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improving the classical estimate of Meyers-Ziemer theorem
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Sobolev inequalities

The classical Sobolev inequality in R™ for n > 2 is given by

Wy < ¥y 1 <P <
wherep*znp—fp or 111
p p* n

Usual approach, via the sub-representation formula:

|f(@)] < en I1(IV ) (2)

combined with the classical boundedness,

I : LP(R™) — LP (R™)

la(w)(2) = [

R™ |z — gy



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p =1



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p = 1 1* = 2 =n/



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p = 1 1* = 2 =n/

e However we cannot use the pointwise estimate



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p = 1 1* = 2 =n/

e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p =1 1* = - =n/

n—1

e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)

I1 only satisfies the weak endpoint boundedness



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p = 1 1* = 1o =n/
e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)

I1 only satisfies the weak endpoint boundedness

17 : LY(R™) — L7%°(R™)



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p =1 1* = - =n/

n—1

e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)

I1 only satisfies the weak endpoint boundedness
17 : LY(R™) — L7%°(R™)

yet the Sobolev (strong) inequality still holds in this case,



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p =1 1* = - =n/

n—1

e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)

I1 only satisfies the weak endpoint boundedness
17 : LY(R™) — L7%°(R™)

yet the Sobolev (strong) inequality still holds in this case, by the truncation method



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p =1 1* = - =n/

n—1

e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)

I1 only satisfies the weak endpoint boundedness
17 : LY(R™) — L7%°(R™)
yet the Sobolev (strong) inequality still holds in this case, by the truncation method

||f||Ln’(Rn) < cn ||vf||Ll(Rn)-



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p =1 1* = - =n/

n—1

e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)

I1 only satisfies the weak endpoint boundedness
17 : LY(R™) — L7%°(R™)
yet the Sobolev (strong) inequality still holds in this case, by the truncation method
||f||Ln’(Rn) S Cn ||vf||L1(]Rn)

e Gagliardo proved it by using a different way



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Gagliardo inequality

At the endpoint p =1 1* = - =n/

n—1

e However we cannot use the pointwise estimate 17 : L1(R®) —» L”/(R”)

I1 only satisfies the weak endpoint boundedness
17 : LY(R™) — L7%°(R™)
yet the Sobolev (strong) inequality still holds in this case, by the truncation method
||f||Ln’(Rn) S Cn ||vf||L1(]Rn)

e Gagliardo proved it by using a different way

e equivalent to the Isoperimetric inequality
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e As before, the usual proof is based on the local sub-representation formula:

@) — fgl < en LIV X ) (@)

e The point of the lecture is to avoid the use of fractional operators
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(rough & classical) Fractional Fest

Let 6 € (0,1),p € [1,7%), and p5 be the fractional Sobolev exponent defined by
1 1 )

p D5 N

([ 1stia) < ([, n'ff);f%ypdydx)l/p,

in particular we have the Isoperimetric type estimate

(frtsan)™ <o [, [ IOSO 4,

It turns out that there is a better estimate

</Rn |f(33)\p§ dac)p% < cnps (1 — 5)% (/n/n f(x) — f(y)|P dyda;> 1/p

jz — y[ntop

| will refer to it as the Brézis-Bourgain-Mironescu phenomenon.
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Begin with

1 Q)
— x) — dx < cp, V
Ol Jof@ = foldz < en= o2 |19

1/p
<et(@ (5 [ 19sP)

More generally, consider the “functional”

1/
0,(Q) = A (Q) (%)) ’

e Goal: to derive better integrability result avoiding the use of representation formu-
las

e Method: Harmonic Analysis
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Fix f and a, as above such that

1
@/Q F(2) = foldr < au(Q) Q€ Q
then
Thm (baby version)
|- fo < enpau(Q)

Lp*,OO(Q’%)

e A consequence of the following geometric condition satisfied by the functional a,

(Z CLM(Qﬁp*%) ! < au(Q) (D, condition)

