How to produce curved Kakeya sets that are small

Ruixiang Zhang

May 30, 2024

Contents

Hörmander type operators

Curved Kakeya sets

How to form a conjecture?

What to do to make progress

Hörmander type operators

- Joint with Shaoming Guo and Hong Wang (2022), we studied $L^{p} \rightarrow L^{q}$ mapping properties of Hörmander type operators.
- These include the key operators in Fourier restriction and Bochner-Riesz.

Hörmander type operators: setup

- We care about oscillatory integral operators mapping functions on \mathbb{R}^{n-1} to functions on \mathbb{R}^{n}.
- For $a \in C_{c}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n-1}\right)$, real $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n-1}\right)$ smooth in a neighborhood of suppa and $\lambda>1$, consider the operator

$$
T^{\lambda} f(x)=\int_{\mathbb{R}^{n-1}} e^{2 \pi i \phi^{\lambda}(x ; \xi)} a^{\lambda}(x ; \xi) f(\xi) \mathrm{d} \xi
$$

where $\phi^{\lambda}(x ; \xi)=\lambda \phi\left(\frac{x}{\lambda} ; \xi\right)$ and $a^{\lambda}(x ; \xi)=a\left(\frac{x}{\lambda} ; \xi\right)$.

Hörmander conditions

If we have

- (H1) The rank of $\nabla_{x} \nabla_{\xi} \phi$ is $n-1$ throughout suppa.
- (H2) For the Gauss map $G(x ; \xi)$ with $G=\frac{G_{0}(x ; \xi)}{\left|G_{0}(x ; \xi)\right|}$ and

$$
G_{0}(x ; \xi)=\wedge_{j=1}^{n-1} \partial_{\xi_{j}} \nabla_{x} \phi(x ; \xi),
$$

we have

$$
\left.\operatorname{det}\left(\nabla_{\xi}\right)^{2}\left\langle\nabla_{x} \phi(x ; \xi), G\left(x ; \xi_{0}\right)\right\rangle\right|_{\xi=\xi_{0}} \neq 0
$$

then T^{λ} is called a (family of) Hörmander type operator(s).

The positive definiteness condition

To make life easier, let us only care about Hörmander type operators that in addition satisfy:

- $\left.(\mathrm{H} 2+)\left(\nabla_{\xi}\right)^{2}\left\langle\nabla_{x} \phi(x ; \xi), G\left(x ; \xi_{0}\right)\right\rangle\right|_{\xi=\xi_{0}}$ is always positive definite.
$(\mathrm{H} 2+)$ holds for the key operators of interest in Bochner-Riesz and Fourier restriction.

Central question

Question
For a family of Hörmander type operators T^{λ} satisfying ($\mathrm{H} 2+$), is it true that $\left\|T^{\lambda}\right\|_{L^{p} \rightarrow L^{p}} \lesssim \varepsilon \lambda^{\varepsilon}, \forall p>\frac{2 n}{n-1}$?

- Answer: Not necessarily (Bourgain (1991), Guth-Hickman-Iliopoulou (2017), see also Bourgain-Guth (2011) and Wisewell (2005)). Answer is known to be complicated.
- Motivations: Unifying Fourier restriction and Bochner-Riesz. Important check to various approaches for Bochner-Riesz.

Bourgain's condition

Our work was inspired by a 1991 paper of Bourgain. Diffeomorphisms in x and in ξ (separately) can change ϕ to a normal form around any point (taken to 0) in suppa:
$\phi(x ; \xi)=x_{1} \xi_{1}+\cdots+x_{n-1} \xi_{n-1}+x_{n}\langle A \xi, \xi\rangle+O\left(\left|x_{n}\right||\xi|^{3}+|x|^{2}|\xi|^{2}\right)$.
We say ϕ satisfies Bourgain's condition at the point if in the above normal form, $\left.\partial_{x_{n}}^{2}\left(\nabla_{\xi}\right)^{2} \phi\right|_{(0 ; 0)}$ being a multiple of $\left.\partial_{x_{n}}\left(\nabla_{\xi}\right)^{2} \phi\right|_{(0 ; 0)}$.

