(m)=I(x)+I I(x) .
\end{gathered}
$$

An elementary point of view: Cauchy-Schwarz

- By Cauchy-Schwarz,

$$
|I(x)| \leq|S|^{\frac{1}{2}} \cdot\left(\sum_{m \in S}|\widehat{E}(m)|^{2}\right)^{\frac{1}{2}}
$$

An elementary point of view: Cauchy-Schwarz

- By Cauchy-Schwarz,

$$
|I I(x)| \leq|S|^{\frac{1}{2}} \cdot\left(\sum_{m \in S}|\widehat{E}(m)|^{2}\right)^{\frac{1}{2}} .
$$

- Extending the sum in S over the sum in \mathbb{Z}_{N}^{d} and applying Plancherel, we see that this expression is bounded by

$$
|S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot|E|^{\frac{1}{2}} .
$$

An elementary point of view: rounding

- If

$$
|S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot|E|^{\frac{1}{2}}<\frac{1}{2}
$$

we can take the modulus of $I(x)$ and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

An elementary point of view: rounding

- If

$$
|S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot|E|^{\frac{1}{2}}<\frac{1}{2}
$$

we can take the modulus of $I(x)$ and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

- This gives us exact recovery using a simple and direct argument if

$$
|E| \cdot|S|<\frac{N^{d}}{4}
$$

An elementary point of view: rounding

- If

$$
|S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot|E|^{\frac{1}{2}}<\frac{1}{2}
$$

we can take the modulus of $I(x)$ and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

- This gives us exact recovery using a simple and direct argument if

$$
|E| \cdot|S|<\frac{N^{d}}{4}
$$

- But what happens if we consider general signals?

Donoho-Stark point of view

- Suppose that $h: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ has N_{t} non-zero values, and its Fourier transform \widehat{h} has N_{w} non-zero entries. Then the classical Uncertainty Principle says that

$$
|\operatorname{supp}(h)| \cdot|\operatorname{supp}(\hat{h})|=N_{t} \cdot N_{w} \geq N .
$$

Donoho-Stark point of view

- Suppose that $h: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ has N_{t} non-zero values, and its Fourier transform \widehat{h} has N_{w} non-zero entries. Then the classical Uncertainty Principle says that

$$
|\operatorname{supp}(h)| \cdot|\operatorname{supp}(\hat{h})|=N_{t} \cdot N_{w} \geq N
$$

- Suppose that $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ is supported in $E \subset \mathbb{Z}_{N}$, with the frequencies in $S \subset \mathbb{Z}_{N}$ unobserved.

Donoho-Stark point of view

- Suppose that $h: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ has N_{t} non-zero values, and its Fourier transform \widehat{h} has N_{w} non-zero entries. Then the classical Uncertainty Principle says that

$$
|\operatorname{supp}(h)| \cdot|\operatorname{supp}(\hat{h})|=N_{t} \cdot N_{w} \geq N
$$

- Suppose that $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ is supported in $E \subset \mathbb{Z}_{N}$, with the frequencies in $S \subset \mathbb{Z}_{N}$ unobserved.
- If f cannot be recovered uniquely, then there exists a signal $g: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ such that g also has N_{t} non-zero entries,

$$
\widehat{f}(m)=\widehat{g}(m) \text { for } m \notin S
$$

and f is not identically equal to g.

Uncertainty Principle (UP) \rightarrow Unique Recovery

- Let $h=f-g$. It is clear that \widehat{h} has at most N_{w} non-zero entries, and h has at most $2 N_{t}$ non-zero entries.

Uncertainty Principle (UP) \rightarrow Unique Recovery

- Let $h=f-g$. It is clear that \widehat{h} has at most N_{w} non-zero entries, and h has at most $2 N_{t}$ non-zero entries.
- By the Uncertainty Principle, we must have

$$
N_{t} \cdot N_{w} \geq \frac{N}{2}
$$

Uncertainty Principle (UP) \rightarrow Unique Recovery

- Let $h=f-g$. It is clear that \widehat{h} has at most N_{w} non-zero entries, and h has at most $2 N_{t}$ non-zero entries.
- By the Uncertainty Principle, we must have

$$
N_{t} \cdot N_{w} \geq \frac{N}{2}
$$

- Therefore, if

$$
N_{t} \cdot N_{w}<\frac{N}{2}
$$

we must have $h=0$, and hence the recovery is unique.

An elementary proof of the (finite) Uncertainty Principle

- Suppose that $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ supported in E, with \widehat{f} supported in S.

