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1. Introduction

The extension conjecture for the sphere Sd−1 ∈ Rd says that if E is the extension operator,

defined for smooth functions h on Sd−1 by

Eh(x) =

∫
Sd−1

h(ξ)e2πix·ξdσ(ξ),

then E extends to a bounded linear operator from Lp(Sd−1, dσ) to Lq(Rd), whenever

q >
2d

d− 1
, p′ ≤ d− 1

d+ 1
q.

Here dσ is the standard surface measure on Sd−1. If the extension conjecture is true for a certain

pair of exponents (p0, q0), then it is also true for all pairs of exponents (p, q0) where p > p0, since

Lp(Sd−1, dσ) embeds continuously into Lp0(Sd−1, dσ). Rather surprisingly, there is sometimes a

way to reverse this implication: following Bourgain [1] (see the remark after his Proposition 6.47),

we will use a factorization theorem of Pisier [5] (that has its origin in earlier works of Maurey

and Nikishin), together with rotation invariance of the extension operator, to prove the following

theorem.

Theorem 1. Suppose E : L∞(Sd−1, dσ)→ Lq(Rd) is bounded for some q ≥ 2. Then E extends to

a bounded linear operator from Lq,1(Sd−1, dσ) to Lq(Rd).

Here Lq,1(Sd−1, dσ) is the Lorentz space, with quasi-norm

‖h‖Lq,1(Sd−1,dσ) = q‖tdσ(|h| > t)
1
q ‖L1(R+, dt

t
)

= q

∫ ∞
0

dσ{ξ ∈ Sd−1 : |h(ξ)| > t}
1
q dt.

It then follows, by Marcinkiewicz interpolation with the trivial continuity of E : L∞(Sd−1, dσ)→
L∞(Rd), that E maps Ls(Sd−1, dσ) boundedly to Ls(Rd) for all s > q.

A similar argument can also be used in the study of the Kakeya maximal conjecture. It says

that for any

q ≥ d

d− 1
, p′ ≤ (d− 1)q, β >

d

q′
− 1,
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there exists a constant Cp,q,β such that for any 0 < δ < 1 and any family T of δ-separated δd−1× 1

tubes in Rd, we have

(1)

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lq(Rd)

≤ Cp,q,βδ−β
(∑
T∈T
|T |

) 1
p

.

Here a family of δ-separated tubes is one where the directions of any different tubes from the

family are at least δ from each other. When p = ∞, the term
(∑

T∈T |T |
)1/p

above is interpreted

to be 1. If (1) is true for a certain triple of exponents (p0, q0, β0), then it is also true for all triples

of exponents (p, q0, β0) where p > p0, since we always have
∑

T∈T |T | . 1, thanks to the fact that

we have at most . δ−(d−1) tubes in T should they be δ-separated. There is a partial converse to

this implication:

Theorem 2. Suppose (1) holds for certain exponents q and β with p = ∞. Then for any ε > 0,

there exists a constant Cq,β,ε such that

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lq(Rd)

≤ Cq,β,εδ−β−ε
(∑
T∈T
|T |

) 1
q

for all 0 < δ < 1 and all family T of δ-separated δd−1 × 1 tubes in Rd.

One can also restate this in terms of the Kakeya maximal function; this is implicit in the proof

given in Section 5.

We note that our proofs of Theorems 1 and 2 are not the shortest possible. See also lecture notes

of Tao [6, Section 2], as well as the exposition in the book of Mattila [4, Propositions 19.9 and

22.7], for some more direct proofs. Also, sometimes it is possible to improve the range of exponents

even further: for instance, Kim [3] improved the recent celebrated result of Guth [2], that says the

extension operator for any compact smooth surface S ⊂ R3 with positive second fundamental form

is bounded from Lp(S) to Lq(R3), whenever q > 3.25 and p =∞. By refining the methods of Guth,

Kim showed that the same remains true, whenever q > 3.25 and p ≤ q′/2.

This note will be organized as follows. In Section 2, we will give an exposition of the Maurey-

Nikishin-Pisier factorization theorem, including a full and direct proof of the part we will use. In

Section 3, we give a corollary of the Maurey-Nikishin-Pisier factorization theorem for operators that

commutes with rotations. We then apply this corollary to the extension problem for the sphere in

Section 4, and to the Kakeya maximal conjecture in Section 5. Finally, in Section 6, we give some

remarks about the implications of Theorems 1 and 2 on the Hausdorff dimension of a Kakeya set

in Rd.