- This is intrinsic.

Conjecture (Guo-Wang-Z. (2022))

For a family of Hörmander type operators T^{λ} satisfying ($\mathrm{H} 2+$), $\left\|T^{\lambda}\right\|_{L^{p} \rightarrow L^{p}} \lesssim_{\varepsilon} \lambda^{\varepsilon}$ holds for every $p>\frac{2 n}{n-1}$ if and only if ϕ satisfies Bourgain's condition everywhere in suppa.
For the key operators in Bochner-Riesz and Fourier restriction, ϕ indeed satisfies Bourgain's condition!

Generic failure

Theorem (Guo-Wang-Z. (2022))
If Bourgain's condition fails at a point, then $\left\|T^{\lambda}\right\|_{L^{p} \rightarrow L^{p}} \lesssim \varepsilon \lambda^{\varepsilon}$ fails for $p<\frac{2\left(2 n^{2}+n-1\right)}{2 n^{2}-n-2}$.

- This number is $>\frac{2 n}{n-1}$.
- Generic failure in dimension 3 by Bourgain (1991).

Positive result

Theorem (Guo-Wang-Z. (2022))
If Bourgain's condition is satisfied everywhere in suppa, then
$\left\|T^{\lambda}\right\|_{L^{p} \rightarrow L^{p}} \lesssim \varepsilon \lambda^{\varepsilon}$ holds for $p>p_{n, G W Z}$.

- Asymptotically improves on both Bochner-Riesz and Fourier restriction in high dimensions

More motivation

- General Theory needed to study operators on Riemannian manifolds.
- For reduced Carleson-Sjölin operators for manifolds, Bourgain's condition \Leftrightarrow constant sectional curvature. (Dai-Gong-Guo-Z., 2023).

Curved Kakeya sets

- Our results are related to the theory of curved Kakeya sets.
- $(x, t) \in \mathbb{R}^{n} . x \in \mathbb{R}^{n-1} . t \in \mathbb{R}$.
- Setup: For "frequency" $\xi \in[0,1]^{n-1}$, we have a family of curves $(x, t)_{0 \leq t \leq 1}$ where $x=x(\xi, t, \omega)$ smooth.
- ω : "position parameter".
- Question: If we choose such a curve for each $\xi \in[0,1]^{n-1}$, can the union have dimension $<n$?

Curved Kakeya sets

- Our results are related to the theory of curved Kakeya sets.
- $(x, t) \in \mathbb{R}^{n} . x \in \mathbb{R}^{n-1} . t \in \mathbb{R}$.
- Setup: For "frequency" $\xi \in[0,1]^{n-1}$, we have a family of curves $(x, t)_{0 \leq t \leq 1}$ where $x=x(\xi, t, \omega)$ smooth.
- ω : "position parameter".
- Question: If we choose such a curve for each $\xi \in[0,1]^{n-1}$, can the union have dimension $<n$?
- Usual Kakeya: $x(\xi, t, \omega)=\omega+t \xi$.

Curved Kakeya sets

- Our results are related to the theory of curved Kakeya sets.
- $(x, t) \in \mathbb{R}^{n} . x \in \mathbb{R}^{n-1} . t \in \mathbb{R}$.
- Setup: For "frequency" $\xi \in[0,1]^{n-1}$, we have a family of curves $(x, t)_{0 \leq t \leq 1}$ where $x=x(\xi, t, \omega)$ smooth.
- ω : "position parameter".
- Question: If we choose such a curve for each $\xi \in[0,1]^{n-1}$, can the union have dimension $<n$?
- Usual Kakeya: $x(\xi, t, \omega)=\omega+t \xi$.
- Oversimplification warning: In reality, the function x has some more constraints. e.g. one curve per direction per point.

