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J. Canto

1



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Old, recent and very recent collaborators

• More recent results with:

Iker Gardeazabal and Emiel Lorist

• and
Alejandro Claros

Ritva Hurri-Syrjänen, Javier Martinez and Annti Vähäkangas
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• Fractional Poincaré-Sobolev inequalties with the BBM phenomenon:

• Fractional versions of the Isoperimetric inequalities with the BBM phenomenon

improving the classical estimate of Meyers-Ziemer theorem

2



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

3



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

The classical Sobolev inequality in Rn for n ≥ 2 is given by

3



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

The classical Sobolev inequality in Rn for n ≥ 2 is given by

∥∥∥f∥∥∥
Lp∗(Rn)

≤ c
∥∥∥∇f

∥∥∥
Lp(Rn)

1 < p < n

3



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

The classical Sobolev inequality in Rn for n ≥ 2 is given by

∥∥∥f∥∥∥
Lp∗(Rn)

≤ c
∥∥∥∇f

∥∥∥
Lp(Rn)

1 < p < n

where p∗ = pn
n−p or 1

p
−

1

p∗
=

1

n

3



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

The classical Sobolev inequality in Rn for n ≥ 2 is given by

∥∥∥f∥∥∥
Lp∗(Rn)

≤ c
∥∥∥∇f

∥∥∥
Lp(Rn)

1 < p < n

where p∗ = pn
n−p or 1

p
−

1

p∗
=

1

n

Usual approach, via the sub-representation formula:

3



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

The classical Sobolev inequality in Rn for n ≥ 2 is given by

∥∥∥f∥∥∥
Lp∗(Rn)

≤ c
∥∥∥∇f

∥∥∥
Lp(Rn)

1 < p < n

where p∗ = pn
n−p or 1

p
−

1

p∗
=

1

n

Usual approach, via the sub-representation formula:

|f(x)| ≤ cn I1(|∇f |)(x)

3



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

The classical Sobolev inequality in Rn for n ≥ 2 is given by

∥∥∥f∥∥∥
Lp∗(Rn)

≤ c
∥∥∥∇f

∥∥∥
Lp(Rn)

1 < p < n

where p∗ = pn
n−p or 1

p
−

1

p∗
=

1

n

Usual approach, via the sub-representation formula:

|f(x)| ≤ cn I1(|∇f |)(x)

combined with the classical boundedness,

I1 : Lp(Rn) → Lp∗(Rn)

3



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Sobolev inequalities

The classical Sobolev inequality in Rn for n ≥ 2 is given by

∥∥∥f∥∥∥
Lp∗(Rn)

≤ c
∥∥∥∇f

∥∥∥
Lp(Rn)

1 < p < n

where p∗ = pn
n−p or 1

p
−

1

p∗
=

1

n

Usual approach, via the sub-representation formula:

|f(x)| ≤ cn I1(|∇f |)(x)
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• As before, the usual proof is based on the local sub-representation formula:

|f(x)− fQ| ≤ cn I1(|∇f |χ
Q
)(x)

• The point of the lecture is to avoid the use of fractional operators
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I will refer to it as the Brézis-Bourgain-Mironescu phenomenon.

X

6



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

≤ cn ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

≤ cn ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

More generally, consider the “functional”

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

≤ cn ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

More generally, consider the “functional”

aµ(Q) = λ ℓ(Q)

(
µ(Q)

|Q|

)1/p

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

≤ cn ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

More generally, consider the “functional”

aµ(Q) = λ ℓ(Q)

(
µ(Q)

|Q|

)1/p

• Goal: to derive better integrability result

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

≤ cn ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

More generally, consider the “functional”

aµ(Q) = λ ℓ(Q)

(
µ(Q)

|Q|

)1/p

• Goal: to derive better integrability result avoiding the use of representation formu-
las

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

Back to the classical situation: A non-standard proof, the functional way

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

≤ cn ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

More generally, consider the “functional”

aµ(Q) = λ ℓ(Q)

