Harmonic Analysis and the Self-Improving Property of the Oscillation of a Function

Carlos Pérez

University of the Basque Country & BCAM

Harmonic Analytic Connections

Creswick, Victoria, 29 of May, 2024

Australia

• More recent results with:

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

Alejandro Claros

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

Alejandro Claros

Ritva Hurri-Syrjänen, Javier Martinez and Annti Vähäkangas

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

Alejandro Claros

Ritva Hurri-Syrjänen, Javier Martinez and Annti Vähäkangas J. Canto

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

Alejandro Claros

Ritva Hurri-Syrjänen, Javier Martinez and Annti Vähäkangas J. Canto E. Rela

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

Alejandro Claros

Ritva Hurri-Syrjänen, Javier Martinez and Annti Vähäkangas J. Canto E. Rela

Old collaborations,

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

Alejandro Claros

Ritva Hurri-Syrjänen, Javier Martinez and Annti Vähäkangas J. Canto E. Rela

Old collaborations,

Bruno Franchi and Richard Wheeden

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and

Alejandro Claros

Ritva Hurri-Syrjänen, Javier Martinez and Annti Vähäkangas J. Canto E. Rela

Old collaborations,

Bruno Franchi and Richard Wheeden

Paul McManus

• Quick review of some classical results: Classical global and local estimates

- Quick review of some classical results: Classical global and local estimates
- (rough) Fractional versions

- Quick review of some classical results: Classical global and local estimates
- (rough) Fractional versions
- A generalized framework: Three discrete conditions

- Quick review of some classical results: Classical global and local estimates
- (rough) Fractional versions
- A generalized framework: Three discrete conditions
- Fractional Poincaré-Sobolev inequalties with the BBM phenomenon:

- Quick review of some classical results: Classical global and local estimates
- (rough) Fractional versions
- A generalized framework: Three discrete conditions
- Fractional Poincaré-Sobolev inequalties with the BBM phenomenon:

- Quick review of some classical results: Classical global and local estimates
- (rough) Fractional versions
- A generalized framework: Three discrete conditions
- Fractional Poincaré-Sobolev inequalties with the BBM phenomenon:
- Fractional versions of the Isoperimetric inequalities with the BBM phenomenon

- Quick review of some classical results: Classical global and local estimates
- (rough) Fractional versions
- A generalized framework: Three discrete conditions
- Fractional Poincaré-Sobolev inequalties with the BBM phenomenon:
- Fractional versions of the Isoperimetric inequalities with the BBM phenomenon

improving the classical estimate of **Meyers-Ziemer theorem**

The classical Sobolev inequality in \mathbb{R}^n for $n \ge 2$ is given by

The classical Sobolev inequality in \mathbb{R}^n for $n\geq 2$ is given by

$$\left\|f\right\|_{L^{p^*}(\mathbb{R}^n)} \le c \left\|\nabla f\right\|_{L^p(\mathbb{R}^n)} \qquad 1$$

The classical Sobolev inequality in \mathbb{R}^n for $n\geq 2$ is given by

where
$$p^* = \frac{pn}{n-p}$$
 or $\frac{1}{p} - \frac{1}{p^*} = \frac{1}{n}$

The classical Sobolev inequality in \mathbb{R}^n for $n \ge 2$ is given by

$$\left\|f\right\|_{L^{p^*}(\mathbb{R}^n)} \le c \left\|\nabla f\right\|_{L^p(\mathbb{R}^n)} \qquad 1$$

where
$$p^* = \frac{pn}{n-p}$$
 or $\frac{1}{p} - \frac{1}{p^*} = \frac{1}{n}$

Usual approach, via the sub-representation formula:

The classical Sobolev inequality in \mathbb{R}^n for $n\geq 2$ is given by

$$\left\|f\right\|_{L^{p^*}(\mathbb{R}^n)} \le c \left\|\nabla f\right\|_{L^p(\mathbb{R}^n)} \qquad 1$$

where
$$p^* = \frac{pn}{n-p}$$
 or $\frac{1}{p} - \frac{1}{p^*} = \frac{1}{n}$

Usual approach, via the sub-representation formula:

 $|f(x)| \le c_n I_1(|\nabla f|)(x)$

The classical Sobolev inequality in \mathbb{R}^n for $n\geq 2$ is given by

$$\left\|f\right\|_{L^{p^*}(\mathbb{R}^n)} \le c \left\|\nabla f\right\|_{L^p(\mathbb{R}^n)} \qquad 1$$

where
$$p^* = \frac{pn}{n-p}$$
 or $\frac{1}{p} - \frac{1}{p^*} = \frac{1}{n}$

Usual approach, via the sub-representation formula:

 $|f(x)| \le c_n I_1(|\nabla f|)(x)$

combined with the classical boundedness,

 $I_1: L^p(\mathbb{R}^n) \to L^{p^*}(\mathbb{R}^n)$

The classical Sobolev inequality in \mathbb{R}^n for $n\geq 2$ is given by

$$\left\|f\right\|_{L^{p^*}(\mathbb{R}^n)} \le c \left\|\nabla f\right\|_{L^p(\mathbb{R}^n)} \qquad 1$$

where
$$p^* = \frac{pn}{n-p}$$
 or $\frac{1}{p} - \frac{1}{p^*} = \frac{1}{n}$

Usual approach, via the sub-representation formula:

 $|f(x)| \le c_n I_1(|\nabla f|)(x)$

combined with the classical boundedness,

 $I_1: L^p(\mathbb{R}^n) \to L^{p^*}(\mathbb{R}^n)$

$$I_{\alpha}(\mu)(x) := \int_{\mathbb{R}^n} \frac{d\mu(y)}{|x - y|^{n - \alpha}}, \quad 0 < \alpha < n$$

At the endpoint p = 1

At the endpoint
$$p = 1$$
 $1^* = \frac{n}{n-1} = n'$

At the endpoint
$$p = 1$$
 $1^* = \frac{n}{n-1} = n'$

• However we **cannot** use the pointwise estimate

- At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$
- However we **cannot** use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \rightarrow L^{n'}(\mathbb{R}^n)$

At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$

- However we **cannot** use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \twoheadrightarrow L^{n'}(\mathbb{R}^n)$
- I_1 only satisfies the weak endpoint boundedness

- At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$
- However we **cannot** use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \rightarrow L^{n'}(\mathbb{R}^n)$
- I_1 only satisfies the weak endpoint boundedness

 $I_1: L^1(\mathbb{R}^n) \to L^{n',\infty}(\mathbb{R}^n)$

- At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$
- However we cannot use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \twoheadrightarrow L^{n'}(\mathbb{R}^n)$
- I_1 only satisfies the weak endpoint boundedness

 $I_1: L^1(\mathbb{R}^n) \to L^{n',\infty}(\mathbb{R}^n)$

yet the Sobolev (strong) inequality still holds in this case,
- At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$
- However we cannot use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \twoheadrightarrow L^{n'}(\mathbb{R}^n)$
- I_1 only satisfies the weak endpoint boundedness

 $I_1: L^1(\mathbb{R}^n) \to L^{n',\infty}(\mathbb{R}^n)$

yet the Sobolev (strong) inequality still holds in this case, by the truncation method

- At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$
- However we cannot use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \twoheadrightarrow L^{n'}(\mathbb{R}^n)$
- I_1 only satisfies the weak endpoint boundedness

 $I_1: L^1(\mathbb{R}^n) \to L^{n',\infty}(\mathbb{R}^n)$

yet the Sobolev (strong) inequality still holds in this case, by the truncation method

 $\|f\|_{L^{n'}(\mathbb{R}^n)} \leq c_n \|\nabla f\|_{L^1(\mathbb{R}^n)}.$

- At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$
- However we **cannot** use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \twoheadrightarrow L^{n'}(\mathbb{R}^n)$
- I_1 only satisfies the weak endpoint boundedness

 $I_1: L^1(\mathbb{R}^n) \to L^{n',\infty}(\mathbb{R}^n)$

yet the Sobolev (strong) inequality still holds in this case, by the truncation method

 $\|f\|_{L^{n'}(\mathbb{R}^n)} \le c_n \|\nabla f\|_{L^1(\mathbb{R}^n)}.$

• Gagliardo proved it by using a different way

- At the endpoint p = 1 $1^* = \frac{n}{n-1} = n'$
- However we **cannot** use the pointwise estimate $I_1 : L^1(\mathbb{R}^n) \twoheadrightarrow L^{n'}(\mathbb{R}^n)$
- I_1 only satisfies the weak endpoint boundedness

 $I_1: L^1(\mathbb{R}^n) \to L^{n',\infty}(\mathbb{R}^n)$

yet the Sobolev (strong) inequality still holds in this case, by the truncation method

 $\|f\|_{L^{n'}(\mathbb{R}^n)} \le c_n \|\nabla f\|_{L^1(\mathbb{R}^n)}.$

- Gagliardo proved it by using a different way
- equivalent to the **Isoperimetric inequality**

Poincaré-Sobolev inequalities: if $1 \le p < n$,

Poincaré-Sobolev inequalities: if $1 \le p < n$,

$$\left(\frac{1}{|Q|} \int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{1/p^{*}} \le c_{n,p} \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} dx\right)^{1/p}$$

Poincaré-Sobolev inequalities: if $1 \le p < n$,

$$\left(\frac{1}{|Q|} \int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{1/p^{*}} \le c_{n,p} \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} dx\right)^{1/p}$$

or

$$\left(\int_{Q} |f - f_Q|^{p^*} dx\right)^{\frac{1}{p^*}} \le c_{n,p} \left(\int_{Q} |\nabla f|^p dx\right)^{\frac{1}{p}}$$

Poincaré-Sobolev inequalities: if $1 \le p < n$,

$$\left(\frac{1}{|Q|} \int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{1/p^{*}} \le c_{n,p} \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} dx\right)^{1/p}$$

or

$$\left(\int_{Q} |f - f_Q|^{p^*} dx\right)^{\frac{1}{p^*}} \le c_{n,p} \left(\int_{Q} |\nabla f|^p dx\right)^{\frac{1}{p}}$$

local results \implies global results

Poincaré-Sobolev inequalities: if $1 \le p < n$,

$$\left(\frac{1}{|Q|} \int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{1/p^{*}} \le c_{n,p} \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} dx\right)^{1/p}$$

or

$$\left(\int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{\frac{1}{p^{*}}} \leq c_{n,p} \left(\int_{Q} |\nabla f|^{p} dx\right)^{\frac{1}{p}}$$

local results \implies global results

• As before, the usual proof is based on the local sub-representation formula:

Poincaré-Sobolev inequalities: if $1 \le p < n$,

$$\left(\frac{1}{|Q|} \int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{1/p^{*}} \le c_{n,p} \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} dx\right)^{1/p}$$

or

$$\left(\int_{Q} |f - f_Q|^{p^*} dx\right)^{\frac{1}{p^*}} \le c_{n,p} \left(\int_{Q} |\nabla f|^p dx\right)^{\frac{1}{p}}$$

local results \implies global results

• As before, the usual proof is based on the local sub-representation formula:

$$|f(x) - f_Q| \le c_n I_1(|\nabla f|\chi_Q)(x)$$

Poincaré-Sobolev inequalities: if $1 \le p < n$,

$$\left(\frac{1}{|Q|} \int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{1/p^{*}} \le c_{n,p} \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} dx\right)^{1/p}$$

or

$$\left(\int_{Q} |f - f_{Q}|^{p^{*}} dx\right)^{\frac{1}{p^{*}}} \leq c_{n,p} \left(\int_{Q} |\nabla f|^{p} dx\right)^{\frac{1}{p}}$$

local results \implies global results

• As before, the usual proof is based on the local sub-representation formula:

$$|f(x) - f_Q| \le c_n I_1(|\nabla f|\chi_Q)(x)$$

• The point of the lecture is to avoid the use of fractional operators

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p^*_{\delta}} = \frac{\delta}{n}$$

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by

1	1	δ
\overline{p}	$-\frac{1}{p_{\delta}^*} =$	\overline{n}

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p_{\delta}^*} dx\right)^{\frac{1}{p_{\delta}^*}} \leq c_n \, p_{\delta}^* \, \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} \, dy \, dx\right)^{1/p},$$

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by

1	1	δ
\overline{p}	$-\frac{1}{p_{\delta}^*} =$	\overline{n}

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \leq c_n \, p^*_{\delta} \, \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} dy \, dx\right)^{1/p},$$

in particular we have the Isoperimetric type estimate

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by

1	1	δ
	— — —	
p	p^*_δ	n

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \leq c_n \, p^*_{\delta} \, \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} dy \, dx\right)^{1/p},$$

in particular we have the Isoperimetric type estimate

$$\left(\int_{\mathbb{R}^n} |f(x)|^{\frac{n}{n-\delta}} dx\right)^{\frac{n-\delta}{n}} \le c_n \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|}{|x - y|^{n+\delta}} dy dx$$