J

e It is very simple to verify this condition

e The exponent p* is optimal
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The strong case and the truncation method
e in the special case p = py = |V f|

the “truncation” method can be applied to derive the strong norm:

1 1/p
Hf—fQHL (Q,‘ ; < cnpl(Q) <@/Q|vf|p>

e The Lorentz type estimate also follows,

1/p
Hf fQHLp P(Q,‘ ) = < cnp £(Q) <|Q\/| f‘p>
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“Degenerate” elliptic equations

Lu = div(A(x).Vu) =0

e “Degenerate” elliptic operators

MéPw(z) < A(z)E€ < AJEPw(x)

where w is a weight with some sort of singularity.
e The seminal work is due to Fabes-Kenig-Serapioni (1982)

they consider the A, condition of Muckenhoupit:
1 1
[w] , = sup <—/ wdm) <—/ w_lda:>
A2 g \lQl/Q Q| /Q

e method of proof is based on the Moser iteration technique
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The two key points
Let w € As

1) A Poincaré type inequality,

—1 — 2w x % C 2w €L
(w(Q)/QIf fol d) < wf(Q)< 5 o I¥ 11 d)

2) A Poincaré—Sobolev type inequality for some 27 > 2:

oo B o (L 9 P )
(@ Jolr = o) < cot@ (s [, 9Pt

e Fabes-Kenig-Serapioni.

1

e The main question we address is to find good bounds for both
2

and Cuw

and to consider other objects beyond the gradient
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“Degenerate” Poincaré-Sobolev inequalities

Recall the A, condition

e (2 I
[w]Ap = sgp <@/dea:-> (@/pr 1da:>

Begin with

1 £(Q)
— — d n V
Ol Jo [F@ = foldz < ca™ 52 | 197

and continue applying Holder’s inequality and the definition of A, to obtain

1 Lo/ L/p
0 Jo 1@ = fal de < cat@Lul}, (m |, I r@Pe das)

more generally,

1(Q) ) 1/p

au(Q) = A (Q) ( ()
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The self-improving property and the D, condition

e Again, the point is a geometric condition attached to the functional a,

w(Q;) z
S au(Q)P
( (Q5) w(Q))

< au(Q) (Dp condition)

J

e However, a better result is needed: there is a larger exponent ¢ > p such that

1

(Z au(Qj)qu:U((%j))> q S au(Q) Dgy(w) condition
J
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We consider “abstract” functionals a, a: O — (0, 0)

Def. a € D,(w) if for any cube @

=

(Za(@ﬂf(%))) < ca(@)
J

and for any family of pairwise disjoint subcubes {Q;} of Q

Thm (Franchi, P, Wheeden)
Let a € D,-(w) with w € As. Let f such that

1
Q1 o F@ — faldz < a(@

S a(Q)

Lroo(Q, )

Then Hf B fQ|

e Motivated by work due to L. Saloff-Coste and later by P. Hajlasz and P. Koskela
e Proof based on Harmonic Analysis No control of the relevant constants
e the sharpest » = r, is a sort of the “Sobolev exponent” of the functional a
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A recent much sharper theorem

Thm
Let a € D,(w) with w € Ax. Let f such that

1
9l Jo @)~ faldr < a(@

Then <cpr|w]g, llalla(@Q).

LT,OO(Q)&CS))

|- fo

e Joint work with J. Canto

e Notice that this yields the John-Nirenberg theorem as well with the sharp Aso
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A new geometric condition

Definition Let s > 1. a € SDTS (w) if for any cube @

. (@) C<|Uij|>ia
(Zj: (Q;) w(Q)) < ol (Q)

and any family of pairwise disjoint subcubes {Q;} of Q.

e Compare with the D, (w) condition:

a -r—w(Q‘j) ' ca
(%: (@) w(Q)> < ca(Q)

=

e It looks like the Ao condition, but for functionals
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e Main example: fora measure p a(Q) = £(Q)” (5((%)» /P
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A new geometric condition

