How to produce curved Kakeya sets that are small

Ruixiang Zhang

May 30, 2024

Contents

Hörmander type operators

Curved Kakeya sets

How to form a conjecture?

What to do to make progress

Hörmander type operators

- ▶ Joint with Shaoming Guo and Hong Wang (2022), we studied $L^p \rightarrow L^q$ mapping properties of Hörmander type operators.
- These include the key operators in Fourier restriction and Bochner-Riesz.

Hörmander type operators: setup

- We care about oscillatory integral operators mapping functions on ℝⁿ⁻¹ to functions on ℝⁿ.
- ▶ For $a \in C_c^{\infty}(\mathbb{R}^n \times \mathbb{R}^{n-1})$, real $\phi \in C_c^{\infty}(\mathbb{R}^n \times \mathbb{R}^{n-1})$ smooth in a neighborhood of suppa and $\lambda > 1$, consider the operator

$$T^{\lambda}f(x) = \int_{\mathbb{R}^{n-1}} e^{2\pi i \phi^{\lambda}(x;\xi)} a^{\lambda}(x;\xi) f(\xi) d\xi$$

where $\phi^{\lambda}(x;\xi) = \lambda \phi(\frac{x}{\lambda};\xi)$ and $a^{\lambda}(x;\xi) = a(\frac{x}{\lambda};\xi)$.

Hörmander conditions

If we have

• (H1) The rank of $\nabla_x \nabla_\xi \phi$ is n-1 throughout suppa.

▶ (H2) For the Gauss map $G(x;\xi)$ with $G = \frac{G_0(x;\xi)}{|G_0(x;\xi)|}$ and

$$G_0(x;\xi) = \wedge_{j=1}^{n-1} \partial_{\xi_j} \nabla_x \phi(x;\xi),$$

we have

,

$$\det(\nabla_{\xi})^2 \langle \nabla_x \phi(x;\xi), G(x;\xi_0) \rangle |_{\xi=\xi_0} \neq 0$$

then T^{λ} is called a (family of) *Hörmander type operator*(s).

The positive definiteness condition

To make life easier, let us only care about Hörmander type operators that in addition satisfy:

(H2+) (∇_ξ)²⟨∇_xφ(x;ξ), G(x;ξ₀)⟩|_{ξ=ξ0} is always positive definite.

(H2+) holds for the key operators of interest in Bochner-Riesz and Fourier restriction.

Central question

Question

For a family of Hörmander type operators T^{λ} satisfying (H2+), is it true that $\|T^{\lambda}\|_{L^p \to L^p} \lesssim_{\varepsilon} \lambda^{\varepsilon}$, $\forall p > \frac{2n}{n-1}$?

- Answer: Not necessarily (Bourgain (1991), Guth-Hickman-Iliopoulou (2017), see also Bourgain-Guth (2011) and Wisewell (2005)). Answer is known to be complicated.
- Motivations: Unifying Fourier restriction and Bochner-Riesz. Important check to various approaches for Bochner-Riesz.

Bourgain's condition

Our work was inspired by a 1991 paper of Bourgain. Diffeomorphisms in x and in ξ (separately) can change ϕ to a *normal form* around any point (taken to 0) in suppa:

 $\phi(x;\xi) = x_1\xi_1 + \dots + x_{n-1}\xi_{n-1} + x_n \langle A\xi, \xi \rangle + O(|x_n||\xi|^3 + |x|^2|\xi|^2).$

We say ϕ satisfies *Bourgain's condition* at the point if in the above normal form, $\partial_{x_n}^2 (\nabla_{\xi})^2 \phi|_{(0;0)}$ being a multiple of $\partial_{x_n} (\nabla_{\xi})^2 \phi|_{(0;0)}$. This is intrinsic.

Conjecture (Guo-Wang-Z. (2022))

For a family of Hörmander type operators T^{λ} satisfying (H2+), $\|T^{\lambda}\|_{L^p \to L^p} \lesssim_{\varepsilon} \lambda^{\varepsilon}$ holds for every $p > \frac{2n}{n-1}$ if and only if ϕ satisfies Bourgain's condition everywhere in suppa.

For the key operators in Bochner-Riesz and Fourier restriction, ϕ indeed satisfies Bourgain's condition!

Generic failure

Theorem (Guo-Wang-Z. (2022))

If Bourgain's condition fails at a point, then $||T^{\lambda}||_{L^p \to L^p} \lesssim_{\varepsilon} \lambda^{\varepsilon}$ fails for $p < \frac{2(2n^2+n-1)}{2n^2-n-2}$.

• This number is $> \frac{2n}{n-1}$.

• Generic failure in dimension 3 by Bourgain (1991).

Theorem (Guo-Wang-Z. (2022))

If Bourgain's condition is satisfied everywhere in suppa, then $||T^{\lambda}||_{L^p \to L^p} \lesssim_{\varepsilon} \lambda^{\varepsilon}$ holds for $p > p_{n,GWZ}$.