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by

1	1	δ
\overline{p}	$-\frac{1}{p_{\delta}^*} =$	\overline{n}

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \leq c_n \, p^*_{\delta} \, \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} dy \, dx\right)^{1/p},$$

in particular we have the Isoperimetric type estimate

$$\left(\int_{\mathbb{R}^n} |f(x)|^{\frac{n}{n-\delta}} dx\right)^{\frac{n-\delta}{n}} \le c_n \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|}{|x - y|^{n+\delta}} dy dx$$

It turns out that there is a better estimate

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by

T	L	0
	— — — =	= -
p	p_{δ}^{\star}	n
÷	- 0	

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \leq c_n \, p^*_{\delta} \, \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} dy \, dx\right)^{1/p},$$

in particular we have the Isoperimetric type estimate

$$\left(\int_{\mathbb{R}^n} |f(x)|^{\frac{n}{n-\delta}} dx\right)^{\frac{n-\delta}{n}} \le c_n \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|}{|x - y|^{n+\delta}} dy dx$$

It turns out that there is a better estimate

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \le c_n p^*_{\delta} \left(1-\delta\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x)-f(y)|^p}{|x-y|^{n+\delta p}} dy dx\right)^{1/p}$$

Let $\delta \in (0, 1), p \in [1, \frac{n}{\delta})$, and p_{δ}^* be the fractional Sobolev exponent defined by $\frac{1}{p} - \frac{1}{p_{\delta}^*} = \frac{\delta}{n}$

$\left(\int_{\mathbb{R}^n} f(x) ^{p^*_\delta} dx\right)^{rac{1}{p^*_\delta}} \leq \delta$	$c_n p^*_\delta \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} $	$\frac{ f(x) - f(y) ^p}{ x - y ^{n + \delta p}}$	$dydx \biggr)^{1/p}$

in particular we have the Isoperimetric type estimate

$$\left(\int_{\mathbb{R}^n} |f(x)|^{\frac{n}{n-\delta}} dx\right)^{\frac{n-\delta}{n}} \le c_n \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|}{|x - y|^{n+\delta}} dy dx$$

It turns out that there is a better estimate

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \le c_n p^*_{\delta} \left(1-\delta\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x)-f(y)|^p}{|x-y|^{n+\delta p}} dy dx\right)^{1/p}$$

I will refer to it as the Brézis-Bourgain-Mironescu phenomenon.

Begin with

Begin with

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le c_n \, \frac{\ell(Q)}{|Q|} \int_Q |\nabla f|$$

Begin with

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx &\leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q} |\nabla f| \\ &\leq c_{n} \, \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} \right)^{1/p} \end{aligned}$$

Begin with

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx &\leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q} |\nabla f| \\ &\leq c_{n} \, \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} \right)^{1/p} \end{aligned}$$

More generally, consider the "functional"

Begin with

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx &\leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q} |\nabla f| \\ &\leq c_{n} \, \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} \right)^{1/p} \end{aligned}$$

More generally, consider the "functional"

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{|Q|}\right)^{1/p}$$

Begin with

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx &\leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q} |\nabla f| \\ &\leq c_{n} \, \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} \right)^{1/p} \end{aligned}$$

More generally, consider the "functional"

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{|Q|}\right)^{1/p}$$

• Goal: to derive better integrability result

Begin with

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx &\leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q} |\nabla f| \\ &\leq c_{n} \, \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} \right)^{1/p} \end{aligned}$$

More generally, consider the "functional"

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{|Q|}\right)^{1/p}$$

• Goal: to derive better integrability result **avoiding** the use of representation formulas

Begin with

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx &\leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q} |\nabla f| \\ &\leq c_{n} \, \ell(Q) \left(\frac{1}{|Q|} \int_{Q} |\nabla f|^{p} \right)^{1/p} \end{aligned}$$

More generally, consider the "functional"

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{|Q|}\right)^{1/p}$$

• Goal: to derive better integrability result **avoiding** the use of representation formulas

Method: Harmonic Analysis

Fix f and a_{μ} as above such that

Fix f and a_{μ} as above such that

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a_\mu(Q) \qquad Q \in \mathcal{Q}$$

Fix f and a_{μ} as above such that

$$\frac{1}{Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a_{\mu}(Q) \qquad Q \in \mathcal{Q}$$

then

Fix f and a_{μ} as above such that

$$\frac{1}{Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a_{\mu}(Q) \qquad Q \in \mathcal{Q}$$

then

Thm (baby version)

$$\left\|f - f_Q\right\|_{L^{p^*,\infty}(Q,\frac{dx}{|Q|})} \le c_{n,p} a_\mu(Q)$$

Fix f and a_{μ} as above such that

$$\frac{1}{Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a_{\mu}(Q) \qquad Q \in \mathcal{Q}$$

then

Thm (baby version)

$$\left\|f - f_Q\right\|_{L^{p^*,\infty}(Q,\frac{dx}{|Q|})} \le c_{n,p} a_\mu(Q)$$

• A consequence of the following geometric condition satisfied by the functional a_{μ}

Fix f and a_{μ} as above such that

$$\frac{1}{Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a_{\mu}(Q) \qquad Q \in \mathcal{Q}$$

then

Thm (baby version)

$$\left\|f - f_Q\right\|_{L^{p^*,\infty}(Q,\frac{dx}{|Q|})} \le c_{n,p} a_\mu(Q)$$

• A consequence of the following geometric condition satisfied by the functional a_{μ}

$$\left(\sum_{j} a_{\mu}(Q_{j})^{p^{*}} \frac{|Q_{j}|}{|Q|}\right)^{\frac{1}{p^{*}}} \leq a_{\mu}(Q) \qquad (D_{p^{*}} \text{ condition})$$
A first model theorem and a first geometric condition

Fix f and a_{μ} as above such that

$$\frac{1}{Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a_{\mu}(Q) \qquad Q \in \mathcal{Q}$$

then

Thm (baby version)

$$\left\|f - f_Q\right\|_{L^{p^*,\infty}(Q,\frac{dx}{|Q|})} \le c_{n,p} a_\mu(Q)$$

• A consequence of the following geometric condition satisfied by the functional a_{μ}

$$\left(\sum_{j} a_{\mu}(Q_{j})^{p^{*}} \frac{|Q_{j}|}{|Q|}\right)^{\frac{1}{p^{*}}} \leq a_{\mu}(Q) \qquad (D_{p^{*}} \text{ condition})$$

• It is very simple to verify this condition

A first model theorem and a first geometric condition

Fix f and a_{μ} as above such that

$$\frac{1}{Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a_{\mu}(Q) \qquad Q \in \mathcal{Q}$$

then

Thm (baby version)

$$\left\|f - f_Q\right\|_{L^{p^*,\infty}(Q,\frac{dx}{|Q|})} \le c_{n,p} a_\mu(Q)$$

• A consequence of the following geometric condition satisfied by the functional a_{μ}

$$\left(\sum_{j} a_{\mu}(Q_{j})^{p^{*}} \frac{|Q_{j}|}{|Q|}\right)^{\frac{1}{p^{*}}} \leq a_{\mu}(Q) \qquad (D_{p^{*}} \text{ condition})$$

- It is very simple to verify this condition
- The exponent p^* is optimal

• in the special case $\mu = \mu_f = |\nabla f|$

• in the special case $\mu = \mu_f = |\nabla f|$

the "truncation" method can be applied to derive the strong norm:

• in the special case $\mu = \mu_f = |\nabla f|$

the "truncation" method can be applied to derive the strong norm:

$$\left\|f - f_Q\right\|_{L^{p^*}(Q,\frac{dx}{|Q|})} \le c_{n,p}\,\ell(Q)\left(\frac{1}{|Q|}\int_Q |\nabla f|^p\right)^{1/p}$$

• in the special case $\mu = \mu_f = |\nabla f|$

the "truncation" method can be applied to derive the strong norm:

$$\left\|f - f_Q\right\|_{L^{p^*}(Q,\frac{dx}{|Q|})} \le c_{n,p}\,\ell(Q)\left(\frac{1}{|Q|}\int_Q |\nabla f|^p\right)^{1/p}$$

• The Lorentz type estimate also follows,

• in the special case $\mu = \mu_f = |\nabla f|$

the "truncation" method can be applied to derive the strong norm:

$$\left\|f - f_Q\right\|_{L^{p^*}(Q,\frac{dx}{|Q|})} \le c_{n,p}\,\ell(Q)\left(\frac{1}{|Q|}\int_Q |\nabla f|^p\right)^{1/p}$$

• The Lorentz type estimate also follows,

$$\left\|f - f_Q\right\|_{L^{p^*,p}(Q,\frac{dx}{|Q|})} \le c_{n,p}\,\ell(Q)\left(\frac{1}{|Q|}\int_Q |\nabla f|^p\right)^{1/p}$$

$$Lu = div(A(x).\nabla u) = 0$$

$$Lu = div(A(x).\nabla u) = 0$$

"Degenerate" elliptic operators

$$Lu = div(A(x).\nabla u) = 0$$

"Degenerate" elliptic operators

$$\lambda |\xi|^2 w(x) \le A(x) \xi . \xi \le \Lambda |\xi|^2 w(x)$$

$$Lu = div(A(x).\nabla u) = 0$$

• "Degenerate" elliptic operators

$$\lambda |\xi|^2 w(x) \le A(x) \xi . \xi \le \Lambda |\xi|^2 w(x)$$

where w is a weight with some sort of singularity.

$$Lu = div(A(x).\nabla u) = 0$$

• "Degenerate" elliptic operators

$$\lambda |\xi|^2 w(x) \le A(x) \xi . \xi \le \Lambda |\xi|^2 w(x)$$

where w is a weight with some sort of singularity.

• The seminal work is due to **Fabes-Kenig-Serapioni** (1982)

$$Lu = div(A(x).\nabla u) = 0$$

• "Degenerate" elliptic operators

$$\lambda |\xi|^2 w(x) \le A(x) \xi . \xi \le \Lambda |\xi|^2 w(x)$$

where w is a weight with some sort of singularity.

• The seminal work is due to **Fabes-Kenig-Serapioni** (1982)

they consider the A_2 condition of Muckenhoupt:

$$Lu = div(A(x).\nabla u) = 0$$

• "Degenerate" elliptic operators

$$\lambda |\xi|^2 w(x) \le A(x) \xi . \xi \le \Lambda |\xi|^2 w(x)$$

where w is a weight with some sort of singularity.

• The seminal work is due to **Fabes-Kenig-Serapioni** (1982)

they consider the A_2 condition of Muckenhoupt:

$$[w]_{A_2} = \sup_Q \left(\frac{1}{|Q|} \int_Q w \, dx\right) \, \left(\frac{1}{|Q|} \int_Q w^{-1} \, dx\right)$$

$$Lu = div(A(x).\nabla u) = 0$$

"Degenerate" elliptic operators

$$\lambda |\xi|^2 w(x) \le A(x) \xi . \xi \le \Lambda |\xi|^2 w(x)$$

where w is a weight with some sort of singularity.

• The seminal work is due to **Fabes-Kenig-Serapioni** (1982)

they consider the A_2 condition of Muckenhoupt:

$$[w]_{A_2} = \sup_Q \left(\frac{1}{|Q|} \int_Q w \, dx \right) \, \left(\frac{1}{|Q|} \int_Q w^{-1} \, dx \right)$$

method of proof is based on the Moser iteration technique

Let $w \in A_2$

Let $w \in A_2$

1) A Poincaré type inequality,

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2}wdx\right)^{\frac{1}{2}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{2} w dx\right)^{\frac{1}{2}} \le c_{w} \ell(Q) \left(\frac{1}{w(Q)} \int_{Q} |\nabla f|^{2} w dx\right)^{\frac{1}{2}}$$

2) A Poincaré–Sobolev type inequality for some $2_w^* > 2$:

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{2} w dx\right)^{\frac{1}{2}} \le c_{w} \ell(Q) \left(\frac{1}{w(Q)} \int_{Q} |\nabla f|^{2} w dx\right)^{\frac{1}{2}}$$

2) A Poincaré–Sobolev type inequality for some $2_w^* > 2$:

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{2^{*}_{w}} w dx\right)^{\frac{1}{2^{*}_{w}}} \le c_{w} \ell(Q) \left(\frac{1}{w(Q)} \int_{Q} |\nabla f|^{2} w dx\right)^{\frac{1}{2}}$$

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2}wdx\right)^{\frac{1}{2}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

2) A Poincaré–Sobolev type inequality for some $2_w^* > 2$:

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2^{*}_{w}}wdx\right)^{\frac{1}{2^{*}_{w}}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

• Fabes-Kenig-Serapioni.