An elementary proof of the (finite) Uncertainty Principle

- Suppose that $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ supported in E, with \widehat{f} supported in S.
- By Fourier Inversion,

$$
f(x)=\sum_{m \in S} \chi(x \cdot m) \widehat{f}(m) \quad \forall x \in E
$$

An elementary proof of the (finite) Uncertainty Principle

- Suppose that $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ supported in E, with \widehat{f} supported in S.
- By Fourier Inversion,

$$
f(x)=\sum_{m \in S} \chi(x \cdot m) \widehat{f}(m) \quad \forall x \in E
$$

- By Cauchy-Schwarz, Plancherel, and the fact that f is supported on E,

$$
\begin{gathered}
|f(x)|^{2} \leq|S| \cdot \sum_{m \in S}|\widehat{f}(m)|^{2} \\
=|S| \cdot \sum_{m \in \mathbb{Z}_{N}^{d}}|\widehat{f}(m)|^{2}=|S| \cdot N^{-d} \cdot \sum_{x \in E}|f(x)|^{2}
\end{gathered}
$$

Conclusion of the proof of FUP

- Summing both sides over E and dividing by $\sum_{x \in E}|f(x)|^{2}$, we get

$$
|E| \cdot|S| \geq N^{d}, \quad \text { (the classical Uncertainty Principle). }
$$

Conclusion of the proof of FUP

- Summing both sides over E and dividing by $\sum_{x \in E}|f(x)|^{2}$, we get

$$
|E| \cdot|S| \geq N^{d}, \quad \text { (the classical Uncertainty Principle). }
$$

- An immediate question that arises is whether this inequality can be improved.

Conclusion of the proof of FUP

- Summing both sides over E and dividing by $\sum_{x \in E}|f(x)|^{2}$, we get

$$
|E| \cdot|S| \geq N^{d}, \quad \text { (the classical Uncertainty Principle). }
$$

- An immediate question that arises is whether this inequality can be improved.
- In general, we cannot do better, but in most cases we can. This, in essence, is the main thrust of this talk.

Conclusion of the proof of FUP

- Summing both sides over E and dividing by $\sum_{x \in E}|f(x)|^{2}$, we get

$$
|E| \cdot|S| \geq N^{d}, \quad \text { (the classical Uncertainty Principle). }
$$

- An immediate question that arises is whether this inequality can be improved.
- In general, we cannot do better, but in most cases we can. This, in essence, is the main thrust of this talk.
- Some stronger uncertainty principles that depend on the arithmetic properties of N have been obtained by Tao and Meshulam. We shall briefly discuss those in a moment.

FUP is, in general, sharp

- Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_{N}^{d}, $1 \leq k \leq d-1$.

FUP is, in general, sharp

- Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_{N}^{d}, $1 \leq k \leq d-1$.
- Then

$$
\widehat{S}(m)=N^{-(d-k)} S^{\perp}(m)
$$

FUP is, in general, sharp

- Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_{N}^{d}, $1 \leq k \leq d-1$.
- Then

$$
\widehat{S}(m)=N^{-(d-k)} S^{\perp}(m)
$$

- Since $|S| \cdot\left|S^{\perp}\right|=N^{d}$, the FUP is sharp.

FUP is, in general, sharp

- Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_{N}^{d}, $1 \leq k \leq d-1$.
- Then

$$
\widehat{S}(m)=N^{-(d-k)} S^{\perp}(m)
$$

- Since $|S| \cdot\left|S^{\perp}\right|=N^{d}$, the FUP is sharp.
- However, there are very few situations of this type, and it is possible to classify them, though we will not do it here.

FUP is, in general, sharp

- Let N be an odd prime, and let S be a k-dimensional subspace of \mathbb{Z}_{N}^{d}, $1 \leq k \leq d-1$.
- Then

$$
\widehat{S}(m)=N^{-(d-k)} S^{\perp}(m)
$$

- Since $|S| \cdot\left|S^{\perp}\right|=N^{d}$, the FUP is sharp.
- However, there are very few situations of this type, and it is possible to classify them, though we will not do it here.
- We will see that in most cases, we can do much better, and the key mechanism we are going to utilize is restriction theory.

Restriction theory enters the picture

- We say that $S \subset \mathbb{Z}_{N}^{d}$ satisfies the (p, q) restriction estimate $(1 \leq p \leq q)$ with uniform constant $C_{p, q}>0$ if for any function $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$,

$$
\left(\frac{1}{|S|} \sum_{m \in S}|\widehat{f}(m)|^{q}\right)^{\frac{1}{q}} \leq C_{p, q} N^{-d}\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

Restriction theory enters the picture

- We say that $S \subset \mathbb{Z}_{N}^{d}$ satisfies the (p, q) restriction estimate ($1 \leq p \leq q$) with uniform constant $C_{p, q}>0$ if for any function $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$,

$$
\left(\frac{1}{|S|} \sum_{m \in S}|\widehat{f}(m)|^{q}\right)^{\frac{1}{q}} \leq C_{p, q} N^{-d}\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