 Asymptotically improves on both Bochner-Riesz and Fourier restriction in high dimensions

More motivation

- General Theory needed to study operators on Riemannian manifolds.
- ► For reduced Carleson-Sjölin operators for manifolds, Bourgain's condition ⇔ constant sectional curvature. (Dai-Gong-Guo-Z., 2023).

Curved Kakeya sets

- Our results are related to the theory of curved Kakeya sets.
- $\blacktriangleright (x,t) \in \mathbb{R}^n. \ x \in \mathbb{R}^{n-1}. \ t \in \mathbb{R}.$
- Setup: For "frequency" $\xi \in [0,1]^{n-1}$, we have a family of curves $(x,t)_{0 \le t \le 1}$ where $x = x(\xi,t,\omega)$ smooth.
- ω : "position parameter".
- ▶ Question: If we choose such a curve for each $\xi \in [0, 1]^{n-1}$, can the union have dimension < n?

Curved Kakeya sets

- Our results are related to the theory of curved Kakeya sets.
- $\blacktriangleright (x,t) \in \mathbb{R}^n. \ x \in \mathbb{R}^{n-1}. \ t \in \mathbb{R}.$
- Setup: For "frequency" $\xi \in [0,1]^{n-1}$, we have a family of curves $(x,t)_{0 \le t \le 1}$ where $x = x(\xi,t,\omega)$ smooth.
- \blacktriangleright ω : "position parameter".
- ▶ Question: If we choose such a curve for each $\xi \in [0, 1]^{n-1}$, can the union have dimension < n?
- Usual Kakeya: $x(\xi, t, \omega) = \omega + t\xi$.

Curved Kakeya sets

- Our results are related to the theory of curved Kakeya sets.
- $\blacktriangleright (x,t) \in \mathbb{R}^n. \ x \in \mathbb{R}^{n-1}. \ t \in \mathbb{R}.$
- Setup: For "frequency" $\xi \in [0,1]^{n-1}$, we have a family of curves $(x,t)_{0 \le t \le 1}$ where $x = x(\xi,t,\omega)$ smooth.
- ω: "position parameter".
- ▶ Question: If we choose such a curve for each $\xi \in [0, 1]^{n-1}$, can the union have dimension < n?
- Usual Kakeya: $x(\xi, t, \omega) = \omega + t\xi$.
- Oversimplification warning: In reality, the function x has some more constraints. e.g. one curve per direction per point.

Technical comments about oversimplification

 \blacktriangleright In all applications, $x=x(\xi,t,\omega)$ is determined by

$$\nabla_{\xi}\phi(x,t,\xi) = \omega.$$

• One curve per point per direction for nondegenerate ϕ , etc.

- ▶ Question: If we choose a curve for each $\xi \in [0, 1]^{n-1}$, can the union have dimension < n?
- ► Example: for usual Kakeya x(ξ, t, ω) = ω + tξ, it is conjectured the union has dimension n.

Small curved Kakeya sets

- Question: If we choose a curve for each $\xi \in [0, 1]^{n-1}$, can the union have dimension < n?
- Example: for $x(\xi, t, \omega) = \omega + t\xi + t^2(0, \xi_1)$, n = 3, consider $\omega = (\xi_2, 0)$. We note that all $(\xi_2 + t\xi_1, t\xi_2 + t^2\xi_1, t)$ are on the surface $x_2 = x_1x_3$.
- Hence in this case the curved Kakeya set can have dimension 2!

How to form a conjecture?

- For $\xi \in [0,1]^{n-1}$, we have a family of curves $(x,t)_{0 \le t \le 1}$ where $x = x(\xi,t,\omega)$ smooth.
- ▶ Question: If we choose a curve for each $\xi \in [0, 1]^{n-1}$, can the union have dimension < n?
- A reasonable guess (inspired by Katz-Rogers (2018)): The truth should not be too far from when ω = ω(ξ) is a "nice" map (smooth, bounded degree algebraic, etc.).

Can the Kakeya set have dimension < n?

- ▶ For $\xi \in [0,1]^{n-1}$, we have a family of curves $(x,t)_{0 \le t \le 1}$ where $x = x(\xi,t,\omega)$ smooth.
- ▶ Question: If we choose a curve for each $\xi \in [0, 1]^{n-1}$, can the union have dimension < n?
- Pretending ω is nice, by calculus we can expect

$$\begin{split} & \left| \bigcup_{\xi \in [0,1]^{n-1}} \{ (x,t) : 0 \le t \le 1 \} \right| \\ \sim & \int_{\xi \in [0,1]^{n-1}} \int_0^1 \left| \det \left(\nabla_{\xi} x + \nabla_{\omega} x \cdot \nabla_{\xi} \omega \right) \right| \mathrm{d}t \mathrm{d}\xi. \end{split}$$

Can we make the integral small?