Acknowledgments. The author would like to thank Ruixiang Zhang and Hong Wang for some very

helpful discussion during the preparation of this note.
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2. The Maurey-Nikishin-Pisier factorization theorem

The Maurey-Nikishin-Pisier factorization theorem concerns a necessarily and sufficient condition

for a bounded linear operator T to be factorized through a weak Lp space after a change of measure.

To appreciate this, let (Ω, dµ) be any measure space (with a non-negative measure µ). Suppose

0 < r < p < ∞, and f ≥ 0 is a function on Ω with
∫

Ω fdµ ≤ 1. Then (Ω, fdµ) is a finite measure

space, and Lp,∞(Ω, fdµ) embeds into Lr(Ω, fdµ). The map Mf1/r , defined to be the multiplication

map by f1/r, is a continuous linear map from Lr(Ω, fdµ) to Lr(Ω, dµ). Thus Mf1/r is a continuous

linear map from Lp,∞(Ω, fdµ) to Lr(Ω, dµ).

If now X is a Banach (or quasi-Banach) space, and T̃ : X → Lp,∞(Ω, fdµ) is a bounded quasi-

linear map (actually we do not need full quasi-linearity here; we just need |T (λx)| ≤ |λ||Tx| a.e.

for all λ ∈ R, x ∈ X), then the map T := Mf1/r ◦ T̃ is bounded from X to Lr(Ω, dµ), i.e.

‖Tx‖Lr(Ω,dµ) ≤ C‖x‖X
for all x ∈ X. The Maurey-Nikishin-Pisier factorization theorem states when a bounded quasi-

linear map T : X → Lr(Ω, dµ) can be factorized like this. More precisely, it states the following

(c.f. Theorem 1.2 of [5]):

Theorem 3 (Maurey-Nikishin-Pisier). Suppose (Ω, dµ) is a measure space, and 0 < r < p < ∞.

Let X be a Banach (or quasi-Banach) space, and T : X → Lr(Ω, dµ) be a bounded quasi-linear

operator. The following are equivalent:

(i) There is a constant C such that for any finite sequences {xi} in X, we have∥∥∥∥sup
i
|Txi|

∥∥∥∥
Lr(Ω,dµ)

≤ C

(∑
i

‖xi‖pX

)1/p

(ii) There exists a non-negative measurable function f on Ω with
∫

Ω fdµ = 1, and a constant C ′,

such that for any x ∈ X and any measurable subset E of Ω, we have(∫
E
|Tx|rdµ

) 1
r

≤ C ′‖x‖X
(∫

E
fdµ

) 1
r
− 1

p

.

(iii) There exists a non-negative function f on Ω with
∫

Ω fdµ = 1, such that for any x ∈ X, we

have Tx = 0 µ-almost everywhere on the zero set of f , and such that T admits a factorization

T = Mf1/r ◦ T̃ ,

where Mf1/r is the multiplication operator by f1/r, and T̃ is a bounded quasi-linear operator

from X to Lp,∞(Ω, fdµ).

We will only use the implication (i) implies (ii), and we will give a direct and complete proof

of this implication in what follows. Along the way, we will also observe that one may choose the

constant C ′ in (ii) to be 21/r times the constant C in (i). This will be useful in our proof of

Theorem 2.

The key for the proof that (i) implies (ii) is the Dunford-Pettis theorem, about uniform integra-

bility of a family of functions.

3



Definition 1. A family of integrable functions F on a measure space (Ω, dµ) is said to be uniformly

integrable, if for any ε > 0, there exists δ > 0 such that whenever A is a measurable subset of Ω

with µ(A) < δ, we have ∫
A
fdµ < ε

for all f ∈ F .

We first have the following sufficient condition for uniform integrability:

Lemma 1. Suppose (Ω, dµ) is a measure space, and {fn}n∈N is a sequence of non-negative mea-

surable functions with
∫

Ω fndµ ≤ 1 for all n ∈ N. Suppose for any sequence of mutually disjoint

measurable subsets {An}n∈N of Ω, we have

lim
n→∞

∫
An

fndµ = 0.