Definition Let s > 1. a € SDTS (w) if for any cube @

0yr@) ' C<|Uij|>ia
(; (@) w(Q)) S (@)

and any family of pairwise disjoint subcubes {Q;} of Q.

e Compare with the D, (w) condition:

0@\ .
(%: (@) w(Q)> < ca(Q)

=

e It looks like the Ao condition, but for functionals

e Main example: fora measure p a(Q) = £(Q)” (5%%%)1/19

e The best possible constant ¢ above is denoted by ||a||
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A very recent improvement

Thm Letw € A and let a € SDJ(w) with w € Ax.
Let f such that,

1
Q1 o F@ — faldz < a(@

Then

S

<ecpr(l+4 %) [w] A llal]T+s a(Q)

Hf_fQHLT(l_F%),OO(Q’ﬁ)

e Joint work with A. Claros

e Letting s — oo (which formally is D, (w)) we recover the previous result
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where it is enough to assume that ¢ is subadditive: ¢(t1 + t2) < w(t1) + w(t2)

©o(t) = log(1 + t) or more generally ¢(t) = log") (1 +t) or any concave

e Oor by “polynomials”, namely inf ][ f — 7]
7T€7Dm Q

e A. Lerner, E. Lorist and S. Ombrosi relax the A, condition we imposed. They
use sparse theory
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e This improves the Fabes-Kenig-Serapioni weighted estimate
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e This functional “interpolates” between the oscillation of f and
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Recall the “rough” result, ][ £(2) — fol dz < ent(Q) ][/ |f () _|?{§_y5)|dydx

Let 6§ € (0,1), then

£ 1@~ falde < e 1= )@ f, [ =T8Ny o

The work of
¢ J. Bourgain, H. Brezis and P. Mironescu Fourier Analysis
e M. Milman Interpolation and Extrapolation

Thm Let 6 € (0,1)andp € [1,0) then

HORF O )

- 5
][Q |f(£13) _ fQ| dr < Cn,p (1 — 5)17 E(Q) (][Q 0 |aj - y|n_|_p5

e We can self-improve starting from this result
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Thm
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Other degenerate examples
Letl <p < ooandletw € Aj.
Also let p5 . be the fractional Sobolev exponent defined by

11 8 1
P D5 7 14log[w]a,

Then we have the following theorem.

( @ Jolf e M"“d*’)

@ = f@P Y
w(Q) /Q Q |-yt Y d)

Thm

< cn (1-0)7 [w]ATpf(Q)(S (

1
e Features: the A; degeneracy and the extra BBM bonus (1 — §)»

e New result: the thm holds whenever w € A,

e joint work with Kim Myyrylainen and Julian Weigt
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From Gagliardo to Sobolev seminorms

Thm. LetO<d<landw € A;.

@) = 1) [w]a,
QY [, |, 7 it W@ de < en o 350@) [ IV @lw(e) da

e The quadratic factor (1 — §) 2 should be linear instead as in the unweighted case.

e We have the following weak type result although the method of proof gives a higher
power of [w] 4,.

Thm. As above,

2_|_1_—5
f@) — fy) [wl 4
12 0 =< @ L 1 Vi(x)lw(x)c
O = s (o) = " 805" |, V@)
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From Gagliardo to Sobolev seminorms

Thm. LetO<d<landw € A;.

@) = 1) [w]a,
QY [, |, 7 it W@ de < en o 350@) [ IV @lw(e) da

e The quadratic factor (1 — §) 2 should be linear instead as in the unweighted case.

e We have the following weak type result although the method of proof gives a higher
power of [w] 4,.