Theorem (Uncertainty Principle via Restriction Theory - A.I. \& A.Mayeli, 2023)

Suppose that $f, \widehat{f}: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$, with f supported in $E \subset \mathbb{Z}_{N}^{d}$, and \widehat{f} supported in $S \subset \mathbb{Z}_{N}^{d}$. Suppose S satisfies the (p, q) restriction estimate with norm $C_{p, q}$. Then

$$
|E|^{\frac{1}{p}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}}
$$

A stronger (usually) restriction mechanism

Theorem (Uncertainty Principle via Restriction Theory - A.I. \& A.Mayeli, 2024)

Suppose that $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ is supported in $E \subset \mathbb{Z}_{N}^{d}$, and $\hat{f}: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ is supported in $S \subset \mathbb{Z}_{N}^{d}$. Suppose S satisfies the (p, q) restriction estimate with norm $C_{p, q}, 1 \leq p \leq q, p \leq 2$.
i) If $q \geq 2$, then

$$
|E|^{\frac{2-p}{p}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}^{2}}
$$

ii) If $1<q<2$, then

$$
|E|^{\frac{\left(q^{\prime}-p\right) q}{q^{\prime} p}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}^{q}}
$$

From Restriction to Exact Recovery

Corollary

Let $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ with support supp $(f)=E$. Let r be another signal with support of the same size such that $\widehat{r}(m)=\widehat{f}(m)$ for $m \notin S$, and 0 otherwise. Suppose $S \subset \mathbb{Z}_{N}^{d}$ satisfies the $(p, q), p<2$, restriction estimate with uniform constant $C_{p, q}$. Then f can be reconstructed from r uniquely if

$$
|E|^{\frac{1}{p}} \cdot|S|<\frac{N^{d}}{2^{\frac{1}{p}} C_{p, q}},
$$

or if

$$
|E|^{\frac{2-p}{p}} \cdot|S|<\frac{N^{d}}{2^{\frac{2-p}{p}} C_{p, q}^{2}} \text { when } q \geq 2
$$

and

$$
|E|^{\frac{\left(q^{\prime}-p\right) q}{q^{\prime} p}} \cdot|S|<\frac{N^{d}}{2^{\frac{\left(q^{\prime}-p\right) q}{q^{\prime} p}} C_{p, q}^{q}} \text { when } q \leq 2 .
$$

From additive energy to restriction

Theorem (A.I. \& A. Mayeli, 2023)

Let $S \subset \mathbb{Z}_{N}^{d}$ with the property that

$$
|S|=\Lambda_{\text {size }} N^{\frac{d}{2}}
$$

and

$$
\left|\left\{\left(x, y, x^{\prime}, y^{\prime}\right) \in U: x+y=x^{\prime}+y^{\prime}\right\}\right| \leq \Lambda_{\text {energy }} \cdot|U|^{2}
$$

for every $U \subset S$.
Then S satisfies $\left(\frac{4}{3}, 2\right)$ restriction with $C_{p, q}=\Lambda_{\text {size }}^{-\frac{1}{2}} \cdot \Lambda_{\text {energy }}^{\frac{1}{4}}$, i.e

$$
\left(\frac{1}{|S|} \sum_{m \in S}|\widehat{f}(m)|^{2}\right)^{\frac{1}{2}} \leq \Lambda_{\text {size }}^{-\frac{1}{2}} \cdot \Lambda_{\text {energy }}^{\frac{1}{4}} \cdot N^{-d}\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}}
$$

Bourgain's Λ_{q} theorem - general formulation

- Jean Bourgain proved that if G is a locally compact abelian group, $\phi_{1}, \ldots, \phi_{n}$ are orthogonal functions with $\left\|\phi_{j}\right\|_{\infty} \leq 1$, the for a generic set $S \subset\{1,2, \ldots, n\}$ of size $\approx n^{\frac{2}{q}}, q>2$,

$$
\left\|\sum_{i \in S} a_{i} \phi_{i}\right\|_{L^{q}(G)} \leq C(q) \cdot\left(\sum_{i \in S}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

where $C(q)$ depends only on q.

Bourgain's Λ_{q} theorem - general formulation

- Jean Bourgain proved that if G is a locally compact abelian group, $\phi_{1}, \ldots, \phi_{n}$ are orthogonal functions with $\left\|\phi_{j}\right\|_{\infty} \leq 1$, the for a generic set $S \subset\{1,2, \ldots, n\}$ of size $\approx n^{\frac{2}{q}}, q>2$,

$$
\left\|\sum_{i \in S} a_{i} \phi_{i}\right\|_{L^{q}(G)} \leq C(q) \cdot\left(\sum_{i \in S}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

where $C(q)$ depends only on q.

- As we shall see, this result has a beautiful built-in uncertainty principle.