Then {fn}n∈N is uniformly integrable.

Proof. Suppose {fn}n∈N is as given. If {fn}n∈N is not uniformly integrable, then there exists ε > 0,

such that for any n ∈ N, there exists a measurable subset Bn of Ω, with µ(Bn) < 2−n, such that∫
Bn

fndµ > ε.

We extract a subsequence Bnk
of Bn as follows: first let n1 = 1 so that Bn1 = B1. When nk is

chosen for some k ≥ 1, we choose nk+1 large enough, so that∫
Bnk
\
⋃

n≥nk+1
Bn

fnk
dµ >

ε

2
.

This is possible since fnk
∈ L1(Ω, dµ), and

µ

 ⋃
n≥nk+1

Bn

 <
∑

n≥nk+1

2−n = 21−nk+1 → 0

as nk+1 →∞. We define a sequence of measurable subsets {An}n∈N of Ω, by

An =

{
∅ if n 6= nk for any k ∈ N
Bnk
\
⋃
n≥nk+1

Bn if n = nk for some k ∈ N.

Then {An}n∈N is a sequence of mutually disjoint measurable sets in Ω, with∫
An

fndµ >
ε

2

for infinitely many n’s. But our assumption on {fn}n∈N says that
∫
An
fndµ should tend to zero as

n→∞. This is a contradiction, so {fn}n∈N is uniformly integrable. �

Next we need a consequence of uniform integrability from the Dunford-Pettis theorem:
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Theorem 4 (Dunford-Pettis). Suppose (Ω, dµ) is a probability measure space, and F is a bounded

subset of L1(Ω, dµ). Then F is uniformly integrable, if and only if F is weakly compact in L1(Ω, dµ),

i.e. for any sequence in {fn}n∈N in L1(Ω, dµ), there exists a subsequence {fnk
}k∈N and a function

f ∈ L1(Ω, dµ), such that

lim
k→∞

∫
Ω
fnk

g dµ =

∫
Ω
f g dµ

whenever g ∈ L∞(Ω, dµ).

We will only need the forward implication, so let us focus only on that.

Proof of the forward implication. Suppose F is a bounded subset of L1(Ω, dµ) and is uniformly

integrable. Let {fn}n∈N be a sequence in F . Then by Banach-Alaoglu theorem, there exists a

subsequence {fnk
}k∈N of {fn}n∈N, and some F ∈ L∞(Ω, dµ)∗, such that

lim
k→∞

∫
Ω
fnk

g dµ = F (g)

for all g ∈ L∞(Ω, dµ). We will define a new measure space (Ω, dν), whose measurable sets are

precisely those of (Ω, dµ), such that

ν(A) := F (χA)

for every µ-measurable subset A of Ω; here χA is the characteristic function of A. (We will just say

“measurable” in lieu of “µ-measurable” since µ-measurability is the same as ν-measurability, and

there is no danger of confusion here.) To verify that the above indeed defines ν as a measure, we

need to check that ν is countably additive. By linearity of F , we see that ν is additive; if {An}n∈N
is a sequence of mutually disjoint measurable subsets of Ω, and A =

⋃
n∈NAn, then

ν(A) =
N∑
n=1

ν(An) + ν

( ⋃
n>N

An

)
.

We claim that

(2) lim
N→∞

ν

( ⋃
n>N

An

)
= 0.

To do so, note that since (Ω, µ) is a finite measure space, we have

lim
N→∞

µ

( ⋃
n>N

An

)
= 0.

Since {fnk
}k∈N is uniformly integrable, given any ε > 0, there exists δ > 0 such that whenever B

is a measurable subset of Ω with µ(B) < δ, we have∫
B
fnk

dµ < ε

for all k ∈ N. Now pick N large enough such that

µ

( ⋃
n>N

An

)
< δ.
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Then

ν

( ⋃
n>N

An

)
= lim

k→∞

∫
⋃

n>N An

fnk
dµ ≤ ε.

This shows that (2) holds, and one sees that ν is a measure on Ω.