Technical comments about oversimplification

- In all applications, $x=x(\xi, t, \omega)$ is determined by

$$
\nabla_{\xi} \phi(x, t, \xi)=\omega
$$

- One curve per point per direction for nondegenerate ϕ, etc.

Large curved Kakeya sets

- Question: If we choose a curve for each $\xi \in[0,1]^{n-1}$, can the union have dimension $<n$?
- Example: for usual Kakeya $x(\xi, t, \omega)=\omega+t \xi$, it is conjectured the union has dimension n.

Small curved Kakeya sets

- Question: If we choose a curve for each $\xi \in[0,1]^{n-1}$, can the union have dimension $<n$?
- Example: for $x(\xi, t, \omega)=\omega+t \xi+t^{2}\left(0, \xi_{1}\right), n=3$, consider $\omega=\left(\xi_{2}, 0\right)$. We note that all $\left(\xi_{2}+t \xi_{1}, t \xi_{2}+t^{2} \xi_{1}, t\right)$ are on the surface $x_{2}=x_{1} x_{3}$.
- Hence in this case the curved Kakeya set can have dimension 2 !

How to form a conjecture?

- For $\xi \in[0,1]^{n-1}$, we have a family of curves $(x, t)_{0 \leq t \leq 1}$ where $x=x(\xi, t, \omega)$ smooth.
- Question: If we choose a curve for each $\xi \in[0,1]^{n-1}$, can the union have dimension $<n$?
- A reasonable guess (inspired by Katz-Rogers (2018)): The truth should not be too far from when $\omega=\omega(\xi)$ is a "nice" map (smooth, bounded degree algebraic, etc.).

Can the Kakeya set have dimension $<n$?

- For $\xi \in[0,1]^{n-1}$, we have a family of curves $(x, t)_{0 \leq t \leq 1}$ where $x=x(\xi, t, \omega)$ smooth.
- Question: If we choose a curve for each $\xi \in[0,1]^{n-1}$, can the union have dimension $<n$?
- Pretending ω is nice, by calculus we can expect

$$
\begin{gathered}
\left|\bigcup_{\xi \in[0,1]^{n-1}}\{(x, t): 0 \leq t \leq 1\}\right| \\
\sim \int_{\xi \in[0,1]^{n-1}} \int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot \nabla_{\xi} \omega\right)\right| \operatorname{d} t \mathrm{~d} \xi
\end{gathered}
$$

Can we make the integral small?

- By calculus we can expect

$$
\begin{gathered}
\left|\bigcup_{\xi \in[0,1]^{n-1}}\{(x, t): 0 \leq t \leq 1\}\right| \\
\sim \int_{\xi \in[0,1]^{n-1}} \int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot \nabla_{\xi} \omega\right)\right| \operatorname{d} t \mathrm{~d} \xi
\end{gathered}
$$

- Key trick: Integrating in t first. The unknown $\nabla_{\xi} \omega$ becomes a constant for $0 \leq t \leq 1$.
- If $\int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot M\right)\right| \mathrm{d} t \gtrsim 1$ for every matrix M, then good reasons to believe Kakeya holds. Can be verified under Bourgain's condition.
- Otherwise, no reason to expect Kakeya. Good chance to fail the analogue of Fourier Restriction Conjecture.

Can we make the integral small?