Bourgain's Λ_{q} theorem

- It is a consequence of Bourgain's celebrated Λ_{p} theorem in locally compact abelian groups that if $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ and \widehat{f} is supported in S, then for a "generic" set of size $\approx N^{\frac{2 d}{q}}, 2<q<\infty$,

$$
\left(\frac{1}{N^{d}} \sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{q}\right)^{\frac{1}{q}} \leq K_{q}(S)\left(\frac{1}{N^{d}} \sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{2}\right)^{\frac{1}{2}},
$$

with $K_{q}(S)$ independent of N.

Bourgain's Λ_{q} theorem

- It is a consequence of Bourgain's celebrated Λ_{p} theorem in locally compact abelian groups that if $f: \mathbb{Z}_{N}^{d} \rightarrow \mathbb{C}$ and \widehat{f} is supported in S, then for a "generic" set of size $\approx N^{\frac{2 d}{q}}, 2<q<\infty$,

$$
\left(\frac{1}{N^{d}} \sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{q}\right)^{\frac{1}{q}} \leq K_{q}(S)\left(\frac{1}{N^{d}} \sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{2}\right)^{\frac{1}{2}}
$$

with $K_{q}(S)$ independent of N.

- For such a set S it follows by duality that

$$
\left(\frac{1}{|S|} \sum_{m \in S}|\widehat{f}(m)|^{2}\right)^{\frac{1}{2}} \leq C_{p, 2} N^{-d}\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{p}\right)^{\frac{1}{p}}, \text { with } p=q^{\prime}
$$

A direct consequence of Bourgain's Λ_{q} theorem

- Suppose that S is generic, as in Bourgain's theorem.

A direct consequence of Bourgain's Λ_{q} theorem

- Suppose that S is generic, as in Bourgain's theorem.
- Suppose that f is supported in $E \subset \mathbb{Z}_{N}^{d}$ and \widehat{f} is supported in S. Bourgain's theorem implies that

A direct consequence of Bourgain's Λ_{q} theorem

- Suppose that S is generic, as in Bourgain's theorem.
- Suppose that f is supported in $E \subset \mathbb{Z}_{N}^{d}$ and \widehat{f} is supported in S. Bourgain's theorem implies that

$$
\begin{gathered}
N^{-\frac{d}{q}} \cdot|E|^{\frac{1}{q}}\left(\frac{1}{|E|} \sum_{x \in E}|f(x)|^{q}\right)^{\frac{1}{q}} \\
\leq K_{q}(S) N^{-\frac{d}{2}} \cdot|E|^{\frac{1}{2}}\left(\frac{1}{|E|} \sum_{x \in E}|f(x)|^{2}\right)^{\frac{1}{2}} .
\end{gathered}
$$

A direct consequence of Bourgain's Λ_{q} theorem

- It follows that

$$
|E| \geq \frac{N^{d}}{\left(K_{q}(S)\right)^{\frac{1}{2}-\frac{1}{q}}} .
$$

A direct consequence of Bourgain's Λ_{q} theorem

- It follows that

$$
|E| \geq \frac{N^{d}}{\left(K_{q}(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}
$$

- This shows that Bourgain's Λ_{q} theorem implies that if \widehat{f} is supported in a generic set of size $\approx N^{d-\epsilon}$, for some $\epsilon>0$, then f is supported on a positive proportion of \mathbb{Z}_{N}^{d}.

A direct consequence of Bourgain's Λ_{q} theorem

- It follows that

$$
|E| \geq \frac{N^{d}}{\left(K_{q}(S)\right)^{\frac{1}{\frac{1}{2}-\frac{1}{q}}}}
$$

- This shows that Bourgain's Λ_{q} theorem implies that if \widehat{f} is supported in a generic set of size $\approx N^{d-\epsilon}$, for some $\epsilon>0$, then f is supported on a positive proportion of \mathbb{Z}_{N}^{d}.
- Consequently, if we send a signal f supported on a set of size $o\left(N^{d}\right)$ via its Fourier transform, and the frequencies in a generic $S \subset \mathbb{Z}_{N}^{d}$ are missing, we can recover f exactly with very high probability.