Since simple functions are dense in L∞(Ω, dµ), we see that

F (g) =

∫
Ω
g dν

for every g ∈ L∞(Ω, dµ). Also, ν is absolutely continuous with respect to µ: if A is a measurable

subset of Ω with µ(A) = 0, then

ν(A) = lim
k→∞

∫
A
fnk

dµ = 0.

It follows from the Radon-Nikodym theorem that there exists a function f ∈ L1(Ω, dµ) such that

dν = fdµ. In other words,

lim
k→∞

∫
Ω
fnk

g dµ =

∫
Ω
f g dµ

for all g ∈ L∞(Ω, dµ), as desired. �

Proof of the implication (i) ⇒ (ii) in Theorem 3. For each n ∈ N, let

Cn := sup

{∥∥∥∥ sup
1≤i≤n

|Txi|
∥∥∥∥
Lr(Ω,dµ)

: x1, . . . , xn ∈ X with

n∑
i=1

‖xi‖pX = 1

}
.

Then (i) implies that the sequence {Cn}n∈N is bounded above, and without loss of generality we

assume that Cn increases to C and C > 0. Now for each n ∈ N, let x
(n)
1 , . . . , x

(n)
n ∈ X be such that∑n

i=1 ‖x
(n)
i ‖

p
X = 1, and ∥∥∥∥ sup

1≤i≤n
|Tx(n)

i |
∥∥∥∥
Lr(Ω,dµ)

≥ Cn −
1

n
.

We write

fn := C−r sup
1≤i≤n

|Tx(n)
i |

r,

so that

(3) C−r
(
Cn −

1

n

)r
≤ ‖fn‖L1(Ω,dµ) ≤ 1.

We claim that the sequence {fn}n∈N is uniformly integrable on (Ω, dµ): indeed, for any non-negative

sequence {λn}n∈N, by assumption (i), we have∥∥∥∥∥ sup
1≤n≤N

sup
1≤i≤n

λ1/r
n |Tx

(n)
i |

∥∥∥∥∥
Lr(Ω,dµ)

≤ C

(
N∑
n=1

n∑
i=1

λp/rn ‖x
(n)
i ‖

p
X

)1/p

,

i.e. ∥∥∥∥∥ sup
1≤n≤N

λnfn

∥∥∥∥∥
L1(Ω,dµ)

≤

(
N∑
n=1

λp/rn

)r/p
.

6



So if {An}n∈N is a sequence of mutually disjoint measurable subsets of Ω, then

N∑
n=1

λn

∫
An

fndµ ≤

(
N∑
n=1

λp/rn

)r/p
.

Since this is true for any non-negative sequence {λn}n∈N, we see that the sequence {
∫
An
fndµ}n∈N

is in `γ , where γ is the dual exponent to p/r. Note that p/r ∈ (1,∞), hence so is γ. In particular,

lim
n→∞

∫
An

fndµ = 0,

so Lemma 1 applies, and {fn}n∈N is uniformly integrable on (Ω, dµ). It follows from the Dunford-

Pettis Theorem 4 that there exists a subsequence {fnk
}k∈N of {fn}n∈N, and a function f ∈

L1(Ω, dµ), such that

(4) lim
k→∞

∫
E
fnk

dµ =

∫
E
f dµ

whenever E is a measurable subset of Ω. Letting E = Ω, and using (3), we see that∫
Ω
fdµ = 1.

Suppose now x ∈ X and ε > 0. Then by (i), we have∥∥∥∥max

{
ε|Tx|, sup

1≤i≤n
|Tx(n)

i |
}∥∥∥∥

Lr(Ω,dµ)

≤ C

(
‖εx‖pX +

n∑
i=1

‖x(n)
i ‖

p
X

)1/p

= C
(
εp‖x‖pX + 1

)1/p
.

Hence ∫
Ω

max{εr|Tx|r, Crfn}dµ ≤ Cr
(
εp‖x‖pX + 1

)r/p
If E is a measurable subset of Ω, then the left hand side above is at least

Cr
∫

Ω\E
fndµ+

∫
E
εr|Tx|rdµ ≥

(
Cn −

1

n

)r
− Cr

∫
E
fndµ+ εr

∫
E
|Tx|rdµ,

so we get

εr
∫
E
|Tx|rdµ ≤ Cr

(
εp‖x‖pX + 1

)r/p − (Cn − 1

n

)r
+ Cr

∫
E
fndµ.