Thm. As above,

2_|_1_—5
f(z) — f(y) [w] 4
14 0 =< @ L 1 Vi(x)|lw(x)c
(@ =y e e (@xQuay deay) O~ ) Q) |1V @)w()

e Motivated by a result by Brezis-Van Schaftingen-Yung
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Now, by the L1 Poincaré result
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SELF-IMPROVING OF EXPONENTIAL TYPE

Let’s try to understand an special case, assume that Vf € L7'  Then we know
that f € exp L

Now, by the L1 Poincaré result

1

f @) - folde < ent@f, V5@ de < e ( /QIVf(w)I”dw>
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Let’s try to understand an special case, assume that Vf € L7'  Then we know
that f € exp L

Now, by the L1 Poincaré result
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SELF-IMPROVING OF EXPONENTIAL TYPE

Let’s try to understand an special case, assume that Vf € L7'  Then we know
that f € exp L

Now, by the L1 Poincaré result

1
f,1f@ = faldz < ent(@ V7 @] d < en ( /, IVf(x)I”dw> ;
It is false that locally W1 is contained in L°°. The sharp result is that locally
whn ¢ exp L™
The best way to express this is by means of the so called Trudinger’s inequality:

n

1f = fQHexpL”’(Q) =€ </Q |Vf|">
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SELF-IMPROVING OF EXPONENTIAL TYPE

Let’s try to understand an special case, assume that Vf € L7'  Then we know
that f € exp L

Now, by the L1 Poincaré result

1
£15@) = folde < ent(@4 19F(@)|dz < cn ( / IVf(w)I”dw>
Q@ Q Q
It is false that locally W1 is contained in L°°. The sharp result is that locally
Wi c exp L

The best way to express this is by means of the so called Trudinger’s inequality:

1
If = fQ”expL”/(Q) s ¢ </Q |Vf|n>

This says that f is not only LP but goes much further, is of exponential type.



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

SELF-IMPROVING OF EXPONENTIAL TYPE

Let’s try to understand an special case, assume that Vf € L7'  Then we know
that f € exp L

Now, by the L1 Poincaré result

f 15~ fqlde < ent@f V5@ dx < ( /QIVf(w)I”dw>

It is false that locally W1 is contained in L°°. The sharp result is that locally
Wi c exp L

The best way to express this is by means of the so called Trudinger’s inequality:

1
If = fQ”expL”/(Q) s ¢ </Q |Vf|n>

This says that f is not only LP but goes much further, is of exponential type.
This inequality is important in many applications.
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each cube @

1
9l Jo F @)~ Fal dy < a(@),

The questionis:  what kind of geometrical condition, like the D, condition, we have
to impose on a to derive that f has a self-improving property of exponential type?
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Super-exponential self-improving

We consider again the following general problem: let f be a function such that for
each cube @

1
9l Jo F @)~ Fal dy < a(@),

The questionis:  what kind of geometrical condition, like the D, condition, we have
to impose on a to derive that f has a self-improving property of exponential type?

Definition Let r € (1,00). a € T, if for any cube @

[=

(za@j)?“) | < ca(Q)

J

and any family of pairwise disjoint subcubes {Q;} of Q.
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1
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Definition Let r € (1,00). a € T, if for any cube @
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and any family of pairwise disjoint subcubes {Q;} of Q.

e This condition is much stronger than the D, condition.
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Super-exponential self-improving

We consider again the following general problem: let f be a function such that for
each cube @

1
9l Jo F @)~ Fal dy < a(@),

The questionis:  what kind of geometrical condition, like the D, condition, we have
to impose on a to derive that f has a self-improving property of exponential type?