Arithmetic matters

- In 2006, Terry Tao proved that if $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}, p$ prime, f is supported in E and \widehat{f} is supported in S, then

$$
|E|+|S| \geq p+1
$$

Arithmetic matters

- In 2006, Terry Tao proved that if $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}, p$ prime, f is supported in E and \widehat{f} is supported in S, then

$$
|E|+|S| \geq p+1
$$

- The key element of the proof is a classical theorem due to Cebotarev which says that if $A, B \subset \mathbb{Z}_{p},|A|=|B|$, then

$$
\operatorname{det}\{\chi(x m)\}_{x \in A, m \in B} \neq 0, \text { where } \chi(t)=e^{\frac{2 \pi i t}{p}}
$$

Arithmetic matters

- In 2006, Terry Tao proved that if $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}, p$ prime, f is supported in E and \widehat{f} is supported in S, then

$$
|E|+|S| \geq p+1
$$

- The key element of the proof is a classical theorem due to Cebotarev which says that if $A, B \subset \mathbb{Z}_{p},|A|=|B|$, then

$$
\operatorname{det}\{\chi(x m)\}_{x \in A, m \in B} \neq 0, \text { where } \chi(t)=e^{\frac{2 \pi i t}{p}}
$$

- Roy Meshulam used Tao's result and a beautiful iteration argument show that if $f: \mathbb{Z}_{p}^{d} \rightarrow \mathbb{C}$ is supported in E and \widehat{f} is supported in S, then for $0 \leq j \leq d-1$,

$$
p^{j}|E|+p^{d-j-1}|S| \geq p^{d}+p^{d-1}
$$

More arithmetic

Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that $f: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{Q}$, p odd prime. Suppose that $\widehat{f}(m)=0$ for some $m \neq(0,0)$.
Then $\widehat{f}(r m)=0$ for all $r \neq 0$. Moreover, if $f(x)=E(x)$, the indicator function of $E \subset \mathbb{Z}_{p}^{2}$, and $\widehat{E}(m)=0$ for some $m \neq(0,0)$, then E is equidistributed on the p lines orthogonal to m.

More arithmetic

Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that $f: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{Q}$, p odd prime. Suppose that $\widehat{f}(m)=0$ for some $m \neq(0,0)$.
Then $\widehat{f}(r m)=0$ for all $r \neq 0$. Moreover, if $f(x)=E(x)$, the indicator function of $E \subset \mathbb{Z}_{p}^{2}$, and $\widehat{E}(m)=0$ for some $m \neq(0,0)$, then E is equidistributed on the p lines orthogonal to m.

- Suppose that $\widehat{E}(m)=0$, as above, with $m \neq(0,0)$ and let $r \neq 0$. We have

$$
\widehat{E}(r m)=p^{-2} \sum_{t} \zeta^{\frac{t}{r}} n(t / r)=p^{-2} \sum_{t} \zeta^{t} n(t)=0 .
$$

More arithmetic

Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that $f: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{Q}$, p odd prime. Suppose that $\widehat{f}(m)=0$ for some $m \neq(0,0)$.
Then $\widehat{f}(r m)=0$ for all $r \neq 0$. Moreover, if $f(x)=E(x)$, the indicator function of $E \subset \mathbb{Z}_{p}^{2}$, and $\widehat{E}(m)=0$ for some $m \neq(0,0)$, then E is equidistributed on the p lines orthogonal to m.

- Suppose that $\widehat{E}(m)=0$, as above, with $m \neq(0,0)$ and let $r \neq 0$. We have

$$
\widehat{E}(r m)=p^{-2} \sum_{t} \zeta^{\frac{t}{r}} n(t / r)=p^{-2} \sum_{t} \zeta^{t} n(t)=0 .
$$

- It follows that if $m \neq(0,0)$ is a zero of \widehat{E}, then so is every non-zero multiple of m.

Magic Lemma demystified

- Observe that

$$
0=\sum_{t} \zeta^{t} n(t)=n(0)+n(1) \zeta+n(2) \zeta^{2}+\cdots+n(p-1) \zeta^{p-1}
$$

says that ζ satisfies the polynomial of degree $p-1$ with coefficients given by $\{n(t)\}$.

Magic Lemma demystified

- Observe that

$$
0=\sum_{t} \zeta^{t} n(t)=n(0)+n(1) \zeta+n(2) \zeta^{2}+\cdots+n(p-1) \zeta^{p-1}
$$

says that ζ satisfies the polynomial of degree $p-1$ with coefficients given by $\{n(t)\}$.

- The minimal polynomial of ζ is

$$
1+\zeta+\zeta^{2}+\cdots+\zeta^{p-1}
$$

Magic Lemma demystified

- Observe that

$$
0=\sum_{t} \zeta^{t} n(t)=n(0)+n(1) \zeta+n(2) \zeta^{2}+\cdots+n(p-1) \zeta^{p-1}
$$

says that ζ satisfies the polynomial of degree $p-1$ with coefficients given by $\{n(t)\}$.

- The minimal polynomial of ζ is

$$
1+\zeta+\zeta^{2}+\cdots+\zeta^{p-1}
$$

- We conclude that $n(t)=$ constant, so E has the same number of points on lines $\perp \mathrm{m}$. In particular, $|E|$ is a multiple of p.