(
µ(Q)

|Q|

)1/p

• Goal: to derive better integrability result avoiding the use of representation formu-
las

• Method: Harmonic Analysis

7



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ aµ(Q) Q ∈ Q

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ aµ(Q) Q ∈ Q

then

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ aµ(Q) Q ∈ Q

then

Thm (baby version)

∥∥∥f − fQ

∥∥∥
Lp∗,∞(Q, dx|Q|)

≤ cn,p aµ(Q)

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ aµ(Q) Q ∈ Q

then

Thm (baby version)

∥∥∥f − fQ

∥∥∥
Lp∗,∞(Q, dx|Q|)

≤ cn,p aµ(Q)

• A consequence of the following geometric condition satisfied by the functional aµ

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ aµ(Q) Q ∈ Q

then

Thm (baby version)

∥∥∥f − fQ

∥∥∥
Lp∗,∞(Q, dx|Q|)

≤ cn,p aµ(Q)

• A consequence of the following geometric condition satisfied by the functional aµ∑
j

aµ(Qj)
p∗ |Qj|

|Q|

 1
p∗

≤ aµ(Q) (Dp∗ condition)

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ aµ(Q) Q ∈ Q

then

Thm (baby version)

∥∥∥f − fQ

∥∥∥
Lp∗,∞(Q, dx|Q|)

≤ cn,p aµ(Q)

• A consequence of the following geometric condition satisfied by the functional aµ∑
j

aµ(Qj)
p∗ |Qj|

|Q|

 1
p∗

≤ aµ(Q) (Dp∗ condition)

• It is very simple to verify this condition

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

A first model theorem and a first geometric condition

Fix f and aµ as above such that
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ aµ(Q) Q ∈ Q

then

Thm (baby version)

∥∥∥f − fQ

∥∥∥
Lp∗,∞(Q, dx|Q|)

≤ cn,p aµ(Q)

• A consequence of the following geometric condition satisfied by the functional aµ∑
j

aµ(Qj)
p∗ |Qj|

|Q|

 1
p∗

≤ aµ(Q) (Dp∗ condition)

• It is very simple to verify this condition

• The exponent p∗ is optimal

8



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The strong case and the truncation method

• in the special case µ = µf = |∇f |

9



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The strong case and the truncation method

• in the special case µ = µf = |∇f |

the “truncation” method can be applied to derive the strong norm:

9



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The strong case and the truncation method

• in the special case µ = µf = |∇f |

the “truncation” method can be applied to derive the strong norm:

∥∥∥f − fQ

∥∥∥
Lp∗(Q, dx|Q|)

≤ cn,p ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

9



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The strong case and the truncation method

• in the special case µ = µf = |∇f |

the “truncation” method can be applied to derive the strong norm:

∥∥∥f − fQ

∥∥∥
Lp∗(Q, dx|Q|)

≤ cn,p ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

• The Lorentz type estimate also follows,

9



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The strong case and the truncation method

• in the special case µ = µf = |∇f |

the “truncation” method can be applied to derive the strong norm:

∥∥∥f − fQ

∥∥∥
Lp∗(Q, dx|Q|)

≤ cn,p ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

• The Lorentz type estimate also follows,

∥∥∥f − fQ

∥∥∥
Lp∗,p(Q, dx|Q|)

≤ cn,p ℓ(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

9



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

• “Degenerate” elliptic operators

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

• “Degenerate” elliptic operators

λ |ξ|2w(x) ≤ A(x)ξ.ξ ≤ Λ |ξ|2w(x)

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

• “Degenerate” elliptic operators

λ |ξ|2w(x) ≤ A(x)ξ.ξ ≤ Λ |ξ|2w(x)

where w is a weight with some sort of singularity.

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

• “Degenerate” elliptic operators

λ |ξ|2w(x) ≤ A(x)ξ.ξ ≤ Λ |ξ|2w(x)

where w is a weight with some sort of singularity.