Passing to limit along the subsequence {nk}k∈N, then using (4), we see that

εr
∫
E
|Tx|rdµ ≤ Cr

(
εp‖x‖pX + 1

)r/p − Cr + Cr
∫
E
fdµ

≤ Crεp‖x‖pX + Cr
∫
E
fdµ.

(We used that r/p < 1 in the last inequality.) Setting ε = ‖x‖−1
X

(∫
E fdµ

)1/p
, and taking 1/r power

on both sides, we see that(∫
E
|Tx|rdµ

)1/r

≤ 21/rC‖x‖X
(∫

E
fdµ

) 1
r
− 1

p

.

This establishes (ii) with C ′ = 21/rC. �
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3. Maurey-Nikishin-Pisier factorization for rotationally invariant operators

We now specialize to the situation when Ω = Sd−1 and dµ = dσ, the standard surface measure

on Sd−1. We will apply Theorem 3 to a bounded linear or sublinear operator T : Lq
′
(Rd) →

L1(Sd−1, dσ); in other words, we take r = 1 and X = Lq
′
(Rd) for some exponent q′. We will assume

also that T commutes with rotations; i.e.

T (g ◦A) = (Tg) ◦A

for all g ∈ Lq′(Rd) and all A in the orthogonal group O(d). We then have the following corollary.

Corollary 1. Let 1 < p <∞, and let T : Lq
′
(Rd)→ L1(Sd−1, dσ) be a bounded linear or sublinear

operator that commutes with all rotations on Rd. Suppose furthermore that there exists a constant

C such that for any finite sequences {gi} in Lq
′
(Rd), we have

(5)

∥∥∥∥sup
i
|Tgi|

∥∥∥∥
L1(Sd−1,dσ)

≤ C

(∑
i

‖gi‖pLq′ (Rd)

) 1
p

.

Then T defines a bounded operator from Lq
′
(Rd) to Lp,∞(Sd−1, dσ), with a norm C ′ where C ′ ≤ 2C.

Proof. By Theorem 3 (more precisely the implication (i) ⇒ (ii) there), there exists a non-negative

measurable function f on Sd−1, with
∫
Sd−1 fdσ = 1, and a constant C ′ ≤ 2C, such that for any

g ∈ Lq′(Rd) and any measurable subset E of Sd−1, we have

(6)

∫
E
|Tg|dσ ≤ C ′‖g‖Lq′ (Rd)

(∫
E
fdσ

)1− 1
p

.

Suppose now A is any rotation in O(d). Then applying (6) to g ◦A in place of g, and A(E) in place

of E, we obtain ∫
A(E)

|Tg| ◦Adσ ≤ C ′‖g‖Lq′ (Rd)

(∫
A(E)

fdσ

)1− 1
p

for all g ∈ Lq′(Rd) and all measurable subsets E of Sd−1, by invariance of T under A. Using the

invariance of dσ under rotations, we then get∫
E
|Tg|dσ ≤ C ′‖g‖Lq′ (Rd)

(∫
A(E)

fdσ

)1− 1
p

for all g ∈ Lq′(Rd) and all measurable subsets E of Sd−1. We now average with respect to the Haar

measure dA on O(d): using Hölder’s inequality to interchange the integral over A with the 1 − 1
p

power on the right hand side (note 0 < 1− 1
p < 1), we obtain

(7)

∫
E
|Tg|dσ ≤ C ′‖g‖Lq′ (Rd)

(∫
A∈O(d)

∫
A(E)

fdσdA

)1− 1
p

for all g ∈ Lq′(Rd) and all measurable subsets E of Sd−1. The map

E 7→
∫
A∈O(d)

∫
A(E)

fdσdA
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defines a rotationally invariant measure on measurable subsets E of Sd−1, and this measure is 1

when E = Sd−1 by our normalization
∫
Sd−1 fdσ = 1. Hence we have∫

A∈O(d)

∫
A(E)

fdσdA = σ(E),

the standard surface measure of E. In other words, we have, from (7), that

(8)

∫
E
|Tg|dσ ≤ C ′‖g‖Lq′ (Rd)σ(E)

1− 1
p

for all g ∈ Lq′(Rd) and all measurable subsets E of Sd−1. Now given g ∈ Lq′(Rd), let

E = {ξ ∈ Sd−1 : |Tg(ξ)| > α}.