FUP consequence of the Magic Lemma

- It is not difficult to see that if $f: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{Q}$ and \widehat{f} vanishes on a random set S with $|S|=o\left(p^{2}\right)$, then with high probability, f is supported on all of \mathbb{Z}_{p}^{2}.

FUP consequence of the Magic Lemma

- It is not difficult to see that if $f: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{Q}$ and \widehat{f} vanishes on a random set S with $|S|=o\left(p^{2}\right)$, then with high probability, f is supported on all of \mathbb{Z}_{p}^{2}.
- The point is that it is highly unlikely that a randomly chosen set S of size $o\left(p^{2}\right)$ contains a full line through the origin with the origin removed.

Summary of connections

Proof of Energy \rightarrow Restriction

- We have

$$
\begin{gathered}
\sum_{m \in S}|\widehat{f}(m)|^{2}=\sum_{m}|\widehat{f}(m)|^{2} S(m) \\
=\sum_{m} \widehat{f}(m) S(m) g(m)
\end{gathered}
$$

where

$$
g(m)=\overline{\hat{f}(m)} S(m)
$$

By definition of the Fourier transform, the right-hand side is equal to

$$
\begin{gathered}
N^{-d} \sum_{m} \sum_{x} \chi(-x \cdot m) f(x) S(m) g(m) \\
=\sum_{x} f(x) \widehat{g S}(x)
\end{gathered}
$$

Proof of Additive Energy \rightarrow Restriction (continued)

- By Holder's inequality, the quantity above is bounded by

$$
\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}} \cdot\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|\widehat{g S}(x)|^{4}\right)^{\frac{1}{4}} .
$$

Proof of Additive Energy \rightarrow Restriction (continued)

- By Holder's inequality, the quantity above is bounded by

$$
\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}} \cdot\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|\widehat{g S}(x)|^{4}\right)^{\frac{1}{4}}
$$

- Continuing, we have

$$
\begin{gathered}
\sum_{x \in \mathbb{Z}_{N}^{d}}|\widehat{g S}(x)|^{4} \\
=N^{-4 d} \sum_{x} \sum_{m_{1}, m_{2}, m_{3}, m_{4} \in S} \chi\left(x \cdot\left(m_{1}+m_{2}-m_{3}-m_{4}\right)\right) \prod_{i=1}^{4} g\left(m_{i}\right) \\
=N^{-3 d} \sum_{m_{1}+m_{2}=m_{3}+m_{4} ; m_{j} \in S} g\left(m_{1}\right) g\left(m_{2}\right) g\left(m_{3}\right) g\left(m_{4}\right) .
\end{gathered}
$$

Proof of Energy \rightarrow Restriction (continued)

- The modulus of this expression is bounded by

$$
\Lambda_{\text {energy }} \cdot N^{-3 d} \cdot\left(\sum_{m}|g(m)|^{2}\right)^{2}
$$

where we have used Cauchy-Schwartz and the energy assumption.

Proof of Energy \rightarrow Restriction (continued)

- The modulus of this expression is bounded by

$$
\Lambda_{\text {energy }} \cdot N^{-3 d} \cdot\left(\sum_{m}|g(m)|^{2}\right)^{2}
$$

where we have used Cauchy-Schwartz and the energy assumption.

- Going back, we see that the expression is bounded by

$$
\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}} \cdot \Lambda_{\text {energy }}^{\frac{1}{4}} \cdot N^{-\frac{3 d}{4}} \cdot\left(\sum_{m}|g(m)|^{2}\right)^{\frac{1}{2}}
$$

Proof of Energy \rightarrow Restriction (continued)

- If we go back and unravel the definitions, we see that

Proof of Energy \rightarrow Restriction (continued)

- If we go back and unravel the definitions, we see that

$$
\sum_{m}|g(m)|^{2} \leq\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}} \cdot \Lambda_{\text {energy }}^{\frac{1}{4}} \cdot N^{-\frac{3 d}{4}} \cdot\left(\sum_{m}|g(m)|^{2}\right)^{\frac{1}{2}}
$$

- hence

$$
\left(\frac{1}{|S|} \sum_{m \in S}|\widehat{f}(m)|^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}} \cdot \frac{1}{|S|^{\frac{1}{2}}} \cdot \Lambda_{e n e r g y}^{\frac{1}{4}} \cdot N^{-\frac{3 d}{4}}
$$

Proof of Energy \rightarrow Restriction (finale)

- This expression equals

$$
\begin{aligned}
& \Lambda_{\text {energy }}^{\frac{1}{4}} \cdot N^{-d} \cdot\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}} \cdot \frac{N^{\frac{d}{4}}}{|S|^{\frac{1}{2}}} \\
= & \Lambda_{\text {size }}^{-\frac{1}{2}} \cdot \Lambda_{e n e r g y}^{\frac{1}{4}} \cdot N^{-d} \cdot\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{\frac{4}{3}}\right)^{\frac{3}{4}},
\end{aligned}
$$

as claimed.