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2}wdx\right)^{\frac{1}{2}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

2) A Poincaré–Sobolev type inequality for some $2_w^* > 2$:

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2^{*}_{w}}wdx\right)^{\frac{1}{2^{*}_{w}}} \le c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

- Fabes-Kenig-Serapioni.
- The main question we address is to find good bounds for both

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2}wdx\right)^{\frac{1}{2}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

2) A Poincaré–Sobolev type inequality for some $2_w^* > 2$:

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{2^{*}_{w}} w dx\right)^{\frac{1}{2^{*}_{w}}} \le c_{w} \ell(Q) \left(\frac{1}{w(Q)} \int_{Q} |\nabla f|^{2} w dx\right)^{\frac{1}{2}}$$

- Fabes-Kenig-Serapioni.
- The main question we address is to find good bounds for both

and

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2}wdx\right)^{\frac{1}{2}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

2) A Poincaré–Sobolev type inequality for some $2_w^* > 2$:

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{2^{*}_{w}} w dx\right)^{\frac{1}{2^{*}_{w}}} \le c_{w} \ell(Q) \left(\frac{1}{w(Q)} \int_{Q} |\nabla f|^{2} w dx\right)^{\frac{1}{2}}$$

- Fabes-Kenig-Serapioni.
- The main question we address is to find good bounds for both

and

Let $w \in A_2$

1) A Poincaré type inequality,

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2}wdx\right)^{\frac{1}{2}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

2) A Poincaré–Sobolev type inequality for some $2_w^* > 2$:

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{2^{*}_{w}}wdx\right)^{\frac{1}{2^{*}_{w}}} \leq c_{w}\,\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f|^{2}wdx\right)^{\frac{1}{2}}$$

 c_w

- Fabes-Kenig-Serapioni.
- The main question we address is to find good bounds for both

and

and to consider other objects beyond the gradient

Recall the A_p condition

Recall the A_p condition

$$[w]_{A_p} := \sup_{Q} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \left(\frac{1}{|Q|} \int_Q w^{\frac{-1}{p-1}} \, dx \right)^{p-1}$$

Recall the A_p condition

$$[w]_{A_p} := \sup_{Q} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \, \left(\frac{1}{|Q|} \int_Q w^{\frac{-1}{p-1}} \, dx \right)^{p-1}$$

Begin with

Recall the A_p condition

$$[w]_{A_p} := \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1}$$

Begin with

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le c_n \, \frac{\ell(Q)}{|Q|} \int_Q |\nabla f|$$

Recall the A_p condition

$$[w]_{A_p} := \sup_{Q} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \, \left(\frac{1}{|Q|} \int_Q w^{\frac{-1}{p-1}} \, dx \right)^{p-1}$$

Begin with

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le c_n \, \frac{\ell(Q)}{|Q|} \int_Q |\nabla f|$$

and continue applying Hölder's inequality and the definition of A_p to obtain

Recall the A_p condition

$$[w]_{A_p} := \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1}$$

Begin with

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le c_n \, \frac{\ell(Q)}{|Q|} \int_Q |\nabla f|$$

and continue applying Hölder's inequality and the definition of A_p to obtain

$$\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le c_n \ell(Q) [w]_{A_p}^{\frac{1}{p}} \left(\frac{1}{w(Q)} \int_{Q} |\nabla f(x)|^p w \, dx \right)^{1/p}$$

Recall the A_p condition

$$[w]_{A_p} := \sup_{Q} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \, \left(\frac{1}{|Q|} \int_Q w^{\frac{-1}{p-1}} \, dx \right)^{p-1}$$

Begin with

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le c_n \, \frac{\ell(Q)}{|Q|} \int_Q |\nabla f|$$

and continue applying Hölder's inequality and the definition of A_p to obtain

$$\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le c_n \ell(Q) [w]_{A_p}^{\frac{1}{p}} \left(\frac{1}{w(Q)} \int_{Q} |\nabla f(x)|^p w \, dx\right)^{1/p}$$

more generally,

Recall the A_p condition

$$[w]_{A_p} := \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \, \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1}$$

Begin with

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le c_n \, \frac{\ell(Q)}{|Q|} \int_Q |\nabla f|$$

and continue applying Hölder's inequality and the definition of A_p to obtain

$$\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le c_n \ell(Q) [w]_{A_p}^{\frac{1}{p}} \left(\frac{1}{w(Q)} \int_{Q} |\nabla f(x)|^p w \, dx \right)^{1/p}$$

more generally,

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$
• Again, the point is a geometric condition attached to the functional a_{μ}

• Again, the point is a geometric condition attached to the functional a_{μ}

$$\left(\sum_{j} a_{\mu}(Q_{j})^{p} \frac{w(Q_{j})}{w(Q)}\right)^{\frac{1}{p}} \leq a_{\mu}(Q) \qquad (D_{p} \text{ condition})$$

• Again, the point is a geometric condition attached to the functional a_{μ}

$$\left(\sum_{j} a_{\mu}(Q_{j})^{p} \frac{w(Q_{j})}{w(Q)}\right)^{\frac{1}{p}} \leq a_{\mu}(Q) \qquad (D_{p} \text{ condition})$$

• However, a better result is needed: there is a larger exponent q > p such that

• Again, the point is a geometric condition attached to the functional a_{μ}

$$\left(\sum_{j} a_{\mu}(Q_{j})^{p} \frac{w(Q_{j})}{w(Q)}\right)^{\frac{1}{p}} \leq a_{\mu}(Q) \qquad (D_{p} \text{ condition})$$

• However, a better result is needed: there is a larger exponent q > p such that

$$\left(\sum_{j}a_{\mu}(Q_{j})^{q}\frac{w(Q_{j})}{w(Q)}\right)^{rac{1}{q}} \lesssim a_{\mu}(Q) \qquad D_{q}(w) ext{ condition}$$

We consider "abstract" functionals *a*,

We consider "abstract" functionals a,

$$a:\mathcal{Q} o (0,\infty)$$

We consider "abstract" functionals *a*,

 $a:\mathcal{Q}
ightarrow(0,\infty)$

Def. $a \in D_r(w)$ if for any cube Q

We consider "abstract" functionals a, $a: \mathcal{Q} \to (0, \infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_j\}$ of Q

We consider "abstract" functionals a, $a : \mathcal{Q} \to (0, \infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_j\}$ of Q

Thm (Franchi, P, Wheeden)

Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$$

We consider "abstract" functionals a, a

 $a:\mathcal{Q}
ightarrow(0,\infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_j\}$ of Q

Thm (Franchi, P, Wheeden)

Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that

Then

$$\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a(Q)$$
$$\left\| f - f_{Q} \right\|_{L^{r,\infty}(Q, \frac{wdx}{w(Q)})} \lesssim a(Q)$$

We consider "abstract" functionals a, $a: \mathcal{Q} \to (0, \infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_j\}$ of Q

Thm (Franchi, P, Wheeden)Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that $\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$ Then $\left\| f - f_Q \right\|_{L^{r,\infty}(Q, \frac{wdx}{w(Q)})} \lesssim a(Q)$

Motivated by work due to L. Saloff-Coste

We consider "abstract" functionals a, $a: \mathcal{Q} \to (0, \infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_j\}$ of Q

Thm (Franchi, P, Wheeden)Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that $\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$ Then $\left\| f - f_Q \right\|_{L^{r,\infty}(Q, \frac{wdx}{w(Q)})} \lesssim a(Q)$

Motivated by work due to L. Saloff-Coste and later by

We consider "abstract" functionals a, a

 $a:\mathcal{Q}
ightarrow(0,\infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_j\}$ of Q

Thm (Franchi, P, Wheeden)Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that $\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$ Then $\left\| f - f_Q \right\|_{L^{r,\infty}(Q, \frac{wdx}{w(Q)})} \lesssim a(Q)$

Motivated by work due to L. Saloff-Coste and later by P. Hajlasz and P. Koskela

We consider "abstract" functionals a, $a: \mathcal{Q} \to (0, \infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_i\}$ of Q

Thm (Franchi, P, Wheeden) Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that $\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a(Q)$ $\left\| f - f_{Q} \right\|_{L^{r,\infty}(Q, \frac{wdx}{w(Q)})} \lesssim a(Q)$ Then

- Motivated by work due to L. Saloff-Coste and later by P. Hajlasz and P. Koskela
- Proof based on Harmonic Analysis

We consider "abstract" functionals a,

 $a:\mathcal{Q} o (0,\infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_i\}$ of Q

Thm (Franchi, P, Wheeden) Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that $\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a(Q)$ $\left\| f - f_{Q} \right\|_{L^{r,\infty}(Q, \frac{wdx}{w(Q)})} \lesssim a(Q)$ Then

- Motivated by work due to L. Saloff-Coste and later by P. Hajlasz and P. Koskela
- Proof based on Harmonic Analysis No control of the relevant constants

We consider "abstract" functionals a, $a: \mathcal{Q} \to (0, \infty)$

Def. $a \in D_r(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

and for any family of pairwise disjoint subcubes $\{Q_i\}$ of Q

Thm (Franchi, P, Wheeden) Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that $\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| \, dx \le a(Q)$ $\left\| f - f_{Q} \right\|_{L^{r,\infty}(Q, \frac{wdx}{w(Q)})} \lesssim a(Q)$ Then

- Motivated by work due to L. Saloff-Coste and later by P. Hajlasz and P. Koskela
- Proof based on Harmonic Analysis No control of the relevant constants
- the sharpest $r = r_a$ is a sort of the "**Sobolev exponent**" of the functional a

Thm Let $a \in D_r(w)$ with $w \in A_\infty$. Let f such that $\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$

• Joint work with J. Canto

• Joint work with J. Canto

• Notice that this yields the John-Nirenberg theorem as well with the sharp A_{∞}

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c \left(\frac{|\cup_j Q_j|}{|Q|}\right)^{\frac{1}{s}} a(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c \left(\frac{|\cup_j Q_j|}{|Q|}\right)^{\frac{1}{s}} a(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

• Compare with the $D_r(w)$ condition:

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c \left(\frac{|\cup_j Q_j|}{|Q|}\right)^{\frac{1}{s}} a(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

• Compare with the $D_r(w)$ condition:

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c \left(\frac{|\cup_j Q_j|}{|Q|}\right)^{\frac{1}{s}} a(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

• Compare with the $D_r(w)$ condition:

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

• It looks like the A_{∞} condition, but for functionals

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c \left(\frac{|\cup_j Q_j|}{|Q|}\right)^{\frac{1}{s}} a(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

• Compare with the $D_r(w)$ condition:

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

- It looks like the A_{∞} condition, but for functionals
- Main example:

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c \left(\frac{|\cup_j Q_j|}{|Q|}\right)^{\frac{1}{s}} a(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

• Compare with the $D_r(w)$ condition:

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

- It looks like the A_{∞} condition, but for functionals
- Main example: for a measure μ

$$a(Q) = \ell(Q)^{\alpha} \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

Definition Let s > 1. $a \in SD_r^{s}(w)$ if for any cube Q

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c \left(\frac{|\cup_j Q_j|}{|Q|}\right)^{\frac{1}{s}} a(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

• Compare with the $D_r(w)$ condition:

$$\left(\sum_{j} a(Q_j)^r \frac{w(Q_j)}{w(Q)}\right)^{\frac{1}{r}} \le c a(Q)$$

- It looks like the A_{∞} condition, but for functionals
- Main example: for a measure μ

$$a(Q) = \ell(Q)^{\alpha} \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

• The best possible constant c above is denoted by ||a||

Thm Let $w \in A_{\infty}$ and let $a \in SD_r^s(w)$ with $w \in A_{\infty}$. Let f such that,

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$$

Thm Let $w \in A_{\infty}$ and let $a \in SD_r^s(w)$ with $w \in A_{\infty}$. Let *f* such that,

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$$

Then

$$\|f - f_Q\|_{L^{r(1+\frac{1}{s}),\infty}\left(Q,\frac{w}{w(Q)}\right)} \le c_n r(1+\frac{1}{s}) [w]_{A_{\infty}} \|a\|^{\frac{s}{1+s}} a(Q)$$

Thm Let $w \in A_{\infty}$ and let $a \in SD_r^s(w)$ with $w \in A_{\infty}$. Let *f* such that,

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$$

Then

$$\|f - f_Q\|_{L^{r(1+\frac{1}{s}),\infty}\left(Q,\frac{w}{w(Q)}\right)} \le c_n r(1+\frac{1}{s}) [w]_{A_{\infty}} \|a\|^{\frac{s}{1+s}} a(Q)$$

• Joint work with A. Claros

Thm Let $w \in A_{\infty}$ and let $a \in SD_r^s(w)$ with $w \in A_{\infty}$. Let *f* such that,

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \le a(Q)$$

Then

$$\|f - f_Q\|_{L^{r(1+\frac{1}{s}),\infty}\left(Q,\frac{w}{w(Q)}\right)} \le c_n r(1+\frac{1}{s}) [w]_{A_{\infty}} \|a\|^{\frac{s}{1+s}} a(Q)$$

• Joint work with A. Claros

• Letting $s \to \infty$ (which formally is $D_r(w)$) we recover the previous result
Thm Let *f* such that
$$\int_Q |f - f_Q| \le a(Q)$$

Thm Let *f* such that
$$\int_Q |f - f_Q| \le a(Q)$$

where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \leq 1$

1

A first step result: work with E. Rela

Thm Let *f* such that
$$\int_{Q} |f - f_Q| \le a(Q)$$

where *a* satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le$
Then $(1 + c) \sum_{r=1}^{s} (1 + c) \sum_{r=1}^{s}$

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{r}wdx\right)^{\overline{r}} \leq s c_{n} a(Q)$$

ThmLet f such that
$$\oint_Q |f - f_Q| \le a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