Definition Let r € (1,00). a € T, if for any cube @

[=

(za@j)?“) | < ca(Q)

J

and any family of pairwise disjoint subcubes {Q;} of Q.

e This condition is much stronger than the D, condition.
e The model examples is provided by

a(Q) = (/Q gr>? or more generally a(Q) = z/(Q)%.
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Super-exponential self-improving

Fix a function f such that ][ f — fQ| < a(Q)
o <
Thm |If a € T,, then

Hf - fQHexp LT,(Q,dx <c CL(Q)

Q]

LetO < < 1,andletp =<
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Super-exponential self-improving
Fix a function f such that ][ f = fol <a(Q)
0 <

Thm |[f a € T, then

|- fo| < ca(Q)

exp L (Q7|Q‘)

LetO < 6 < 1,andlet p =g‘

][Qlf(x) — fol dx
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Super-exponential self-improving

Fix a function f such that ][ f — fQ| < a(Q)
o <
Thm |If a € T,, then
Hf_fQHexer (Q,IQ‘) = @ al@)
letO<é§ < 1,andletp =%
|f(x) — f(y)P

. 5
][Qlf(a:)—fgldq; <c(1-08)reQ) <]€2 0 |z gt

1

dd>_
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Super-exponential self-improving

Fix a function f such that ][ f — fQ| < a(Q)
o <
Thm |If a € T,, then

|- fo| <ca(Q)

exp L (Q,|Q‘)

LetO < < 1,andletp =<
_folde < (1 —8)p Q)

f15@ — folds < c1-0)he@) (£, v

_ s |f(x) — f(y)|s "

= cn(l —906)n </Q/Q dydac)

F@) — F@P .\
Q [z -yt " d)

|z — y|2"
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Super-exponential self-improving

Fix a function f such that ][ f — fQ| < a(Q)
o <
Thm |If a € T,, then

|- fo| < ca(Q)

exp L (Q,|Q‘)

LetO < 6 < 1,andlet p =7§
— xr <c(l-— 5 0

£ 1@~ folde < e -0 (@) (]g v

N AR LAY

— (1 — 6) (/Q : dyd)

1
|f(x) — f(y)|P p
Q |z —y[ntpd Y d)

|z — y|2"
Cor.
5

HOENOL
Hf—fQHeXpL( D' (@ gy < en(1l—8)n (f@ 0 l—g2n ¥ d)
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Super-exponential self-improving

Fix a function f such that ][ f — fQ| < a(Q)
o <
Thm |If a € T,, then

|- fo| < ca(Q)

exp L (Q,‘ ) —

LetO < < 1,andletp =<
xT) — T c(1l — % 0

15~ foldz <e(1 =67 Q) (é : :

_ 8 |f(z) — f(y)]d "

= cn(l —906)n </Q/Q dydac)

£(@) — F)IP z
Q fx—yte d)

|z — y|2"
Cor.
5

HOENOL
Hf—fQHeXpL( D' (@ gy < en(1l—8)n (/Q 0 l—g2n ¥ d)

e For the proof, we have to check a5(Q) € T%
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Super-exponential self-improving

Fix a function f such that ][ f — fQ| < a(Q)
o <
Thm |If a € T,, then

|- fo| < ca(Q)

exp L (Q,‘ ) —

LetO <d < 1,andletp ="
1

s ([ M@= @\
£ 15~ folds <c@-ap @) (f, [, 1T ayas)’

(1) </Q i f(z) — f(y)lédydx>

|z — y|2"

n

Cor.

[
n

£ (@) = F@)]°
| = Jallop (g ) < et = O (/Q e dyd:c)

e For the proof, we have to check a5(Q) € T%
e From here we can recover the result of Trudinger.
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Fractional isoperimetric inequalities with measures

Thm. Let O < 6 < 1. Then for a general measure p

n—o

L N
(/QIf fol u)
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Fractional isoperimetric inequalities with measures

Thm. Let O < 6 < 1. Then for a general measure p

n—o

DR
(/QIf fol u)

<enr=0) [ [ Ty @) da
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Weighted fractional isoperimetric inequalities with one sharp gain

Let @ be a cube and let E be any measurable set E C Q. Then, for any weight w
andany 0 < e < 2,
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- Mw(x) = B