Proof of Uncertainty Principle via Restriction I

- Suppose that f is supported in a set E, and \widehat{f} is supported in a set S. Then by the Fourier Inversion Formula and the support condition,

$$
f(x)=\sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{f}(m)=\sum_{m \in S} \chi(x \cdot m) \widehat{f}(m)
$$

Proof of Uncertainty Principle via Restriction I

- Suppose that f is supported in a set E, and \widehat{f} is supported in a set S. Then by the Fourier Inversion Formula and the support condition,

$$
f(x)=\sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{f}(m)=\sum_{m \in S} \chi(x \cdot m) \widehat{f}(m)
$$

- By Holder's inequality,

$$
|f(x)| \leq|S| \cdot\left(\frac{1}{|S|} \sum_{m \in S}|\widehat{f}(m)|^{q}\right)^{\frac{1}{q}}
$$

Proof of Uncertainty Principle via Restriction I

- Suppose that f is supported in a set E, and \widehat{f} is supported in a set S. Then by the Fourier Inversion Formula and the support condition,

$$
f(x)=\sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{f}(m)=\sum_{m \in S} \chi(x \cdot m) \widehat{f}(m)
$$

- By Holder's inequality,

$$
|f(x)| \leq|S| \cdot\left(\frac{1}{|S|} \sum_{m \in S}|\widehat{f}(m)|^{q}\right)^{\frac{1}{q}}
$$

- By the restriction bound assumption, this expression is bounded by

$$
|S| \cdot C_{p, q} \cdot N^{-d} \cdot\left(\sum_{x \in \mathbb{Z}_{N}^{d}}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

Proof of Uncertainty Principle via Restriction I (continued)

- and by the support assumption, this quantity is equal to

$$
|S| \cdot C_{p, q} \cdot N^{-d} \cdot\left(\sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

Proof of Uncertainty Principle via Restriction I (continued)

- and by the support assumption, this quantity is equal to

$$
|S| \cdot C_{p, q} \cdot N^{-d} \cdot\left(\sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

- Putting everything together, we see that

$$
|f(x)| \leq|S| \cdot C_{p, q} \cdot N^{-d} \cdot\left(\sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

Proof of Uncertainty Principle via Restriction I (continued)

- and by the support assumption, this quantity is equal to

$$
|S| \cdot C_{p, q} \cdot N^{-d} \cdot\left(\sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

- Putting everything together, we see that

$$
|f(x)| \leq|S| \cdot C_{p, q} \cdot N^{-d} \cdot\left(\sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

- Raising both sides to the power of p, summing over E, and dividing both sides of the resulting inequality by $\sum_{x \in E}|f(x)|^{p}$, we obtain

$$
|S|^{p} \cdot|E| \cdot C_{p, q}^{p} \geq N^{d p} .
$$

Proof of Uncertainty Principle via Restriction I (finale)

- or, equivalently,

$$
|E|^{\frac{1}{p}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}}
$$

as desired.

Proof of Uncertainty Principle via Restriction I (finale)

- or, equivalently,

$$
|E|^{\frac{1}{p}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}}
$$

as desired.

- This completes the proof of the Uncertainty Principle via Restriction Theory.

Proof of Uncertainty Principle via Restriction II (definitions)

- Define

$$
\|f\|_{L^{p}(E)}=\left(\sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}},\|f\|_{L^{p}\left(\mu_{E}\right)}=\left(\frac{1}{|E|} \sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}} .
$$

Proof of Uncertainty Principle via Restriction II (definitions)

- Define

$$
\|f\|_{L^{p}(E)}=\left(\sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}},\|f\|_{L^{p}\left(\mu_{E}\right)}=\left(\frac{1}{|E|} \sum_{x \in E}|f(x)|^{p}\right)^{\frac{1}{p}}
$$

- Similarly define

$$
\|f\|_{L^{p}(S)}=\left(\sum_{x \in S}|f(x)|^{p}\right)^{\frac{1}{p}},\|f\|_{L^{p}\left(\mu_{S}\right)}=\left(\frac{1}{|S|} \sum_{x \in S}|f(x)|^{p}\right)^{\frac{1}{p}} .
$$

Proof of Uncertainty Principle via Restriction II: $q \geq 2$

- The restriction estimate takes the form

$$
\|\widehat{f}\|_{L^{q}\left(\mu_{S}\right)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)} .
$$

Proof of Uncertainty Principle via Restriction II: $q \geq 2$

- The restriction estimate takes the form

$$
\|\widehat{f}\|_{L^{q}\left(\mu_{S}\right)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)} .
$$