Thm Let
$$f$$
 such that $\int_{Q} |f - f_Q| \le a(Q)$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$
Then $\left(\frac{1}{w(Q)}\int_{Q} |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\left(\oint_Q |f-f_Q|^\delta
ight)^{rac{1}{\delta}} \quad ext{with } \delta < 1$$

ThmLet f such that
$$\int_{Q} |f - f_{Q}| \leq a(Q)$$
where a satisfies condition $a \in SD_{r}^{s}(w)$ with constant $||a|| \leq 1$ Then $\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{r} w dx\right)^{\frac{1}{r}} \leq s c_{n} a(Q)$

• We could replace the initial L^1 norm by

$$\left(\oint_Q |f - f_Q|^\delta
ight)^{rac{1}{\delta}} \quad ext{with } \delta < 1$$

• or by

ThmLet f such that
$$\int_Q |f - f_Q| \leq a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \leq 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \leq s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} \left(\oint_{Q} |f - f_{Q}|^{\delta} \right)^{\frac{1}{\delta}} & \text{with } \delta < 1 \\ \int_{Q} \varphi \Big(|f - f_{Q}| \Big) \end{split}$$

• or by

Thm Let
$$f$$
 such that $\int_{Q} |f - f_Q| \le a(Q)$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$
Then $\left(\frac{1}{w(Q)}\int_{Q} |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} & \left(f_Q \left| f - f_Q \right|^{\delta} \right)^{\frac{1}{\delta}} & \text{ with } \delta < 1 \\ & f_Q \varphi \Big(\left| f - f_Q \right| \Big) \end{split}$$

• or by

where it is enough to assume that φ is **subadditive**:

ThmLet f such that
$$\oint_Q |f - f_Q| \leq a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \leq 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \leq s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} & \left(\int_{Q} |f - f_{Q}|^{\delta} \right)^{\frac{1}{\delta}} & \text{ with } \delta < 1 \\ & \int_{Q} \varphi \Big(|f - f_{Q}| \Big) \end{split}$$

• or by

where it is enough to assume that φ is **subadditive**: $\varphi(t_1 + t_2) \leq \varphi(t_1) + \varphi(t_2)$

ThmLet f such that
$$\oint_Q |f - f_Q| \le a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\left(\int_{Q} |f - f_{Q}|^{\delta} \right)^{\frac{1}{\delta}} \quad \text{with } \delta < 1$$

$$\int_{Q} \varphi \left(|f - f_{Q}| \right)$$

• or by

where it is enough to assume that φ is **subadditive**: $\varphi(t_1 + t_2) \leq \varphi(t_1) + \varphi(t_2)$

 $\varphi(t) = \log(1+t)$ or more generally

ThmLet f such that
$$\oint_Q |f - f_Q| \le a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} \left(\int_{Q} |f - f_{Q}|^{\delta} \right)^{\frac{1}{\delta}} & \text{with } \delta < 1 \\ \int_{Q} \varphi \Big(|f - f_{Q}| \Big) \end{split}$$

• or by

where it is enough to assume that φ is **subadditive**: $\varphi(t_1 + t_2) \leq \varphi(t_1) + \varphi(t_2)$ $\varphi(t) = \log(1+t)$ or more generally $\varphi(t) = \log^{k}(1+t)$

ThmLet f such that
$$\oint_Q |f - f_Q| \le a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} & \left(\int_{Q} |f - f_{Q}|^{\delta} \right)^{\frac{1}{\delta}} & \text{ with } \delta < 1 \\ & \int_{Q} \varphi \Big(|f - f_{Q}| \Big) \end{split}$$

• or by

where it is enough to assume that φ is **subadditive**: $\varphi(t_1 + t_2) \leq \varphi(t_1) + \varphi(t_2)$ $\varphi(t) = \log(1+t)$ or more generally $\varphi(t) = \log^{k}(1+t)$ or any concave

ThmLet f such that
$$\oint_Q |f - f_Q| \le a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} & \left(f_Q \left| f - f_Q \right|^{\delta} \right)^{\frac{1}{\delta}} & \text{ with } \delta < 1 \\ & f_Q \varphi \Big(\left| f - f_Q \right| \Big) \end{split}$$

• or by

where it is enough to assume that φ is **subadditive**: $\varphi(t_1 + t_2) \leq \varphi(t_1) + \varphi(t_2)$ $\varphi(t) = \log(1+t)$ or more generally $\varphi(t) = \log^{k}(1+t)$ or any concave

• or by "polynomials", namely

ThmLet f such that
$$\oint_Q |f - f_Q| \le a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} & \left(\int_{Q} |f - f_{Q}|^{\delta} \right)^{\frac{1}{\delta}} & \text{ with } \delta < 1 \\ & \int_{Q} \varphi \Big(|f - f_{Q}| \Big) \end{split}$$

• or by

where it is enough to assume that φ is **subadditive**: $\varphi(t_1 + t_2) \leq \varphi(t_1) + \varphi(t_2)$ $\varphi(t) = \log(1+t)$ or more generally $\varphi(t) = \log^{k}(1+t)$ or any concave

• or by "polynomials", namely $\inf_{\pi \in \mathcal{P}_m} \oint_Q |f - \pi|$

ThmLet f such that
$$\oint_Q |f - f_Q| \le a(Q)$$
where a satisfies condition $a \in SD_r^s(w)$ with constant $||a|| \le 1$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^r w dx\right)^{\frac{1}{r}} \le s c_n a(Q)$

• We could replace the initial L^1 norm by

$$\begin{split} & \left(\int_{Q} |f - f_{Q}|^{\delta} \right)^{\frac{1}{\delta}} & \text{ with } \delta < 1 \\ & \int_{Q} \varphi \Big(|f - f_{Q}| \Big) \end{split}$$

• or by

where it is enough to assume that φ is **subadditive**: $\varphi(t_1 + t_2) \leq \varphi(t_1) + \varphi(t_2)$ $\varphi(t) = \log(1+t)$ or more generally $\varphi(t) = \log^{k}(1+t)$ or any concave

• or by "polynomials", namely $\inf_{\pi \in \mathcal{P}_m} \oint_{\Omega} |f - \pi|$

• A. Lerner, E. Lorist and S. Ombrosi relax the A_{∞} condition we imposed. They use sparse theory

Consider

Consider

Consider

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

 $\begin{array}{ll} \text{Thm} & \text{Let } 1 \leq p \text{ and let } w \in A_1. \text{ Also let } p_w^* \text{ be defined by} \\ \\ \frac{1}{p} - \frac{1}{p_w^*} = \frac{1}{n} \frac{1}{1 + \log[w]_{A_1}} \\ \\ \text{and suppose that } f \text{ satisfies } & \int_Q |f - f_Q| \leq a_\mu(Q) \end{array}$

Consider

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

 $\begin{array}{ll} \text{Thm} & \text{Let } 1 \leq p \text{ and let } w \in A_1. \text{ Also let } p_w^* \text{ be defined by} \\ \\ \frac{1}{p} - \frac{1}{p_w^*} = \frac{1}{n} \frac{1}{1 + \log[w]_{A_1}} \\ \text{and suppose that } f \text{ satisfies } & \int_Q |f - f_Q| \leq a_\mu(Q) \\ \\ \text{Then} & \left(\frac{1}{w(Q)} \int_Q |f - f_Q|^{p_w^*} w dx\right)^{\frac{1}{p_w^*}} \leq c_n \, a_\mu(Q) \end{array}$

Consider

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

Thm Let $1 \le p$ and let $w \in A_1$. Also let p_w^* be defined by $\frac{1}{p} - \frac{1}{p_w^*} = \frac{1}{n} \frac{1}{1 + \log[w]_{A_1}}$ and suppose that f satisfies $f_Q |f - f_Q| \le a_\mu(Q)$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^{p_w^*} w dx\right)^{\frac{1}{p_w^*}} \le c_n a_\mu(Q)$

• In particular we have the following degenerate Poincaré-Sobolev

Consider

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

Thm Let $1 \le p$ and let $w \in A_1$. Also let p_w^* be defined by $\frac{1}{p} - \frac{1}{p_w^*} = \frac{1}{n} \frac{1}{1 + \log[w]_{A_1}}$ and suppose that f satisfies $f_Q |f - f_Q| \le a_\mu(Q)$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^{p_w^*} w dx\right)^{\frac{1}{p_w^*}} \le c_n a_\mu(Q)$

• In particular we have the following degenerate Poincaré-Sobolev

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{p_{w}^{*}}wdx\right)^{\frac{1}{p_{w}^{*}}} \leq c_{n}\left[w\right]_{A_{1}}^{\frac{1}{p}}\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f(x)|^{p}w\,dx\right)^{1/p}$$

Consider

Cor 1

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

Thm Let $1 \le p$ and let $w \in A_1$. Also let p_w^* be defined by $\frac{\frac{1}{p} - \frac{1}{p_w^*} = \frac{1}{n} \frac{1}{1 + \log[w]_{A_1}}}{\frac{1}{1 + \log[w]_{A_1}}}$ and suppose that f satisfies $f_Q |f - f_Q| \le a_\mu(Q)$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^{p_w^*} w dx\right)^{\frac{1}{p_w^*}} \le c_n a_\mu(Q)$

• In particular we have the following degenerate Poincaré-Sobolev

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{p_{w}^{*}}wdx\right)^{\frac{1}{p_{w}^{*}}} \leq c_{n}\left[w\right]_{A_{1}}^{\frac{1}{p}}\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f(x)|^{p}w\,dx\right)^{1/p}$$

This improves the Fabes-Kenig-Serapioni weighted estimate

Consider

$$a_{\mu}(Q) = \lambda \,\ell(Q) \left(\frac{\mu(Q)}{w(Q)}\right)^{1/p}$$

Thm Let $1 \le p$ and let $w \in A_1$. Also let p_w^* be defined by $\frac{\frac{1}{p} - \frac{1}{p_w^*} = \frac{1}{n} \frac{1}{1 + \log[w]_{A_1}}}{\frac{1}{p_w^*} = \frac{1}{n} \frac{1}{1 + \log[w]_{A_1}}}$ and suppose that f satisfies $f_Q |f - f_Q| \le a_\mu(Q)$ Then $\left(\frac{1}{w(Q)} \int_Q |f - f_Q|^{p_w^*} w dx\right)^{\frac{1}{p_w^*}} \le c_n a_\mu(Q)$

In particular we have the following degenerate Poincaré-Sobolev

Cor 1

$$\left(\frac{1}{w(Q)}\int_{Q}|f-f_{Q}|^{p_{w}^{*}}wdx\right)^{\frac{1}{p_{w}^{*}}} \leq c_{n}\left[w\right]_{A_{1}}^{\frac{1}{p}}\ell(Q)\left(\frac{1}{w(Q)}\int_{Q}|\nabla f(x)|^{p}w\,dx\right)^{1/p}$$

- This improves the Fabes-Kenig-Serapioni weighted estimate
- Observe that $p < p_w^* < p^*$

Let's try to understand the "natural" estimate in a different way,

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \leq c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

Let's try to understand the "natural" estimate in a different way,

$$\int_{Q} |f(x) - f_{Q}| \, dx \leq c_n \, \ell(Q) \int_{Q} |\nabla f(x)| \, dx,$$

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \leq c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

$$\oint_Q |f(x) - f_Q| \, dx$$

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \leq c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

$$\oint_Q |f(x) - f_Q| \, dx \approx \oint_Q \oint_Q |f(x) - f(y)| \, dy \, dx$$

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \le c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

$$\begin{aligned} \oint_{Q} |f(x) - f_{Q}| \, dx &\approx \oint_{Q} \oint_{Q} |f(x) - f(y)| \, dy dx \\ &\leq \left[w\right]_{A_{p}}^{\frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} \, dy \, w dx\right)^{\frac{1}{p}} \end{aligned}$$

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \le c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

Indeed, recall the "trivial" result

$$\begin{aligned} \oint_{Q} |f(x) - f_{Q}| \, dx &\approx \oint_{Q} \oint_{Q} |f(x) - f(y)| \, dy dx \\ &\leq [w]_{A_{p}}^{\frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} \, dy \, w dx \right)^{\frac{1}{p}} \end{aligned}$$

This could be the "starting point" with this as new functional.

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \le c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

Indeed, recall the "trivial" result

$$\begin{aligned} \oint_{Q} |f(x) - f_{Q}| \, dx &\approx \oint_{Q} \oint_{Q} |f(x) - f(y)| \, dy dx \\ &\leq \left[w\right]_{A_{p}}^{\frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} \, dy \, w dx\right)^{\frac{1}{p}} \end{aligned}$$

This could be the "starting point" with this as new functional.

For instance, if w = 1 this functional satisfies the $D_{p^*_{\delta}}$ from which (for $1 \le p < \frac{n}{\delta}$)

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \leq c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

Indeed, recall the "trivial" result

$$\begin{aligned} \oint_{Q} |f(x) - f_{Q}| \, dx &\approx \oint_{Q} \oint_{Q} |f(x) - f(y)| \, dy dx \\ &\leq \left[w\right]_{A_{p}}^{\frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} \, dy \, w dx\right)^{\frac{1}{p}} \end{aligned}$$

This could be the "starting point" with this as new functional.