Mw(af;)n n
w(Q) | cne /E /Q\E P dydx + cn5/ s /E P |n-I-1 _ dydz
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Let @ be a cube and let E be any measurable set E C Q. Then, for any weight w
andany 0 < e < 2,

w(Q\ E) w(E) <
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- Mw(x) e R
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e For the proof can be used a representation formula with the BBM gain!!
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Cor.
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Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Weighted fractional isoperimetric inequalities with one sharp gain

Let @ be a cube and let E be any measurable set E C Q. Then, for any weight w
andany 0 < e < 2,

w(Q\ E) w(E) <

14 —iF
- Mw(x) e R

Mw(af;)n n
w(Q) | cne /E /Q\E gl dydx + cnas/ o /E . |n_|_1 . dydzx

e For the proof can be used a representation formula with the BBM gain!!
e as corollary we have the global counterpart

Cor.

n—o

= ” £ (@) = F) ns
(/Rnlf(:z:)l 5du(:c)) <cn(l—=906) /n/n P, dy (Mp) n dx

we believe that this result is not closed:



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Weighted fractional isoperimetric inequalities with one sharp gain

Let @ be a cube and let E be any measurable set E C Q. Then, for any weight w
andany 0 < e < 2,

w(Q\ E) w(E) <

14 —iF
- Mw(x) e R

Mw(x) n
w(Q) | cne /E /Q\E gl dydx + cpe o /E . y|”‘|‘1 . dydzx

e For the proof can be used a representation formula with the BBM gain!!
e as corollary we have the global counterpart

Cor.

n—o

= " £ (@) = F) ns
(/Rnlf(:z:)l 6du(w)) <cn(l—=906) /n/n P, dy (Mp) n dx

we believe that this result is not closed:
e Coniecture: We believe that the re<tilt chotulld hold with botind S(1 — §)
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Recall the Poincaré-Sobolev inequality with p = 1, p* = n’
1
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There is a “better” Isoperimetric inequality,

1
7

’ 1
(/Q|f(33)_fQ| du(w)) < cp /Q|Vf|(M’u)(x)n do
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Isoperimetric inequalities for measures

Recall the Poincaré-Sobolev inequality with p = 1, p* = n’
1

(/Q 7 (@) - fl" da;)” <en [ IVfliz Q€@

There is a “better” Isoperimetric inequality,

1
7

! 1
(/Q |f(z) — fol du(a:)) < ecp /Q IV F| (M) (2)7 d
and hence

1
7

(/Rn | f(z)[" du) < cn /Rn VI (Mp)n dx
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The fractional maximal function of u is defined by

(P)
ME = sup 4P)® Sy
@ P>z, Pe(Q) | P

For a« = 0, we have the classical Hardy—Littlewood maximal function M = Mj.
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Extensions of the Fractional isoperimetric inequality

The fractional maximal function of u is defined by

(P)
ME = sup HP)*E 2 -
@ P>z, Pe(Q) | P

For a« = 0, we have the classical Hardy—Littlewood maximal function M = Mj.

Thm.
let0<d <1, 1<qg< ", a=n—q(n—9).
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Extensions of the Fractional isoperimetric inequality

The fractional maximal function of u is defined by

(P)
ME = sup HP)*E 2 -
@ P>z, Pe(Q) | P

For a« = 0, we have the classical Hardy—Littlewood maximal function M = Mj.

Thm.
let0<d <1, 1<qg< ", a=n—q(n—9).

Tthen

% [f(z) — f(y) !
(/Q|f—f62|qdu> Sc(l—é)/Q/Q P dy (ME op) (2)7dz

e joint work with Kim Myyrylainen and Julian Weigt
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Extensions of the Fractional isoperimetric inequality

The fractional maximal function of u is defined by

(P)
ME = sup HP)*E 2 -
@ P>z,Pc(Q) | P|

For a« = 0, we have the classical Hardy—Littlewood maximal function M = Mj.

Thm.
let0<d <1, 1<qg< ", a=n—q(n—9).