- By calculus we can expect

$$
\begin{gathered}
\left|\bigcup_{\xi \in[0,1]^{n-1}}\{(x, t): 0 \leq t \leq 1\}\right| \\
\sim \int_{\xi \in[0,1]^{n-1}} \int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot \nabla_{\xi} \omega\right)\right| \operatorname{d} t \mathrm{~d} \xi
\end{gathered}
$$

- Key trick: Integrating in t first. The unknown $\nabla_{\xi} \omega$ becomes a constant for $0 \leq t \leq 1$.
- If $\int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot M\right)\right| \mathrm{d} t \gtrsim 1$ for every matrix M, then good reasons to believe Kakeya holds. Can be verified under Bourgain's condition.
- Otherwise, no reason to expect Kakeya. Good chance to fail the analogue of Fourier Restriction Conjecture.
- For technicality reasons, we often care about the bound $\int_{0}^{\delta^{\varepsilon}}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot M\right)\right| \mathrm{d} t \gtrsim \delta^{\varepsilon}$. Allows us to assume everything is degree $O(1)$ polynomial.

Testing a good example (Kakeya)

- Is it true that $\int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot M\right)\right| \mathrm{d} t \gtrsim 1$ for $x(\xi, t, \omega)=\omega+t \xi$?
- The integrand is $|\operatorname{det}(t I+M)|=\left|P_{M}(t)\right|$ (monic, degree $n-1$). The average of this is $\gtrsim 1$ on $[0,1]$, independent of M.
- Key ingredient in Katz-Rogers' proof of the Polynomial Wolff Axiom.

Testing a bad example

- Is it true that $\int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot M\right)\right| \mathrm{d} t \gtrsim 1$ for $x(\xi, t, \omega)=\omega+t \xi+t^{2}\left(0, \xi_{1}\right)$?
- The integrand is $\left|\operatorname{det}\left(\left(\begin{array}{cc}t & t^{2} \\ 0 & t\end{array}\right)+M\right)\right|$.
- This is identically 0 for $M=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$!

What to do when things look nice

- By Taylor, everything can be assumed to be polynomial of degree $O(1)$ and we honestly have

$$
\begin{aligned}
& \left|\bigcup_{\xi \in[0,1]^{n-1}}\{(x, t): 0 \leq t \leq 1\}\right| \\
\sim & \int_{\xi \in[0,1]^{n-1}} \int_{0}^{1}\left|\operatorname{det}\left(\nabla_{\xi} x+\nabla_{\omega} x \cdot \nabla_{\xi} \omega\right)\right| \mathrm{d} t \mathrm{~d} \xi \\
\gtrsim & 1 .
\end{aligned}
$$

When things look nice...

- One can prove the analogues of Polynomial Wolff Axiom (Katz-Rogers, 2018) and nested Polynomial Wolff Axiom (Hickman-Rogers-Z. (2019), independently Zahl (2019)).
- Kakeya for $\omega \in C^{\alpha}, \alpha>1-\frac{1}{(n-1)^{2}}$ is known (Fu-Gan, 2023).

What to do when things look nasty

- The image of $\Psi:(\xi, t) \mapsto(x, t)$ has abnormally small measure.
- To control its δ-neighborhood volume, we need to understand the boundary of the image of the map Ψ.
- Contained in $\Psi(\operatorname{Sing} \Psi) \bigcup \Psi\left(\partial[0,1]^{n}\right)$. Dimension is lower. Entropy bound by Yomdin-Comte (2004) that generalizes Wongkew (1993).
- Compare to Bourgain's work: for a fixed t he made the image of Ψ near a line.

When things look nasty...

- For Hörmander type operators, we know if Bourgain's condition fails at one point, we always can have a Kakeya compression that is significant enough to fail the analogue of Fourier restriction (Bourgain, 1991 for $n=3$; Guo-Wang-Z., 2022).

Open problems

- For a particular $x(\xi, t, \omega)$, make the conjecture and prove it (Wisewell for some examples, 2005).
- When Bourgain's condition fails, improve our result to find an even larger Kakeya compression (so we know the analogue of Fourier restriction fails at an even higher p)?
- What do the set of all possible critical exponents of "Hörmander restriction" and "Hörmander Kakeya" look like? Countable? Finite? Very few limit points?
- Characterize the operator/the Kakeya setup when some particular exponent is attained?

Thank you!