For instance, if w = 1 this functional satisfies the $D_{p^*_{\delta}}$ from which (for $1 \le p < \frac{n}{\delta}$)

$$\left(\oint_Q |f(x) - f_Q|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \le c_n p^*_{\delta} c_n \ell(Q)^{\delta} \left(\oint_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} dy dx\right)^{1/p}$$

from which we get the global result,

Let's try to understand the "natural" estimate in a different way,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \leq c_n \, \ell(Q) \oint_{Q} |\nabla f(x)| \, dx,$$

Indeed, recall the "trivial" result

$$\begin{aligned} \oint_{Q} |f(x) - f_{Q}| \, dx &\approx \oint_{Q} \oint_{Q} |f(x) - f(y)| \, dy dx \\ &\leq [w]_{A_{p}}^{\frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} \, dy \, w dx \right)^{\frac{1}{p}} \end{aligned}$$

This could be the "starting point" with this as new functional.

For instance, if w = 1 this functional satisfies the $D_{p^*_{\delta}}$ from which (for $1 \le p < \frac{n}{\delta}$)

$$\left(\oint_Q |f(x) - f_Q|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \le c_n \, p^*_{\delta} \, c_n \ell(Q)^{\delta} \left(\oint_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} \, dy \, dx\right)^{1/p}$$

from which we get the global result,

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \le c_n \, p^*_{\delta} \, \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n + \delta p}} \, dy \, dx\right)^{1/p}$$
$\oint_Q |f(x) - f_Q| \, dx$

$$\int_{Q} |f(x) - f_Q| \, dx \approx \int_{Q} \int_{Q} |f(x) - f(y)| \, dy \, dx$$

$$\oint_Q |f(x) - f_Q| \, dx \approx \oint_Q \oint_Q |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Indeed, we have the "trivial" result

$$\int_{Q} |f(x) - f_Q| \, dx \approx \int_{Q} \int_{Q} |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

• Usually called the "Gagliardo functional"

$$\int_{Q} |f(x) - f_Q| \, dx \approx \int_{Q} \int_{Q} |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

- Usually called the "Gagliardo functional"
- This functional "interpolates" between the oscillation of f

$$\int_{Q} |f(x) - f_Q| \, dx \approx \int_{Q} \int_{Q} |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \oint_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

- Usually called the "Gagliardo functional"
- This functional "interpolates" between the oscillation of f and

$$\oint_Q |f(x) - f_Q| \, dx \approx \oint_Q \oint_Q |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

- Usually called the "Gagliardo functional"
- This functional "interpolates" between the oscillation of f and $\ell(Q) \oint_Q |\nabla f(x)| dx$

$$\oint_Q |f(x) - f_Q| \, dx \approx \oint_Q \oint_Q |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

- Usually called the "Gagliardo functional"
- This functional "interpolates" between the oscillation of f and $\ell(Q) \oint_Q |\nabla f(x)| dx$
- with the blowing up factor

Indeed, we have the "trivial" result

$$\oint_Q |f(x) - f_Q| \, dx \approx \oint_Q \oint_Q |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

- Usually called the "Gagliardo functional"
- This functional "interpolates" between the oscillation of f and $\ell(Q) \oint_{Q} |\nabla f(x)| dx$
- with the blowing up factor

 $\frac{1}{1-\delta}$ in front, namely

Indeed, we have the "trivial" result

$$\oint_Q |f(x) - f_Q| \, dx \approx \oint_Q \oint_Q |f(x) - f(y)| \, dy \, dx \leq \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

- Usually called the "Gagliardo functional"
- This functional "interpolates" between the oscillation of f and $\ell(Q) \oint |\nabla f(x)| dx$

$$\ell(Q) \oint_Q |\nabla f(x)| \, dx$$

• with the blowing up factor

 $\frac{1}{1-\delta}$ in front, namely

$$\ell(Q)^{\delta} \oint_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} dy \, dx \le \frac{c_n}{1 - \delta} \ell(Q) \oint_{Q} |\nabla f(x)| \, dx$$

Recall the "rough" result,

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Recall the "rough" result,

$$\oint_{Q} |f(x) - f_{Q}| \, dx \le c_n \ell(Q)^{\delta} \oint_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\int_{Q} |f(x) - f_{Q}| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

• J. Bourgain, H. Brezis and P. Mironescu

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\int_{Q} |f(x) - f_Q| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

• J. Bourgain, H. Brezis and P. Mironescu

Fourier Analysis

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

• J. Bourgain, H. Brezis and P. Mironescu

Fourier Analysis

• M. Milman

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\int_{Q} |f(x) - f_{Q}| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

- J. Bourgain, H. Brezis and P. Mironescu
- M. Milman

Fourier Analysis Interpolation and Extrapolation

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

- J. Bourgain, H. Brezis and P. Mironescu
- M. Milman

Fourier Analysis Interpolation and Extrapolation

```
Thm Let \delta \in (0,1) and p \in [1,\infty) then
```

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\int_{Q} |f(x) - f_Q| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

- J. Bourgain, H. Brezis and P. Mironescu
- M. Milman

Fourier Analysis Interpolation and Extrapolation

Thm Let $\delta \in (0, 1)$ and $p \in [1, \infty)$ then

$$\int_{Q} |f(x) - f_{Q}| \, dx \le c_{n,p} \, (1-\delta)^{\frac{1}{p}} \ell(Q)^{\delta} \left(\int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x-y|^{n+p\delta}} \, dy \, dx \right)^{\frac{1}{p}}$$

Recall the "rough" result,

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

Let $\delta \in (0, 1)$, then

$$\oint_Q |f(x) - f_Q| \, dx \le c_n \, (1 - \delta) \, \ell(Q)^{\delta} \oint_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

The work of

- J. Bourgain, H. Brezis and P. Mironescu
- M. Milman

Fourier Analysis Interpolation and Extrapolation

Thm Let $\delta \in (0, 1)$ and $p \in [1, \infty)$ then

$$\oint_{Q} |f(x) - f_{Q}| \, dx \le c_{n,p} \, (1-\delta)^{\frac{1}{p}} \ell(Q)^{\delta} \left(\oint_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x-y|^{n+p\delta}} \, dy \, dx \right)^{\frac{1}{p}}$$

• We can **self-improve** starting from this result

The BBM Poincaré-Sobolev result

The BBM Poincaré-Sobolev result

As before, this functional satisfies the $D_{p^*_{\delta}}$ condition from which (for $1 \le p < \frac{n}{\delta}$)

The

The BBM Poincaré-Sobolev result

As before, this functional satisfies the $D_{p^*_{\delta}}$ condition from which (for $1 \le p < \frac{n}{\delta}$)

$$\left(\oint_{Q} |f(x) - f_{Q}|^{p_{\delta}^{*}} dx \right)^{\frac{1}{p_{\delta}^{*}}} \leq c_{n} \, p_{\delta}^{*} \, (1 - \delta)^{\frac{1}{p}} c_{n} \ell(Q)^{\delta} \left(\oint_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + \delta p}} \, dy \, dx \right)^{\frac{1}{p}}$$

The BBM Poincaré-Sobolev result

As before, this functional satisfies the $D_{p^*_{\delta}}$ condition from which (for $1 \le p < \frac{n}{\delta}$)

Thm

$$\left(\oint_Q |f(x) - f_Q|^{p_{\delta}^*} dx \right)^{\frac{1}{p_{\delta}^*}} \le c_n p_{\delta}^* \left(1 - \delta \right)^{\frac{1}{p}} c_n \ell(Q)^{\delta} \left(\oint_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^n + \delta p} dy dx \right)^{\frac{1}{p}}$$

Cor (global case)

$$\left(\int_{\mathbb{R}^n} |f(x)|^{p^*_{\delta}} dx\right)^{\frac{1}{p^*_{\delta}}} \leq c_n p^*_{\delta} \left(1-\delta\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x)-f(y)|^p}{|x-y|^{n+\delta p}} dy dx\right)^{1/p},$$

Let $1 \leq p < \infty$ and let $w \in A_1$.

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log [w]_{A_1}}$$

Then we have the following theorem.

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log \left[w\right]_{A_1}}$$

Then we have the following theorem.

Thm

$$\left(\frac{1}{w(Q)}\int_{Q}\left|f-f_{Q}\right|^{p_{\delta,w}^{*}}wdx\right)^{\frac{1}{p_{w,\delta}^{*}}}$$

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log \left[w\right]_{A_1}}$$

Then we have the following theorem.

Thm $\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{p^{*}_{\delta,w}} w dx \right)^{\frac{1}{p^{*}_{w,\delta}}} \\ \leq c_{n} \left(1 - \delta \right)^{\frac{1}{p}} \left[w \right]^{1 + \frac{1}{p}}_{A_{1}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} dy \, w dx \right)^{\frac{1}{p}}$

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log \left[w\right]_{A_1}}$$

Then we have the following theorem.

Thm

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{p^{*}_{\delta,w}} w dx\right)^{\frac{1}{p^{*}_{w,\delta}}}$$

$$\leq c_{n} (1 - \delta)^{\frac{1}{p}} [w]^{1 + \frac{1}{p}}_{A_{1}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} dy w dx\right)^{\frac{1}{p}}$$

• Features:

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log \left[w\right]_{A_1}}$$

Then we have the following theorem.

Thm

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{p^{*}_{\delta,w}} w dx \right)^{\frac{1}{p^{*}_{w,\delta}}} \\ \leq c_{n} (1 - \delta)^{\frac{1}{p}} [w]^{1 + \frac{1}{p}}_{A_{1}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} dy w dx \right)^{\frac{1}{p}}$$

• Features: the A_1 degeneracy and

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log \left[w\right]_{A_1}}$$

Then we have the following theorem.

Thm

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{p^{*}_{\delta,w}} w dx \right)^{\frac{1}{p^{*}_{w,\delta}}} \\ \leq c_{n} \left(1 - \delta \right)^{\frac{1}{p}} \left[w \right]_{A_{1}}^{1 + \frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} dy w dx \right)^{\frac{1}{p}}$$

• Features: the A_1 degeneracy and the extra BBM bonus $(1 - \delta)^{\frac{1}{p}}$
Other degenerate examples

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log \left[w\right]_{A_1}}$$

Then we have the following theorem.

Thm

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{p^{*}_{\delta,w}} w dx \right)^{\frac{1}{p^{*}_{w,\delta}}} \\ \leq c_{n} \left(1 - \delta \right)^{\frac{1}{p}} \left[w \right]_{A_{1}}^{1 + \frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} dy w dx \right)^{\frac{1}{p}}$$

- Features: the A_1 degeneracy and the extra BBM bonus $(1 \delta)^{\frac{1}{p}}$
- New result: the thm holds whenever $w \in A_p$

Other degenerate examples

Let $1 \leq p < \infty$ and let $w \in A_1$.

Also let $p^*_{\delta,w}$ be the fractional Sobolev exponent defined by

$$\frac{1}{p} - \frac{1}{p_{w,\delta}^*} = \frac{\delta}{n} \frac{1}{1 + \log \left[w\right]_{A_1}}$$

Then we have the following theorem.

Thm

$$\left(\frac{1}{w(Q)} \int_{Q} |f - f_{Q}|^{p^{*}_{\delta,w}} w dx \right)^{\frac{1}{p^{*}_{w,\delta}}} \\ \leq c_{n} \left(1 - \delta \right)^{\frac{1}{p}} \left[w \right]_{A_{1}}^{1 + \frac{1}{p}} \ell(Q)^{\delta} \left(\frac{1}{w(Q)} \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} dy w dx \right)^{\frac{1}{p}}$$

- Features: the A_1 degeneracy and the extra BBM bonus $(1 \delta)^{\frac{1}{p}}$
- New result: the thm holds whenever $w \in A_p$
- joint work with Kim Myyryläinen and Julian Weigt

Thm. Let $0 < \delta < 1$ and $w \in A_1$. $\ell(Q)^{\delta} \int_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} dy w(x) dx \le c_n \frac{[w]_{A_1}}{(1 - \delta)^2} \ell(Q) \int_Q |\nabla f(x)| w(x) dx$

• The quadratic factor $(1 - \delta)^{-2}$ should be linear instead as in the unweighted case.

Thm. Let
$$0 < \delta < 1$$
 and $w \in A_1$.
$$\ell(Q)^{\delta} \int_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} dy w(x) dx \le c_n \frac{[w]_{A_1}}{(1 - \delta)^2} \ell(Q) \int_Q |\nabla f(x)| w(x) dx$$

• The quadratic factor $(1 - \delta)^{-2}$ should be linear instead as in the unweighted case.

• We have the following weak type result although the method of proof gives a higher power of $[w]_{A_1}$.

Thm. Let
$$0 < \delta < 1$$
 and $w \in A_1$.
$$\ell(Q)^{\delta} \int_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} dy w(x) dx \le c_n \frac{[w]_{A_1}}{(1 - \delta)^2} \ell(Q) \int_Q |\nabla f(x)| w(x) dx$$

• The quadratic factor $(1 - \delta)^{-2}$ should be linear instead as in the unweighted case.