Tthen

% [f(z) — f(y) !
(/Q|f—fQ|qd,u> Sc(l—é)/Q/Q P dy (ME op) (2)7dz

e joint work with Kim Myyrylainen and Julian Weigt

e The case g = ”T_‘S corresponds to the Isoperimetric inequality already mentioned
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Improving the classical Meyers-Ziemer theorem

Thm.Letl <¢g<-"-anda=n—q(n—1). Then

n—1
" 1
q e
( JI = fQ|qu> <en |1V (Mo gu)t dr

Cor. Suppose that 4 satisfies the following polynomial growth condition, namely
that for some constant c,, such that

w(Q) < ¢ (@)1 1),
Then
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Improving the classical Meyers-Ziemer theorem

Thm.Letl <¢g<-"-anda=n—q(n—1). Then

n—1

; q 1
</Q|f—fQ| du) <cn /Q|Vf|(Ma,Qu)qd$

Cor. Suppose that 4 satisfies the following polynomial growth condition, namely
that for some constant c,, such that

w(Q) < ¢ (@)1 1),
Then

Q|

1

(/Q|f - fQ|qu> <ch | IVflda

e Improves classical result of W. Ziemer and N. Meyers from the 60’s. They just
considered the case ¢ = 1.
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Isoperimetric inequalities and Extrapolation theory |
Recall the “better” Isoperimetric inequality,

If 1 IS any measure then

1
7

</Q | f(z) — fQI”’ d,u(x)> < cn /Q IV f(x)] MC(XQM)(QU)W dz

from which we have the global inequality

1
7

([ @1 d)™ < e /Ran(xNMcu(:c)% du,
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from which we have the global inequality
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e Related to the extrapolation theory of weights
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e Proof based on truncation, the 17 approach is not precise enough
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from which we have the global inequality
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e this makes appear in a natural way the class of weights such that w" € A1,
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Isoperimetric inequalities and Extrapolation theory |
Recall the “better” Isoperimetric inequality,
If 1 IS any measure then

1
7

</Q | f(z) — fQI”’ d,u(a?)> < cn /Q IV f(x)| MC(XQM)(x)ﬁ dx

from which we have the global inequality
R 1

e Related to the extrapolation theory of weights
e Proof based on truncation, the 17 approach is not precise enough

e this makes appear in a natural way the class of weights such that w" € A1,

(M (™) (@) < ¢ w(z)
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Isoperimetric inequalities and Extrapolation theory li
We recall the following characterization

Let 1 < p < n. Then

||wll(f>||Lp*(Rn) S C ||wf||Lp(Rn)
if and only if

w satisfies the Ap,p* condition:

[w]Ap,p* — Sgp (JZQ wp*> <][Q w—p’) < 00
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if and only if

w satisfies the Ap,p* condition:
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and hence
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We recall the following characterization

Let 1 < p < n. Then

||wll(f>||Lp*(Rn) S C ||wf||Lp(Rn)
if and only if

w satisfies the Ap,p* condition:

[w]Ap,p* — Sgp (JZQ wp*> <][Q w—p’) < 00

@\F*

and hence

[ f | o ey < 1wV Fll oany
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Thm letl < p < n,thenandletw € A, ,+. Then there exists a constant cy
such that for any cube @,
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The precise weighted Gagliardo-Nirenberg-Sobolev inequality

Thm letl < p < n,thenandletw € A, ,+. Then there exists a constant cy
such that for any cube @,

1
1 »
7

n (/ |wVf|pd:c>p.
p.p* \JQ

[w(f = 1) L .y < enlel

As a consequence,

1
wa”LP*(]Rn) < ¢p,n [w]%p,p* ||wvf||Lp(]Rn)
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such that for any cube @,

1

( /Q IwVflpdw> ’

1
7

Hw(f . fQ)HLP*(Q,da:) = Cn’p[w]ﬁp,p*

As a consequence,

1
wa“Lp*(R”) < ¢p,n [w]%pp* ”wfoLp(]R”)