• The seminal work is due to Fabes-Kenig-Serapioni (1982)

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

• “Degenerate” elliptic operators

λ |ξ|2w(x) ≤ A(x)ξ.ξ ≤ Λ |ξ|2w(x)

where w is a weight with some sort of singularity.

• The seminal work is due to Fabes-Kenig-Serapioni (1982)

they consider the A2 condition of Muckenhoupt:

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

• “Degenerate” elliptic operators

λ |ξ|2w(x) ≤ A(x)ξ.ξ ≤ Λ |ξ|2w(x)

where w is a weight with some sort of singularity.

• The seminal work is due to Fabes-Kenig-Serapioni (1982)

they consider the A2 condition of Muckenhoupt:

[w]
A2

= sup
Q

(
1

|Q|

∫
Q
w dx

) (
1

|Q|

∫
Q
w−1 dx

)

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” elliptic equations

Lu = div(A(x).∇u) = 0

• “Degenerate” elliptic operators

λ |ξ|2w(x) ≤ A(x)ξ.ξ ≤ Λ |ξ|2w(x)

where w is a weight with some sort of singularity.

• The seminal work is due to Fabes-Kenig-Serapioni (1982)

they consider the A2 condition of Muckenhoupt:

[w]
A2

= sup
Q

(
1

|Q|

∫
Q
w dx

) (
1

|Q|

∫
Q
w−1 dx

)

• method of proof is based on the Moser iteration technique

10



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The two key points

11



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The two key points
Let w ∈ A2

11



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

The two key points
Let w ∈ A2
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“Degenerate” Poincaré-Sobolev inequalities

Recall the Ap condition

[w]
Ap

:= sup
Q

(
1

|Q|

∫
Q
w dx

) (
1

|Q|

∫
Q
w

−1
p−1 dx

)p−1

Begin with
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cn

ℓ(Q)

|Q|

∫
Q
|∇f |

and continue applying Hölder’s inequality and the definition of Ap to obtain

1

|Q|

∫
Q
|f(x)− fQ| dx ≤ cnℓ(Q)[w]

1
p
Ap

(
1

w(Q)

∫
Q
|∇f(x)|pw dx

)1/p

12



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

“Degenerate” Poincaré-Sobolev inequalities
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• Letting s → ∞ (which formally is Dr(w)) we recover the previous result
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−
∫
Q
|f(x)− fQ| dx ≤ cn ℓ(Q)−

∫
Q
|∇f(x)| dx ≤ cn

(∫
Q
|∇f(x)|n dx

)1
n

26



Self-Improving Property and Harmonic Analysis cperez@bcamath.org

SELF-IMPROVING OF EXPONENTIAL TYPE
Let’s try to understand an special case, assume that ∇f ∈ Ln

loc Then we know
that f ∈ expLn′

Now, by the L1 Poincaré result
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This says that f is not only Lp but goes much further, is of exponential type.
This inequality is important in many applications.
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≤ ca(Q)

and any family of pairwise disjoint subcubes {Qj} of Q.

• This condition is much stronger than the Dr condition.
• The model examples is provided by
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(∫
Q
gr
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or more generally a(Q) = ν(Q)
1
r .
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δ
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Weighted fractional isoperimetric inequalities with one sharp gain

Let Q be a cube and let E be any measurable set E ⊂ Q. Then, for any weight w
and any 0 < ε ≤ 1

2,

w(Q \ E)w(E) ≤
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• Conjecture: We believe that the result should hold with bound δ (1− δ).
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Q
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′
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∫
Q
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Extensions of the Fractional isoperimetric inequality
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Extensions of the Fractional isoperimetric inequality

The fractional maximal function of µ is defined by

Md
α,Q = sup

P∋x,P∈(Q)
ℓ(P )α

µ(P )

|P |
.