• We have the following weak type result although the method of proof gives a higher power of $[w]_{A_1}$.

Thm. As above,
$$\ell(Q)^{\delta} \left\| \frac{f(x) - f(y)}{|x - y|^{n + \delta}} \right\|_{L^{1,\infty}\left(Q \times Q, w(x) \, dx \times dy\right)} \leq c_n \frac{[w]_{A_1}^{2 + \frac{1 - \delta}{n}}}{\delta(1 - \delta)} \ell(Q) \int_Q |\nabla f(x)| w(x) \, dx = 0$$

Thm. Let
$$0 < \delta < 1$$
 and $w \in A_1$.
$$\ell(Q)^{\delta} \int_Q \int_Q \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} dy w(x) dx \le c_n \frac{[w]_{A_1}}{(1 - \delta)^2} \ell(Q) \int_Q |\nabla f(x)| w(x) dx$$

• The quadratic factor $(1 - \delta)^{-2}$ should be linear instead as in the unweighted case.

• We have the following weak type result although the method of proof gives a higher power of $[w]_{A_1}$.

• Motivated by a result by Brezis-Van Schaftingen-Yung

Let's try to understand an special case,

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

$$\oint_Q |f(x) - f_Q| \, dx$$

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

$$\int_{Q} |f(x) - f_{Q}| dx \leq c_n \,\ell(Q) \int_{Q} |\nabla f(x)| dx$$

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

$$\oint_Q |f(x) - f_Q| \, dx \, \leq c_n \, \ell(Q) \oint_Q |\nabla f(x)| \, dx \, \leq c_n \, \left(\int_Q |\nabla f(x)|^n \, dx \right)^{\frac{1}{n}}$$

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

Now, by the L^1 Poincaré result

$$\oint_{Q} |f(x) - f_{Q}| dx \le c_{n} \ell(Q) \oint_{Q} |\nabla f(x)| dx \le c_{n} \left(\int_{Q} |\nabla f(x)|^{n} dx \right)^{\frac{1}{n}}$$

It is false that locally $W^{1,n}$ is contained in L^{∞} . The sharp result is that locally

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

Now, by the L^1 Poincaré result

$$\oint_Q |f(x) - f_Q| \, dx \, \leq c_n \, \ell(Q) \oint_Q |\nabla f(x)| \, dx \, \leq c_n \, \left(\int_Q |\nabla f(x)|^n \, dx \right)^{\frac{1}{n}}$$

It is false that locally $W^{1,n}$ is contained in L^∞ . The sharp result is that locally $W^{1,n}\subset\exp L^{n'}$

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

Now, by the L^1 Poincaré result

$$\oint_{Q} |f(x) - f_{Q}| dx \le c_{n} \ell(Q) \oint_{Q} |\nabla f(x)| dx \le c_{n} \left(\int_{Q} |\nabla f(x)|^{n} dx \right)^{\frac{1}{n}}$$

It is false that locally $W^{1,n}$ is contained in $L^\infty.$ The sharp result is that locally $W^{1,n}\subset \exp L^{n'}$

The best way to express this is by means of the so called **Trudinger**'s inequality:

$$\|f - f_Q\|_{\exp L^{n'}(Q)} \le C \left(\int_Q |\nabla f|^n\right)^{\frac{1}{n}}$$

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

Now, by the L^1 Poincaré result

$$\oint_{Q} |f(x) - f_{Q}| dx \le c_n \,\ell(Q) \oint_{Q} |\nabla f(x)| dx \le c_n \left(\int_{Q} |\nabla f(x)|^n \, dx \right)^{\frac{1}{n}}$$

It is false that locally $W^{1,n}$ is contained in $L^\infty.$ The sharp result is that locally $W^{1,n}\subset \exp L^{n'}$

The best way to express this is by means of the so called **Trudinger**'s inequality:

$$\|f - f_Q\|_{\exp L^{n'}(Q)} \le C \left(\int_Q |\nabla f|^n\right)^{\frac{1}{n}}$$

This says that f is not only L^p but goes much further, is of exponential type.

Let's try to understand an special case, assume that $\nabla f \in L_{loc}^n$ Then we know that $f \in \exp L^{n'}$

Now, by the L^1 Poincaré result

$$\oint_{Q} |f(x) - f_{Q}| dx \leq c_{n} \ell(Q) \oint_{Q} |\nabla f(x)| dx \leq c_{n} \left(\int_{Q} |\nabla f(x)|^{n} dx \right)^{\frac{1}{n}}$$

It is false that locally $W^{1,n}$ is contained in $L^\infty.$ The sharp result is that locally $W^{1,n}\subset \exp L^{n'}$

The best way to express this is by means of the so called **Trudinger**'s inequality:

$$\|f - f_Q\|_{\exp L^{n'}(Q)} \le C \left(\int_Q |\nabla f|^n \right)^{\frac{1}{n}}$$

This says that f is not only L^p but goes much further, is of exponential type. This inequality is important in many applications.

We consider again the following general problem: let f be a function such that for each cube Q

We consider again the following general problem: let f be a function such that for each cube Q

$$\frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy \le a(Q).$$

We consider again the following general problem: let f be a function such that for each cube Q

$$\frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy \le a(Q).$$

The question is: what kind of geometrical condition, like the D_r condition, we have to impose on a to derive that f has a self-improving property of exponential type?

We consider again the following general problem: let f be a function such that for each cube Q

$$\frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy \le a(Q).$$

The question is: what kind of geometrical condition, like the D_r condition, we have to impose on a to derive that f has a self-improving property of exponential type?

Definition Let $r \in (1, \infty)$. $a \in \mathsf{T}_r$ if for any cube Q

We consider again the following general problem: let f be a function such that for each cube Q

$$\frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy \le a(Q).$$

The question is: what kind of geometrical condition, like the D_r condition, we have to impose on a to derive that f has a self-improving property of exponential type?

Definition Let $r \in (1, \infty)$. $a \in \mathsf{T}_r$ if for any cube Q

$$\left(\sum_{j} a(Q_{j})^{r}\right)^{\frac{1}{r}} \leq ca(Q)$$

and any family of pairwise disjoint subcubes $\{Q_i\}$ of Q.

We consider again the following general problem: let f be a function such that for each cube Q

$$\frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy \le a(Q).$$

The question is: what kind of geometrical condition, like the D_r condition, we have to impose on a to derive that f has a self-improving property of exponential type?

Definition Let $r \in (1, \infty)$. $a \in \mathsf{T}_r$ if for any cube Q

$$\left(\sum_{j} a(Q_{j})^{r}\right)^{\frac{1}{r}} \leq ca(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

• This condition is much stronger than the D_r condition.

We consider again the following general problem: let f be a function such that for each cube Q

$$\frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy \le a(Q).$$

The question is: what kind of geometrical condition, like the D_r condition, we have to impose on a to derive that f has a self-improving property of exponential type?

Definition Let $r \in (1, \infty)$. $a \in \mathsf{T}_r$ if for any cube Q

$$\left(\sum_{j} a(Q_{j})^{r}\right)^{\frac{1}{r}} \leq ca(Q)$$

and any family of pairwise disjoint subcubes $\{Q_j\}$ of Q.

- This condition is much stronger than the D_r condition.
- The model examples is provided by

$$a(Q) = \left(\int_Q g^r\right)^{\frac{1}{r}}$$
 or more generally $a(Q)$

Fix a function f such that

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Fix a function
$$f$$
 such that $\int_Q |f - f_Q| \le a(Q)$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Let $0 < \delta < 1$, and let $p = \frac{n}{\delta}$

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Let $0 < \delta < 1$, and let $p = \frac{n}{\delta}$

$$\oint_Q |f(x) - f_Q| \, dx$$

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Let $0 < \delta < 1$, and let $p = \frac{n}{\delta}$ $\oint_Q |f(x) - f_Q| \, dx \leq c \left(1 - \delta\right)^{\frac{1}{p}} \ell(Q)^{\delta} \left(\oint_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^{n + p\delta}} \, dy \, dx \right)^{\frac{1}{p}}$

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Let
$$0 < \delta < 1$$
, and let $p = \frac{n}{\delta}$

$$\oint_{Q} |f(x) - f_{Q}| dx \leq c (1 - \delta)^{\frac{1}{p}} \ell(Q)^{\delta} \left(\oint_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\delta}} dy dx \right)^{\frac{1}{p}}$$

$$= c_{n} (1 - \delta)^{\frac{\delta}{n}} \left(\int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{\frac{n}{\delta}}}{|x - y|^{2n}} dy dx \right)^{\frac{\delta}{n}}$$
Super-exponential self-improving

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Let
$$0 < \delta < 1$$
, and let $p = \frac{n}{\delta}$

$$\oint_Q |f(x) - f_Q| \, dx \leq c \, (1 - \delta)^{\frac{1}{p}} \ell(Q)^{\delta} \left(\oint_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^{n + p\delta}} \, dy \, dx \right)^{\frac{1}{p}}$$

$$= c_n (1 - \delta)^{\frac{\delta}{n}} \left(\int_Q \int_Q \frac{|f(x) - f(y)|^{\frac{n}{\delta}}}{|x - y|^{2n}} \, dy \, dx \right)^{\frac{\delta}{n}}$$

Cor.

$$\left\|f - f_Q\right\|_{\exp L^{\left(\frac{n}{\delta}\right)'}(Q,\frac{dx}{|Q|})} \le c_n (1-\delta)^{\frac{\delta}{n}} \left(\int_Q \int_Q \frac{|f(x) - f(y)|^{\frac{n}{\delta}}}{|x-y|^{2n}} \, dy \, dx\right)^{\frac{\delta}{n}}$$

Super-exponential self-improving

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Let
$$0 < \delta < 1$$
, and let $p = \frac{n}{\delta}$

$$\oint_Q |f(x) - f_Q| \, dx \leq c \, (1 - \delta)^{\frac{1}{p}} \ell(Q)^{\delta} \left(\oint_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^{n + p\delta}} \, dy \, dx \right)^{\frac{1}{p}}$$

$$= c_n (1 - \delta)^{\frac{\delta}{n}} \left(\int_Q \int_Q \frac{|f(x) - f(y)|^{\frac{n}{\delta}}}{|x - y|^{2n}} \, dy \, dx \right)^{\frac{\delta}{n}}$$

Cor.

$$\left\|f - f_Q\right\|_{\exp L^{\left(\frac{n}{\delta}\right)'}(Q,\frac{dx}{|Q|})} \le c_n(1-\delta)^{\frac{\delta}{n}} \left(\int_Q \int_Q \frac{|f(x) - f(y)|^{\frac{n}{\delta}}}{|x-y|^{2n}} \, dy \, dx\right)^{\frac{\delta}{n}}$$

• For the proof, we have to check $a_{\delta}(Q) \in \mathsf{T}_{\frac{n}{\delta}}$

Super-exponential self-improving

Fix a function f such that

$$\oint_Q |f - f_Q| \le a(Q)$$

Thm If $a \in T_r$, then

$$\left\|f - f_Q\right\|_{\exp L^{r'}(Q,\frac{dx}{|Q|})} \le c \ a(Q)$$

Let
$$0 < \delta < 1$$
, and let $p = \frac{n}{\delta}$

$$\oint_Q |f(x) - f_Q| \, dx \leq c \, (1 - \delta)^{\frac{1}{p}} \ell(Q)^{\delta} \left(\oint_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^{n + p\delta}} \, dy \, dx \right)^{\frac{1}{p}}$$

$$= c_n (1 - \delta)^{\frac{\delta}{n}} \left(\int_Q \int_Q \frac{|f(x) - f(y)|^{\frac{n}{\delta}}}{|x - y|^{2n}} \, dy \, dx \right)^{\frac{\delta}{n}}$$

Cor.

$$\left\|f - f_Q\right\|_{\exp L^{\left(\frac{n}{\delta}\right)'}(Q,\frac{dx}{|Q|})} \le c_n(1-\delta)^{\frac{\delta}{n}} \left(\int_Q \int_Q \frac{|f(x) - f(y)|^{\frac{n}{\delta}}}{|x - y|^{2n}} \, dy \, dx\right)^{\frac{\delta}{n}}$$

- For the proof, we have to check $a_{\delta}(Q) \in \mathsf{T}_{\frac{n}{\lambda}}$
- From here we can recover the result of Trudinger.