The way to prove it is by combining
e 1) The key result: The (n’/, 1) Isoperimetric inequalities with a measure
e 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds
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The way to prove it is by combining

e 1) The key result: The (n/, 1) Isoperimetric inequalities with a measure

e 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds
e 3) The “truncation method” to “lift” from weak to strong.
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The precise weighted Gagliardo-Nirenberg-Sobolev inequality

Thm letl < p < n,thenandletw € A, ,+. Then there exists a constant cy
such that for any cube @,

1

ot = 1) gy < nalvl, . ( [, wovsPac)’

As a consequence,

1
wa“Lp*(R”) < ¢p,n [w]%pp* ”wfoLp(]R”)

The way to prove it is by combining

e 1) The key result: The (n’/, 1) Isoperimetric inequalities with a measure
e 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds
e 3) The “truncation method” to “lift” from weak to strong.

Observation, if we use fractional integrals we have for 1 <p <n

% max{1, p—*
Hw]]_(f)HLp*(Rn> < Cp,n[w]App* waHLP(IR{”)
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The initial information

Lemma There exists a dimensional constant ¢ > O such that for every Lipschitz
function f : R"1 x R™"2 — R and forany R = I; X I € R,

£ 1f = fal < et(T) S, IVafl + ct(i2)F V2] (1
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Lemma There exists a dimensional constant ¢ > O such that for every Lipschitz
function f : R"1 x R™"2 — R and forany R = I; X I € R,
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e But we use an improvement, a sharp fractional version

Thm Let R = I; x I, be arectangle in R and §1, > € (0,1). Then
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The initial information

Lemma There exists a dimensional constant ¢ > O such that for every Lipschitz
function f : R"1 x R™"2 — R and forany R = I; X I € R,

£ 1f = f5l < ct(T) S, V161 + ct(i2)F: V2] (1

e But we use an improvement, a sharp fractional version

Thm Let R = I; x I, be arectangle in R and §1, > € (0,1). Then

5 |f(z1, 22) — f(y1,22)
folf = Il < ey (1= 000, | FEEER TR deode dyy

1f(y1,z2) — f(y1,y2)]
|zo — yo|n 02

+ eny (1 - 02)e(I)%24 | dy1deadys.
RrRJI;
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The theory
The natural starting point is given by the expression

£ 17(@) = frl de < a(R)
Definition The functional a satisfies a € SD; » (w) condition if forany R € R

(Zamz-)p'z(g)) ) <o (‘ ij;fi‘)g a(R)

7

for any family of disjoint dyadic subrectangles {R;} of R

e This is related to the SD,, condition:

(Z @y ) Cee() @

e Key point:
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The theory
The natural starting point is given by the expression

£ 17(@) = frl de < a(R)
Definition The functional a satisfies a € SD; » (w) condition if forany R € R

(Zamz-)p@;(g)) ) <o (‘ ﬁjﬁ‘f a(R)

7

for any family of disjoint dyadic subrectangles {R;} of R

e This is related to the SD,, condition: 1 )
AW (Qi) )T <| U Qi|>E
(zz: CL(QZ) ’w(Q) ) S C |Q| CL(Q)

e Key point: eccentricity e(R) 1= Clil?lR

S|

-
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1
e Key point: eccentricity e(R) = L?}'Lz_n)

e We derive some of the results we already had in the cubic context, but not all
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The theory
The natural starting point is given by the expression

£ 1£(2) = fl do < a(R)

Definition The functional a satisfies a € SD; » (w) condition if forany R € R

(prnr ) <o ()

7

for any family of disjoint dyadic subrectangles {R;} of R

e This is related to the SD,, condition: 1 )
(@) )7 <| U Qil)E
(%: CL(Q@) ’w(Q) ) S C |Q| CL(Q)

1
e Key point: eccentricity e(R) = L?}'Lz_n)

e We derive some of the results we already had in the cubic context, but not all

1
e One sample: we can replace the L' norm by <][ I — fR|5) 0
R
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