Then the left hand side above is at least ασ(E). Thus we have

ασ(E)
1
p ≤ C ′‖g‖Lq′ (Rd).

Since this is true for all g ∈ Lq′(Rd), we conclude that T is bounded from Lq
′
(Rd) to Lp,∞(Sd−1, dσ)

with norm ≤ C ′. �

We remark that (8) is just (6) with f ≡ 1. The proof that (8) implies T : Lq
′
(Rd)→ Lp,∞(Sd−1, dσ)

can be easily generalized to prove the implication (ii) ⇒ (iii) in Theorem 3.

4. Application to the Extension problem

In this section we prove Theorem 1. We use duality. The adjoint of the extension operator E

for the sphere Sd−1 is the restriction operator, given by Rg = ĝ|Sd−1 on Rd. If E : L∞(Sd−1, dσ)→
Lq(Rd) is bounded, then R : Lq

′
(Rd) → L1(Sd−1, dσ) is bounded. Clearly R commutes with all

rotations on Rd. Thus we are in position to apply Corollary 1 from the last section, for R in place

of T . We will let p = q′, and then we need to check that

(9)

∥∥∥∥sup
i
|Rgi|

∥∥∥∥
L1(Sd−1,dσ)

≤ C

(∑
i

‖gi‖q
′

Lq′ (Rd)

) 1
q′

for any finite sequences {gi} in Lq
′
(Rd). To do so we use Khintchine’s inequality: since the restriction

operator is bounded from Lq
′
(Rd) to L1(Sd−1, dσ, we have, for any choice of signs {εi}’s, that∫

Sd−1

∣∣∣∣∣R
(∑

i

εigi

)∣∣∣∣∣ dσ ≤ C
∥∥∥∥∥∑

i

εigi

∥∥∥∥∥
Lq′ (Rd)

.

Taking expectations over all possible choices of signs, and using Hölder’s inequality to interchange

the expectation and the 1/q′ power on the right hand side, we get

∫
Sd−1

(∑
i

|Rgi|2
) 1

2

dσ ≤ C

∫
Rd

(∑
i

|gi|2
) q′

2

dx


1
q′

.

The left hand side is bigger than the left hand side of (9), while the right hand side is less than

the right hand side of (9) since q′ ≤ 2 and hence `q
′

embeds into `2 (this is where we use our
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assumption q ≥ 2). Hence (9) follows, and Corollary 1 shows that R is bounded from Lq
′
(Rd) to

Lq
′,∞(Sd−1, dσ). This gives the desired boundedness of E : Lq,1(Sd−1, dσ)→ Lq(Rd).

5. Application for the Kakeya maximal function

In this section we prove Theorem 2. Again we dualize. Following Bourgain [1], we define, for

locally integrable functions g on Rd and δ > 0, the Kakeya maximal operator

g∗δ (ξ) = sup
T

1

|T |

∫
T
|g(x)|dx, ξ ∈ Sd−1

where the supremum is over all δd−1 × 1 cylinders whose direction is parallel to ξ.

Suppose now (1) holds for certain exponents q and β with p = ∞. Then by duality, for any

ε > 0, there exists a constant Cq,β,ε such that

(10) ‖g∗δ‖L1(Sd−1,dσ) ≤ Cq,β,εδ−β−ε‖g‖Lq′ (Rd)

for all 0 < δ < 1 and all g ∈ Lq′(Rd). Hence for any 0 < δ < 1,

Tg := g∗δ

defines a bounded sub-linear operator from Lq
′
(Rd) to L1(Sd−1, dσ) with norm ≤ Cq,β,εδ

−β−ε.