Fractional isoperimetric inequalities with measures

Fractional isoperimetric inequalities with measures

Thm. Let $0 < \delta < 1$. Then for a general measure μ

$$\left(\int_Q |f-f_Q|^{\frac{n}{n-\delta}} \, d\mu\right)^{\frac{n-\delta}{n}}$$

Fractional isoperimetric inequalities with measures

Thm. Let $0 < \delta < 1$. Then for a general measure μ

$$\left(\int_Q |f-f_Q|^{\frac{n}{n-\delta}} \, d\mu\right)^{\frac{n-\delta}{n}}$$

$$\leq c_n \left(1-\delta\right) \int_Q \int_Q \frac{|f(x)-f(y)|}{|x-y|^{n+\delta}} dy \left(M\mu\right)(x)^{\frac{n-\delta}{n}} dx$$

Let Q be a cube and let E be any measurable set $E \subset Q$. Then, for any weight w and any $0 < \varepsilon \leq \frac{1}{2}$,

 $w(Q \setminus E) w(E) \leq$

Let Q be a cube and let E be any measurable set $E \subset Q$. Then, for any weight w and any $0 < \varepsilon \leq \frac{1}{2}$,

 $w(Q \setminus E) w(E) \leq$

$$w(Q)\left(c_n\varepsilon\int_E\int_{Q\setminus E}\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx+c_n\varepsilon\int_{Q\setminus E}\int_E\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx\right)^{\frac{n}{n-1+\varepsilon}}$$

Let Q be a cube and let E be any measurable set $E \subset Q$. Then, for any weight w and any $0 < \varepsilon \leq \frac{1}{2}$,

 $w(Q \setminus E) w(E) \leq$

$$w(Q)\left(c_n\varepsilon\int_E\int_{Q\setminus E}\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx+c_n\varepsilon\int_{Q\setminus E}\int_E\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx\right)^{\frac{n}{n-1+\varepsilon}}$$

• For the proof can be used a representation formula with the BBM gain!!

Let Q be a cube and let E be any measurable set $E \subset Q$. Then, for any weight w and any $0 < \varepsilon \leq \frac{1}{2}$,

 $w(Q \setminus E) w(E) \leq$

$$w(Q)\left(c_n\varepsilon\int_E\int_{Q\setminus E}\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx+c_n\varepsilon\int_{Q\setminus E}\int_E\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx\right)^{\frac{n}{n-1+\varepsilon}}$$

- For the proof can be used a representation formula with the BBM gain!!
- as corollary we have the **global** counterpart

Let Q be a cube and let E be any measurable set $E \subset Q$. Then, for any weight w and any $0 < \varepsilon \leq \frac{1}{2}$,

 $w(Q \setminus E) w(E) \leq$

$$w(Q)\left(c_n\varepsilon\int_E\int_{Q\setminus E}\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx+c_n\varepsilon\int_{Q\setminus E}\int_E\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx\right)^{\frac{n}{n-1+\varepsilon}}$$

- For the proof can be used a representation formula with the BBM gain!!
- as corollary we have the **global** counterpart

Cor.

$$\left(\int_{\mathbb{R}^n} |f(x)|^{\frac{n}{n-\delta}} d\mu(x)\right)^{\frac{n-\delta}{n}} \le c_n \left(1-\delta\right) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x)-f(y)|}{|x-y|^{n+\delta}} dy \left(M\mu\right)^{\frac{n-\delta}{n}} dx$$

Let Q be a cube and let E be any measurable set $E \subset Q$. Then, for any weight w and any $0 < \varepsilon \leq \frac{1}{2}$,

 $w(Q \setminus E) w(E) \leq$

$$w(Q)\left(c_n\varepsilon\int_E\int_{Q\setminus E}\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx+c_n\varepsilon\int_{Q\setminus E}\int_E\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx\right)^{\frac{n}{n-1+\varepsilon}}$$

- For the proof can be used a representation formula with the BBM gain!!
- as corollary we have the **global** counterpart

Cor.

$$\left(\int_{\mathbb{R}^n} |f(x)|^{\frac{n}{n-\delta}} d\mu(x)\right)^{\frac{n-\delta}{n}} \le c_n \left(1-\delta\right) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x)-f(y)|}{|x-y|^{n+\delta}} dy \left(M\mu\right)^{\frac{n-\delta}{n}} dx$$

we believe that this result is not closed:

Let Q be a cube and let E be any measurable set $E \subset Q$. Then, for any weight w and any $0 < \varepsilon \leq \frac{1}{2}$,

 $w(Q \setminus E) w(E) \leq$

$$w(Q)\left(c_n\varepsilon\int_E\int_{Q\setminus E}\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx+c_n\varepsilon\int_{Q\setminus E}\int_E\frac{Mw(x)^{\frac{n-1+\varepsilon}{n}}}{|x-y|^{n+1-\varepsilon}}dydx\right)^{\frac{n}{n-1+\varepsilon}}$$

- For the proof can be used a representation formula with the BBM gain!!
- as corollary we have the **global** counterpart

Cor.

$$\left(\int_{\mathbb{R}^n} |f(x)|^{\frac{n}{n-\delta}} d\mu(x)\right)^{\frac{n-\delta}{n}} \le c_n \left(1-\delta\right) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x)-f(y)|}{|x-y|^{n+\delta}} dy \left(M\mu\right)^{\frac{n-\delta}{n}} dx$$

we believe that this result is not closed:

• **Conjecture:** We believe that the result should hold with bound $\delta(1-\delta)$.

Recall the Poincaré-Sobolev inequality with p = 1, $p^* = n'$

Recall the Poincaré-Sobolev inequality with $p = 1, p^* = n'$

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} dx\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| dx \qquad Q \in \mathcal{Q}$$

Recall the Poincaré-Sobolev inequality with p = 1, $p^* = n'$

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} dx\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| dx \qquad Q \in \mathcal{Q}$$

There is a "better" Isoperimetric inequality,

Recall the Poincaré-Sobolev inequality with p = 1, $p^* = n'$

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} dx\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| dx \qquad Q \in \mathcal{Q}$$

There is a "better" Isoperimetric inequality,

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| (M\mu)(x)^{\frac{1}{n'}} dx$$

Recall the Poincaré-Sobolev inequality with p = 1, $p^* = n'$

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} dx\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| dx \qquad Q \in \mathcal{Q}$$

There is a "better" Isoperimetric inequality,

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| (M\mu)(x)^{\frac{1}{n'}} dx$$

and hence

Recall the Poincaré-Sobolev inequality with $p = 1, p^* = n'$

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} dx\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| dx \qquad Q \in \mathcal{Q}$$

There is a "better" Isoperimetric inequality,

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f| (M\mu)(x)^{\frac{1}{n'}} dx$$

and hence

$$\left(\int_{\mathbb{R}^n} |f(x)|^{n'} d\mu\right)^{\frac{1}{n'}} \le c_n \int_{\mathbb{R}^n} |\nabla f| \left(M\mu\right)^{\frac{1}{n'}} dx$$

The fractional maximal function of μ is defined by

$$\mathcal{M}^{d}_{\alpha,Q} = \sup_{P \ni x, P \in (Q)} \ell(P)^{\alpha} \frac{\mu(P)}{|P|}.$$

For $\alpha = 0$, we have the classical Hardy–Littlewood maximal function $\mathcal{M} = \mathcal{M}_0$.

The fractional maximal function of μ is defined by

$$\mathcal{M}^{d}_{\alpha,Q} = \sup_{P \ni x, P \in (Q)} \ell(P)^{\alpha} \frac{\mu(P)}{|P|}.$$

For $\alpha = 0$, we have the classical Hardy–Littlewood maximal function $\mathcal{M} = \mathcal{M}_0$.

Thm.

Let
$$0 < \delta < 1$$
, $1 \le q \le \frac{n}{n-\delta}$, $\alpha = n - q(n-\delta)$.

The fractional maximal function of μ is defined by

$$\mathcal{M}^{d}_{\alpha,Q} = \sup_{P \ni x, P \in (Q)} \ell(P)^{\alpha} \frac{\mu(P)}{|P|}.$$

For $\alpha = 0$, we have the classical Hardy–Littlewood maximal function $\mathcal{M} = \mathcal{M}_0$.

Thm.

Let
$$0 < \delta < 1$$
, $1 \le q \le \frac{n}{n-\delta}$, $\alpha = n - q(n-\delta)$.

Tthen

$$\left(\int_{Q} |f - f_{Q}|^{q} d\mu\right)^{\frac{1}{q}} \leq c(1-\delta) \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n + \delta}} dy \left(\mathcal{M}_{\alpha,Q}^{d} \mu\right)(x)^{\frac{1}{q}} dx$$

The fractional maximal function of μ is defined by

$$\mathcal{M}^{d}_{\alpha,Q} = \sup_{P \ni x, P \in (Q)} \ell(P)^{\alpha} \frac{\mu(P)}{|P|}.$$

For $\alpha = 0$, we have the classical Hardy–Littlewood maximal function $\mathcal{M} = \mathcal{M}_0$.

Thm.

Let
$$0 < \delta < 1$$
, $1 \le q \le \frac{n}{n-\delta}$, $\alpha = n - q(n-\delta)$.

Tthen

$$\left(\int_{Q} |f - f_{Q}|^{q} d\mu\right)^{\frac{1}{q}} \leq c(1-\delta) \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n+\delta}} dy \left(\mathcal{M}_{\alpha,Q}^{d}\mu\right)(x)^{\frac{1}{q}} dx$$

• joint work with Kim Myyryläinen and Julian Weigt

The fractional maximal function of μ is defined by

$$\mathcal{M}^{d}_{\alpha,Q} = \sup_{P \ni x, P \in (Q)} \ell(P)^{\alpha} \frac{\mu(P)}{|P|}.$$

For $\alpha = 0$, we have the classical Hardy–Littlewood maximal function $\mathcal{M} = \mathcal{M}_0$.

Thm.

Let
$$0 < \delta < 1$$
, $1 \le q \le \frac{n}{n-\delta}$, $\alpha = n - q(n-\delta)$.

Tthen

$$\left(\int_{Q} |f - f_{Q}|^{q} d\mu\right)^{\frac{1}{q}} \leq c(1-\delta) \int_{Q} \int_{Q} \int_{Q} \frac{|f(x) - f(y)|}{|x - y|^{n+\delta}} dy \left(\mathcal{M}_{\alpha,Q}^{d}\mu\right)(x)^{\frac{1}{q}} dx$$

- joint work with Kim Myyryläinen and Julian Weigt
- The case $q = \frac{n-\delta}{n}$ corresponds to the Isoperimetric inequality already mentioned

Thm. Let
$$1 \le q \le \frac{n}{n-1}$$
 and $\alpha = n - q(n-1)$. Then

$$\left(\int_{Q} |f - f_{Q}|^{q} d\mu\right)^{\frac{1}{q}} \le c_{n} \int_{Q} |\nabla f| \left(M_{\alpha,Q} \mu\right)^{\frac{1}{q}} dx$$

Thm. Let
$$1 \le q \le \frac{n}{n-1}$$
 and $\alpha = n - q(n-1)$. Then

$$\left(\int_{Q} |f - f_{Q}|^{q} d\mu\right)^{\frac{1}{q}} \le c_{n} \int_{Q} |\nabla f| \left(M_{\alpha,Q} \mu\right)^{\frac{1}{q}} dx$$

Cor. Suppose that μ satisfies the following polynomial growth condition, namely that for some constant c_{μ} such that

 $\mu(Q) \le c_{\mu} \ell(Q)^{q(n-1)}.$

Then

Thm. Let
$$1 \le q \le \frac{n}{n-1}$$
 and $\alpha = n - q(n-1)$. Then

$$\left(\int_{Q} |f - f_{Q}|^{q} d\mu\right)^{\frac{1}{q}} \le c_{n} \int_{Q} |\nabla f| \left(M_{\alpha,Q} \mu\right)^{\frac{1}{q}} dx$$

Cor. Suppose that μ satisfies the following polynomial growth condition, namely that for some constant c_{μ} such that

$$\mu(Q) \le c_{\mu} \,\ell(Q)^{q(n-1)}.$$

Then

$$\left(\int_Q |f - f_Q|^q \, d\mu\right)^{\frac{1}{q}} \le c_\mu^{\frac{1}{q}} \int_Q |\nabla f| \, dx$$

• Improves classical result of W. Ziemer and N. Meyers from the 60's. They just considered the case q = 1.