- Since $q>2$,

$$
\|\widehat{f}\|_{L^{2}\left(\mu_{S}\right)} \leq\|\widehat{f}\|_{L^{q}\left(\mu_{S}\right)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)}
$$

Proof of Uncertainty Principle via Restriction II: $q \geq 2$

- The restriction estimate takes the form

$$
\|\widehat{f}\|_{L^{q}\left(\mu_{S}\right)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)}
$$

- Since $q>2$,

$$
\|\widehat{f}\|_{L^{2}\left(\mu_{S}\right)} \leq\|\widehat{f}\|_{L^{q}\left(\mu_{S}\right)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)}
$$

- Since \widehat{f} is supported in S, and f is supported on E, Plancherel implies that

$$
\|\widehat{f}\|_{L^{2}\left(\mu_{S}\right)}=|S|^{-\frac{1}{2}} \cdot N^{-\frac{d}{2}}\|f\|_{L^{2}(E)}
$$

Proof of Uncertainty Principle via Restriction II: $q \geq 2$ (continued)

- Plugging this back into the restriction estimate, we see that

$$
\begin{gathered}
|S|^{-\frac{1}{2}} \cdot N^{-\frac{d}{2}}\|f\|_{L^{2}(E)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)} \\
\leq C_{p, q} N^{-d}|E|^{\frac{1}{p}-\frac{1}{2}}\|f\|_{L^{2}(E)} .
\end{gathered}
$$

Proof of Uncertainty Principle via Restriction II: $q \geq 2$ (continued)

- Plugging this back into the restriction estimate, we see that

$$
\begin{gathered}
|S|^{-\frac{1}{2}} \cdot N^{-\frac{d}{2}}\|f\|_{L^{2}(E)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)} \\
\leq C_{p, q} N^{-d}|E|^{\frac{1}{p}-\frac{1}{2}}\|f\|_{L^{2}(E)}
\end{gathered}
$$

- Combining everything yields

$$
|E|^{\frac{2-p}{p}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}^{2}}
$$

as claimed.

Proof of Uncertainty Principle via Restriction II: $q \leq 2$

- To handle the case $q<2$, we shall need Hausdorff-Young. If $1 \leq p \leq 2$,

$$
\|\widehat{g}\|_{L^{p^{\prime}}\left(\mathbb{Z}_{N}^{d}\right)} \leq N^{-\frac{d}{p^{\prime}}}\|g\|_{L^{p}\left(\mathbb{Z}_{N}^{d}\right)}
$$

Proof of Uncertainty Principle via Restriction II: $q \leq 2$

- To handle the case $q<2$, we shall need Hausdorff-Young. If $1 \leq p \leq 2$,

$$
\|\widehat{g}\|_{L^{p^{\prime}}\left(\mathbb{Z}_{N}^{d}\right)} \leq N^{-\frac{d}{p^{\prime}}}\|g\|_{L^{p}\left(\mathbb{Z}_{N}^{d}\right)}
$$

- The Hausdorff-Young implies that the left hand side of the restriction inequality is bounded from below by (with $\widehat{f}=g$)

$$
|S|^{-\frac{1}{q}} N^{\frac{d}{q}}\|\widehat{g}\|_{L^{p^{\prime}}\left(\mathbb{Z}_{N}^{d}\right)}=|S|^{-\frac{1}{q}} N^{-\frac{d}{q^{\prime}}}\|f\|_{L^{q^{\prime}}(E)}
$$

Combining this with the restriction theorem bound, we get

$$
\begin{gathered}
|S|^{-\frac{1}{q}} N^{-\frac{d}{q^{\prime}}}\|f\|_{L^{\prime}(E)} \leq C_{p, q} N^{-d}\|f\|_{L^{p}(E)} \\
\leq C_{p, q} N^{-d} \cdot|E|^{\frac{1}{p}-\frac{1}{q^{\prime}}}\|f\|_{L^{\prime}(E)} .
\end{gathered}
$$

Proof of Uncertainty Principle via Restriction II: $q \leq 2$ (Finale)

- Cancelling the $L^{q^{\prime}}$ norms, putting everything together and rearranging yields

$$
|E|^{\frac{q\left(q^{\prime}-p\right)}{p q^{\prime}}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}^{q}}
$$

Proof of Uncertainty Principle via Restriction II: $q \leq 2$ (Finale)

- Cancelling the $L^{q^{\prime}}$ norms, putting everything together and rearranging yields

$$
|E|^{\frac{q\left(q^{\prime}-p\right)}{p q^{\prime}}} \cdot|S| \geq \frac{N^{d}}{C_{p, q}^{q}}
$$

- An algebraic calculation shows that

$$
\frac{q\left(q^{\prime}-p\right)}{p q^{\prime}}<\frac{1}{p}
$$

we gain over the first restriction theory mechanism we described provided that $C_{p, q}$ is not too large.