By calculus we can expect

$$\begin{split} & \left| \bigcup_{\xi \in [0,1]^{n-1}} \{ (x,t) : 0 \le t \le 1 \} \right| \\ & \sim \quad \int_{\xi \in [0,1]^{n-1}} \int_0^1 \left| \det \left(\nabla_{\xi} x + \nabla_{\omega} x \cdot \nabla_{\xi} \omega \right) \right| \mathrm{d}t \mathrm{d}\xi. \end{split}$$

- Key trick: Integrating in t first. The unknown $\nabla_{\xi}\omega$ becomes a constant for $0 \le t \le 1$.
- If ∫₀¹ |det (∇_ξx + ∇_ωx · M)| dt ≥ 1 for every matrix M, then good reasons to believe Kakeya holds. Can be verified under Bourgain's condition.
- Otherwise, no reason to expect Kakeya. Good chance to fail the analogue of Fourier Restriction Conjecture.

Can we make the integral small?

By calculus we can expect

$$\begin{split} & \left| \bigcup_{\xi \in [0,1]^{n-1}} \{ (x,t) : 0 \le t \le 1 \} \right| \\ & \sim \quad \int_{\xi \in [0,1]^{n-1}} \int_0^1 \left| \det \left(\nabla_{\xi} x + \nabla_{\omega} x \cdot \nabla_{\xi} \omega \right) \right| \mathrm{d}t \mathrm{d}\xi. \end{split}$$

- Key trick: Integrating in t first. The unknown ∇_ξω becomes a constant for 0 ≤ t ≤ 1.
- If ∫₀¹ |det (∇_ξx + ∇_ωx · M)| dt ≥ 1 for every matrix M, then good reasons to believe Kakeya holds. Can be verified under Bourgain's condition.
- Otherwise, no reason to expect Kakeya. Good chance to fail the analogue of Fourier Restriction Conjecture.
- ► For technicality reasons, we often care about the bound $\int_0^{\delta^{\varepsilon}} |\det (\nabla_{\xi} x + \nabla_{\omega} x \cdot M)| dt \gtrsim \delta^{\varepsilon}$. Allows us to assume everything is degree O(1) polynomial.

Testing a good example (Kakeya)

- ► Is it true that $\int_0^1 |\det (\nabla_{\xi} x + \nabla_{\omega} x \cdot M)| dt \gtrsim 1$ for $x(\xi, t, \omega) = \omega + t\xi$?
- ▶ The integrand is $|\det(tI + M)| = |P_M(t)|$ (monic, degree n-1). The average of this is $\gtrsim 1$ on [0,1], independent of M.
- Key ingredient in Katz-Rogers' proof of the Polynomial Wolff Axiom.

Testing a bad example

What to do when things look nice

٠

By Taylor, everything can be assumed to be polynomial of degree O(1) and we honestly have

$$\begin{aligned} \left| \bigcup_{\xi \in [0,1]^{n-1}} \{(x,t) : 0 \le t \le 1\} \right| \\ \sim \quad \int_{\xi \in [0,1]^{n-1}} \int_0^1 \left| \det \left(\nabla_{\xi} x + \nabla_{\omega} x \cdot \nabla_{\xi} \omega \right) \right| \, \mathrm{d}t \mathrm{d}\xi \\ \gtrsim \qquad 1. \end{aligned}$$

When things look nice...

- One can prove the analogues of Polynomial Wolff Axiom (Katz-Rogers, 2018) and nested Polynomial Wolff Axiom (Hickman-Rogers-Z. (2019), independently Zahl (2019)).
- Kakeya for $\omega \in C^{\alpha}$, $\alpha > 1 \frac{1}{(n-1)^2}$ is known (Fu-Gan, 2023).

What to do when things look nasty

- The image of $\Psi : (\xi, t) \mapsto (x, t)$ has abnormally small measure.
- To control its δ -neighborhood volume, we need to understand the boundary of the image of the map Ψ .
- ► Contained in Ψ(SingΨ) U Ψ(∂[0,1]ⁿ). Dimension is lower. Entropy bound by Yomdin-Comte (2004) that generalizes Wongkew (1993).
- Compare to Bourgain's work: for a fixed t he made the image of Ψ near a line.

When things look nasty...

For Hörmander type operators, we know if Bourgain's condition fails at one point, we always can have a Kakeya compression that is significant enough to fail the analogue of Fourier restriction (Bourgain, 1991 for n = 3; Guo-Wang-Z., 2022).

Open problems

- For a particular x(ξ, t, ω), make the conjecture and prove it (Wisewell for some examples, 2005).
- When Bourgain's condition fails, improve our result to find an even larger Kakeya compression (so we know the analogue of Fourier restriction fails at an even higher p)?
- What do the set of all possible critical exponents of "Hörmander restriction" and "Hörmander Kakeya" look like? Countable? Finite? Very few limit points?
- Characterize the operator/the Kakeya setup when some particular exponent is attained?

Thank you!