For α = 0, we have the classical Hardy–Littlewood maximal function M = M0.
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Let 0 < δ < 1, 1 ≤ q ≤ n

n−δ , α = n− q(n− δ).
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• joint work with Kim Myyryläinen and Julian Weigt
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|f(x)− f(y)|
|x− y|n+δ

dy (Md
α,Qµ)(x)
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• joint work with Kim Myyryläinen and Julian Weigt

• The case q = n−δ
n corresponds to the Isoperimetric inequality already mentioned
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Improving the classical Meyers-Ziemer theorem

Thm. Let 1 ≤ q ≤ n
n−1 and α = n− q(n− 1). Then

(∫
Q
|f − fQ|qdµ

)1
q

≤ cn

∫
Q
|∇f | (Mα,Qµ)

1
q dx
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Thm. Let 1 ≤ q ≤ n
n−1 and α = n− q(n− 1). Then

(∫
Q
|f − fQ|qdµ

)1
q

≤ cn

∫
Q
|∇f | (Mα,Qµ)

1
q dx

Cor. Suppose that µ satisfies the following polynomial growth condition, namely
that for some constant cµ such that

µ(Q) ≤ cµ ℓ(Q)q(n−1).

Then
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Improving the classical Meyers-Ziemer theorem

Thm. Let 1 ≤ q ≤ n
n−1 and α = n− q(n− 1). Then

(∫
Q
|f − fQ|qdµ

)1
q

≤ cn

∫
Q
|∇f | (Mα,Qµ)

1
q dx

Cor. Suppose that µ satisfies the following polynomial growth condition, namely
that for some constant cµ such that

µ(Q) ≤ cµ ℓ(Q)q(n−1).

Then

(∫
Q
|f − fQ|q dµ

)1
q

≤ c
1
q
µ

∫
Q
|∇f | dx

• Improves classical result of W. Ziemer and N. Meyers from the 60’s. They just
considered the case q = 1.
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(M(wn′)(x))
1
n′ ≤ c w(x)
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Isoperimetric inequalities and Extrapolation theory II

We recall the following characterization

Let 1 < p < n. Then

∥wI1(f)∥Lp∗(Rn) ≤ c ∥wf∥Lp(Rn)
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−
∫
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wp∗
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−
∫
Q
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)p∗
p′
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The precise weighted Gagliardo-Nirenberg-Sobolev inequality
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The precise weighted Gagliardo-Nirenberg-Sobolev inequality

Thm Let 1 ≤ p < n, then and let w ∈ Ap,p∗. Then there exists a constant cn,p
such that for any cube Q,

∥∥∥w(f − fQ)
∥∥∥
Lp∗(Q,dx)

≤ cn,p[w]
1
n′
Ap,p∗

(∫
Q
|w∇f |pdx

)1
p

.
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The way to prove it is by combining
• 1) The key result: The (n′,1) Isoperimetric inequalities with a measure
• 2) The extrapolation theorem (Harboure-Macias-Segovia) with sharp bounds
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The initial information

Lemma There exists a dimensional constant c > 0 such that for every Lipschitz
function f : Rn1 × Rn2 → R and for any R = I1 × I2 ∈ R,

−
∫
R
|f − fR| ≤ c ℓ(I1)−

∫
R
|∇1f |+ c ℓ(I2)−

∫
R
|∇2f |. (1)
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• But we use an improvement, a sharp fractional version

Thm Let R = I1 × I2 be a rectangle in R and δ1, δ2 ∈ (0,1). Then

−
∫
R
|f − fR| ≤ cn1 (1− δ1)ℓ(I1)

δ1−
∫
R

∫
I1

|f(x1, x2)− f(y1, x2)|
|x1 − y1|n+δ1

dx2dx1dy1

+ cn2 (1− δ2)ℓ(I2)
δ2−
∫
R

∫
I2

|f(y1, x2)− f(y1, y2)|
|x2 − y2|n+δ2

dy1dx2dy2.
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−
∫
R
|f(x)− fR| dx ≤ a(R)

Definition The functional a satisfies a ∈ SDs
p,R(w) condition if for any R ∈ R

∑
i

a(Ri)
pw(Ri)

w(R)

1
p

≤ c

(
| ∪i Ri|
|R|

)1
s

a(R)

for any family of disjoint dyadic subrectangles {Ri} of R
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Thank you
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