Clearly T commutes with all rotations on Rd. Thus we are in position to apply Corollary 1. We

will let p = q′, and we will show that

(11)

∥∥∥∥sup
i

(gi)
∗
δ

∥∥∥∥
L1(Sd−1,dσ)

≤ Cq,β,εδ−β−ε
(∑

i

‖gi‖q
′

Lq′ (Rd)

) 1
q′

for any finite sequences {gi} in Lq
′
(Rd). It then follows that

‖g∗δ‖Lq′,∞(Sd−1,dσ) .q Cq,β,εδ
−β−ε‖g‖Lq′ (Rd)

for all g ∈ Lq′(Rd), which by duality again implies that∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lq(Rd)

.q Cq,β,εδ
−β−ε

(∑
T∈T
|T |

) 1
q

for all family T of δ-separated δd−1 × 1 tubes in Rd.

Hence it remains to establish (11). To do so, suppose {gi} is a finite sequence in Lq
′
(Rd), and

0 < δ < 1. For any ξ ∈ Sd−1, we have

sup
i

[(gi)
∗
δ(ξ)] ≤ (sup

i
|gi|)∗δ(ξ).

This is just another way of saying that

sup
i

sup
T//ξ

1

|T |

∫
T
|gi|dσ ≤ sup

T//ξ

1

|T |

∫
T

sup
i
|gi|dσ,

which is clearly true. Hence by (10), applied to g = supi |gi|, we have∥∥∥∥sup
i

(gi)
∗
δ

∥∥∥∥
L1(Sd−1,dσ)

≤ Cq,β,εδ−β−ε
∥∥∥∥sup

i
|gi|
∥∥∥∥
Lq′ (Rd)

,
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from which (11) follows readily since pointwisely (supi |gi|)q
′ ≤

∑
i |gi|q

′
.

6. Implications on the dimension of a Kakeya set

In this section, we make some remarks about the implications of a partial restriction estimate on

the Hausdorff dimension of a Kakeya set in Rd. A Kakeya set in Rd is a subset of Rd that contains

a unit line segment in every possible direction. It is well-known that if equation (10) holds for some

triple of exponents (p, q, β) with p = q, then the Hausdorff dimension of a Kakeya set in Rd is at

least d− βq′.

Suppose the extension operator E for the sphere Sd−1 is bounded from Lp(Sd−1, dσ) to Lq(Rd).
Then by a standard argument involving Khintchine’s inequality and the Knapp example, we have

(12)

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lq/2(Rd)

. δ−β
(∑
T∈T
|T |

)2/p

with

β = 2

(
d

(q/2)′
− 1

)
for any 0 < δ < 1 and any family T of δ-separated δd−1 × 1 tubes in Rd. If further p ≤ q, then

we may replace the exponent 2/p on the right hand side by 2/q, and still maintain the inequality.

Hence the Hausdorff dimension of a Kakeya set in Rd is at least

d− 2

(
d

(q/2)′
− 1

)(q
2

)′
= 2

(q
2

)′
− d.

The above argument does not apply if we do not have p ≤ q in the inequality (12). Nevertheless, if

we only know that E is bounded from Lp(Sd−1, dσ) to Lq(Rd) for some p > q (with q > 2d
d−1 > 2;

otherwise E cannot map boundedly into Lq), then we know E is bounded from L∞(Sd−1, dσ) to

Lq(Rd), so Theorem 1 applies, and we deduce, as remarked immediately after Theorem 1, then E

maps Ls(Sd−1, dσ) → Ls(Rd) for all s > q. From our discussion above, it then follows that the

Hausdorff dimension of the Kakeya set in Rd is at least 2
(
s
2

)′−d for all s > q, i.e. at least 2
( q

2

)′−d.

Alternatively, if we only know that E is bounded from L∞(Sd−1, dσ) to Lq(Rd) for some q > 2d
d−1 ,

then from (12) we see that (11) holds with p =∞, q replaced by q/2, and β = 2
(

d
(q/2)′ − 1

)
. Thus

by Theorem 2, for any ε > 0, we have∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lq/2(Rd)

.ε δ
−2
(

d
(q/2)′−1

)
−ε
(∑
T∈T
|T |

)2/q

for any 0 < δ < 1 and any family T of δ-separated δd−1 × 1 tubes in Rd. This shows that the

Hausdorff dimension of the Kakeya set in Rd is at least d −
[
2
(

d
(q/2)′ − 1

)
+ ε
] ( q

2

)′
for all ε > 0,

i.e. at least 2
( q

2

)′ − d, yielding the same conclusion as before.
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