Recall the "better" Isoperimetric inequality,

Recall the "better" Isoperimetric inequality,

If μ is any measure then

Recall the "better" Isoperimetric inequality,

If μ is any measure then

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f(x)| M^{c}(\chi_{Q}\mu)(x)^{\frac{1}{n'}} dx$$

Recall the "better" Isoperimetric inequality,

If μ is any measure then

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f(x)| M^{c}(\chi_{Q}\mu)(x)^{\frac{1}{n'}} dx$$

from which we have the global inequality

$$\left(\int_{\mathbb{R}^n} |f(x)|^{n'} d\mu\right)^{\frac{1}{n'}} \le c_n \int_{\mathbb{R}^n} |\nabla f(x)| M^c \mu(x)^{\frac{1}{n'}} dx,$$

Recall the "better" Isoperimetric inequality,

If μ is any measure then

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f(x)| M^{c}(\chi_{Q}\mu)(x)^{\frac{1}{n'}} dx$$

from which we have the global inequality

$$\left(\int_{\mathbb{R}^n} |f(x)|^{n'} d\mu\right)^{\frac{1}{n'}} \le c_n \int_{\mathbb{R}^n} |\nabla f(x)| M^c \mu(x)^{\frac{1}{n'}} dx,$$

• Related to the **extrapolation** theory of weights
Recall the "better" Isoperimetric inequality,

If μ is any measure then

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f(x)| M^{c}(\chi_{Q}\mu)(x)^{\frac{1}{n'}} dx$$

from which we have the global inequality

$$\left(\int_{\mathbb{R}^n} |f(x)|^{n'} d\mu\right)^{\frac{1}{n'}} \le c_n \int_{\mathbb{R}^n} |\nabla f(x)| M^c \mu(x)^{\frac{1}{n'}} dx,$$

- Related to the **extrapolation** theory of weights
- Proof based on truncation, the I_1 approach is not precise enough

Recall the "better" Isoperimetric inequality,

If μ is any measure then

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f(x)| M^{c}(\chi_{Q}\mu)(x)^{\frac{1}{n'}} dx$$

from which we have the global inequality

$$\left(\int_{\mathbb{R}^n} |f(x)|^{n'} d\mu\right)^{\frac{1}{n'}} \le c_n \int_{\mathbb{R}^n} |\nabla f(x)| M^c \mu(x)^{\frac{1}{n'}} dx,$$

- Related to the **extrapolation** theory of weights
- Proof based on truncation, the I_1 approach is not precise enough
- this makes appear in a natural way the class of weights such that $w^{n'} \in A_1$,

Recall the "better" Isoperimetric inequality,

If μ is any measure then

$$\left(\int_{Q} |f(x) - f_{Q}|^{n'} d\mu(x)\right)^{\frac{1}{n'}} \le c_{n} \int_{Q} |\nabla f(x)| M^{c}(\chi_{Q}\mu)(x)^{\frac{1}{n'}} dx$$

from which we have the global inequality

$$\left(\int_{\mathbb{R}^n} |f(x)|^{n'} d\mu\right)^{\frac{1}{n'}} \le c_n \int_{\mathbb{R}^n} |\nabla f(x)| M^c \mu(x)^{\frac{1}{n'}} dx,$$

- Related to the **extrapolation** theory of weights
- Proof based on truncation, the I_1 approach is not precise enough
- this makes appear in a natural way the class of weights such that $w^{n'} \in A_1$,

$$(M(w^{n'})(x))^{\frac{1}{n'}} \le c w(x)$$

We recall the following characterization

Let 1 . Then

```
||wI_1(f)||_{L^{p^*}(\mathbb{R}^n)} \le c ||wf||_{L^p(\mathbb{R}^n)}
```

We recall the following characterization

Let 1 . Then

 $||wI_1(f)||_{L^{p^*}(\mathbb{R}^n)} \le c ||wf||_{L^p(\mathbb{R}^n)}$

if and only if

We recall the following characterization

Let 1 . Then

$$||wI_1(f)||_{L^{p^*}(\mathbb{R}^n)} \le c ||wf||_{L^p(\mathbb{R}^n)}$$

if and only if

w satisfies the A_{p,p^*} condition: $\left[w\right]_{A_{p,p^*}} = \sup_Q \left(f_Q \, w^{p^*} \right) \left(f_Q \, w^{-p'} \right)^{\frac{p^*}{p'}} < \infty$

We recall the following characterization

Let 1 . Then

$$||wI_1(f)||_{L^{p^*}(\mathbb{R}^n)} \le c ||wf||_{L^p(\mathbb{R}^n)}$$

if and only if

$$w$$
 satisfies the A_{p,p^*} condition:
$$\left[w\right]_{A_{p,p^*}} = \sup_Q \left(\oint_Q w^{p^*} \right) \left(\oint_Q w^{-p'} \right)^{\frac{p^*}{p'}} < \infty$$

and hence

We recall the following characterization

Let 1 . Then

$$||wI_1(f)||_{L^{p^*}(\mathbb{R}^n)} \le c ||wf||_{L^p(\mathbb{R}^n)}$$

if and only if

$$w$$
 satisfies the A_{p,p^*} condition:
$$\left[w\right]_{A_{p,p^*}} = \sup_Q \left(\oint_Q w^{p^*} \right) \left(\oint_Q w^{-p'} \right)^{\frac{p^*}{p'}} < \infty$$

and hence

$$\|wf\|_{L^{p^*}(\mathbb{R}^n)} \le c \|w\nabla f\|_{L^p(\mathbb{R}^n)}$$

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

As a consequence,

$$\|wf\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n} [w]_{A_{p,p^{*}}}^{\frac{1}{n'}} \|w\nabla f\|_{L^{p}(\mathbb{R}^{n})}$$

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

As a consequence,

$$\|wf\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n} [w]_{A_{p,p^{*}}}^{\frac{1}{n'}} \|w\nabla f\|_{L^{p}(\mathbb{R}^{n})}$$

The way to prove it is by combining

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

As a consequence,

$$\|wf\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n} [w]_{A_{p,p^{*}}}^{\frac{1}{n'}} \|w\nabla f\|_{L^{p}(\mathbb{R}^{n})}$$

The way to prove it is by combining

• 1) The key result: The (n', 1) Isoperimetric inequalities with a measure

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

As a consequence,

$$\|wf\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n} [w]_{A_{p,p^{*}}}^{\frac{1}{n'}} \|w\nabla f\|_{L^{p}(\mathbb{R}^{n})}$$

The way to prove it is by combining

- 1) The key result: The (n', 1) isoperimetric inequalities with a measure
- 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

As a consequence,

$$\|wf\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n} [w]_{A_{p,p^{*}}}^{\frac{1}{n'}} \|w\nabla f\|_{L^{p}(\mathbb{R}^{n})}$$

The way to prove it is by combining

- 1) The key result: The (n', 1) Isoperimetric inequalities with a measure
- 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds
- 3) The "truncation method" to "lift" from weak to strong.

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

As a consequence,

$$\|wf\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n} [w]_{A_{p,p^{*}}}^{\frac{1}{n'}} \|w\nabla f\|_{L^{p}(\mathbb{R}^{n})}$$

The way to prove it is by combining

- 1) The key result: The (n', 1) isoperimetric inequalities with a measure
- 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds
- 3) The "truncation method" to "lift" from weak to strong.

Observation, if we use fractional integrals we have for 1

Thm Let $1 \le p < n$, then and let $w \in A_{p,p^*}$. Then there exists a constant $c_{n,p}$ such that for any cube Q,

$$\left\|w(f-f_Q)\right\|_{L^{p^*}(Q,dx)} \le c_{n,p}[w]_{A_{p,p^*}}^{\frac{1}{n'}} \left(\int_Q |w\nabla f|^p dx\right)^{\frac{1}{p}}.$$

As a consequence,

$$\|wf\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n} [w]_{A_{p,p^{*}}}^{\frac{1}{n'}} \|w\nabla f\|_{L^{p}(\mathbb{R}^{n})}$$

The way to prove it is by combining

- 1) The key result: The (n', 1) Isoperimetric inequalities with a measure
- 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds
- 3) The "truncation method" to "lift" from weak to strong.

Observation, if we use fractional integrals we have for 1

 $\|wI_{1}(f)\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq c_{p,n}[w]_{A_{p,p^{*}}}^{\frac{1}{n'}\max\{1,\frac{p'}{p^{*}}\}}\|wf\|_{L^{p}(\mathbb{R}^{n})}$

Lemma There exists a dimensional constant c > 0 such that for every Lipschitz function $f : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$ and for any $R = I_1 \times I_2 \in \mathfrak{R}$,

$$\oint_{R} |f - f_{R}| \le c \,\ell(I_{1}) \oint_{R} |\nabla_{1}f| + c \,\ell(I_{2}) \oint_{R} |\nabla_{2}f|. \tag{1}$$

Lemma There exists a dimensional constant c > 0 such that for every Lipschitz function $f : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$ and for any $R = I_1 \times I_2 \in \mathfrak{R}$,

$$\oint_{R} |f - f_{R}| \le c \,\ell(I_{1}) \oint_{R} |\nabla_{1}f| + c \,\ell(I_{2}) \oint_{R} |\nabla_{2}f|. \tag{1}$$

• But we use an improvement, a sharp fractional version

Lemma There exists a dimensional constant c > 0 such that for every Lipschitz function $f : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$ and for any $R = I_1 \times I_2 \in \mathfrak{R}$,

$$\oint_{R} |f - f_{R}| \le c \,\ell(I_{1}) \oint_{R} |\nabla_{1}f| + c \,\ell(I_{2}) \oint_{R} |\nabla_{2}f|. \tag{1}$$

• But we use an improvement, a sharp fractional version

Thm Let $R = I_1 \times I_2$ be a rectangle in \Re and $\delta_1, \delta_2 \in (0, 1)$. Then

Lemma There exists a dimensional constant c > 0 such that for every Lipschitz function $f : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$ and for any $R = I_1 \times I_2 \in \mathfrak{R}$,

$$\oint_{R} |f - f_{R}| \le c \,\ell(I_{1}) \oint_{R} |\nabla_{1}f| + c \,\ell(I_{2}) \oint_{R} |\nabla_{2}f|. \tag{1}$$

• But we use an improvement, a sharp fractional version

Thm Let $R = I_1 \times I_2$ be a rectangle in \Re and $\delta_1, \delta_2 \in (0, 1)$. Then

$$\begin{aligned} \oint_{R} |f - f_{R}| &\leq c_{n_{1}} (1 - \delta_{1}) \ell(I_{1})^{\delta_{1}} \oint_{R} \int_{I_{1}} \frac{|f(x_{1}, x_{2}) - f(y_{1}, x_{2})|}{|x_{1} - y_{1}|^{n + \delta_{1}}} \, dx_{2} dx_{1} dy_{1} \\ &+ c_{n_{2}} (1 - \delta_{2}) \ell(I_{2})^{\delta_{2}} \oint_{R} \int_{I_{2}} \frac{|f(y_{1}, x_{2}) - f(y_{1}, y_{2})|}{|x_{2} - y_{2}|^{n + \delta_{2}}} \, dy_{1} dx_{2} dy_{2}. \end{aligned}$$

The natural starting point is given by the expression

$$\int_{R} |f(x) - f_{R}| \, dx \le a(R)$$

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

for any family of disjoint *dyadic* subrectangles $\{R_i\}$ of R

• This is related to the SD_p condition:

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

for any family of disjoint *dyadic* subrectangles $\{R_i\}$ of R

• This is related to the SD_p condition: $\left(\sum_{i} a(Q_i)^p \frac{w(Q_i)}{w(Q)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i Q_i|}{|Q|}\right)^{\frac{1}{s}} a(Q)$

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

- This is related to the SD_p condition: $\left(\sum_{i} a(Q_i)^p \frac{w(Q_i)}{w(Q)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i Q_i|}{|Q|}\right)^{\frac{1}{s}} a(Q)$
- Key point:

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

- This is related to the SD_p condition: $\left(\sum_{i} a(Q_i)^p \frac{w(Q_i)}{w(Q)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i Q_i|}{|Q|}\right)^{\frac{1}{s}} a(Q)$
- Key point: eccentricity

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

- This is related to the SD_p condition: $\left(\sum_{i} a(Q_i)^p \frac{w(Q_i)}{w(Q)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i Q_i|}{|Q|}\right)^{\frac{1}{s}} a(Q)$
- Key point: eccentricity

$$e(R) := \frac{|R|^{\frac{1}{n}}}{d(R)}$$

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

- for any family or upper definition: This is related to the SD_p condition: $\left(\sum_{i} a(Q_i)^p \frac{w(Q_i)}{w(Q)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i Q_i|}{|Q|}\right)^{\frac{1}{s}} a(Q)$ interpret energy $e(R) := \frac{|R|^{\frac{1}{n}}}{d(R)}$
 - We derive some of the results we already had in the cubic context, but not all

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

- for any family or upper definition: This is related to the SD_p condition: $\left(\sum_{i} a(Q_i)^p \frac{w(Q_i)}{w(Q)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i Q_i|}{|Q|}\right)^{\frac{1}{s}} a(Q)$ The operativity $e(R) := \frac{|R|^{\frac{1}{n}}}{d(R)}$
 - We derive some of the results we already had in the cubic context, but not all
 - One sample: we can replace the L^1 norm by

The natural starting point is given by the expression

$$\oint_{R} |f(x) - f_{R}| \, dx \le a(R)$$

Definition The functional *a* satisfies $a \in SD_{p,\mathcal{R}}^{s}(w)$ condition if for any $R \in \mathcal{R}$

$$\left(\sum_{i} a(R_i)^p \frac{w(R_i)}{w(R)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i R_i|}{|R|}\right)^{\frac{1}{s}} a(R)$$

- for any family or upper definition: This is related to the SD_p condition: $\left(\sum_{i} a(Q_i)^p \frac{w(Q_i)}{w(Q)}\right)^{\frac{1}{p}} \le c \left(\frac{|\cup_i Q_i|}{|Q|}\right)^{\frac{1}{s}} a(Q)$ The operativity $e(R) := \frac{|R|^{\frac{1}{n}}}{d(R)}$
 - We derive some of the results we already had in the cubic context, but not all
 - One sample: we can replace the L^1 norm by

$$\left(\oint_R |f - f_R|^{\delta} \right)^{\frac{1}{\delta}}$$

Thank you