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Introduction

I Joint work with E. Stein (and an outgrowth of work of
Nagel-Ricci-Stein-Wainger, to appear)

I Motivating question: what happens when one compose two
operators of two different homogeneities?

I e.g. On RN one can associate two different dilations:
for x = (x ′, xN) ∈ RN , λ > 0, one can define

λ · x := (λx ′, λxN) (isotropic)

λ� x := (λx ′, λ2xN) (non-isotropic)

I Associated to these are two norms, each homogeneous with
respect to one of these dilations:

|x | = |x ′|+ |xN |

‖x‖ = |x ′|+ |xN |1/2



I There are also the dual norms, on the cotangent space of RN ,
given by

|ξ| = |ξ′|+ |ξN |

‖ξ‖ = |ξ′|+ |ξN |1/2

I One could look at multipliers e(ξ), with

|∂αξ′∂
β
ξN

e(ξ)| . |ξ|−|α|−|β|,

and their associated multiplier operators T̂e f (ξ) = e(ξ)f̂ (ξ).
(These are just standard isotropic singular integral operators.)

I One could also look at multipliers h(ξ), with

|∂αξ′∂
β
ξN

h(ξ)| . ‖ξ‖−|α|−2|β|,

and their associated multiplier operators T̂hf (ξ) = h(ξ)f̂ (ξ).
(These are just non-isotropic singular integral operators,
arising e.g. when one solves the heat equation.)



Some motivating Questions

I What happens when one compose Te with Th?
What kind of operator do we get?
What are the nature of the singularities of the multiplier, or
the kernel, of TeTh?

I What mapping properties does TeTh satisfy?
When is it (say) weak-type (1,1)?

I The question of composition is quite easy, since we are dealing
with convolution operators on an abelian group RN .

I The question of mapping properties was already studied in a
paper of Phong and Stein in 1982.

I We are interested in these questions, because they serve as
toy model problems for what one needs to do in more general
settings.



I e.g. In several complex variables, in solving the ∂-Neumann
problem on a smooth strongly pseudoconvex domain in Cn+1,
one faces the problem of inverting the Calderon operator �+.

I Roughly speaking, this amounts to composing an operator
with isotropic homogeneity, with an operator with
non-isotropic homogeneity:

�−1+ ' �−�−1b

(at least when n > 1; c.f. Greiner-Stein 1977).

I Similar compositions arise in the study of the Hodge Laplacian
on k-forms on the Heisenberg group Hn (Müller-Peloso-Ricci
2012)



The role of flag kernels

I The flag kernels are integral kernels that are singular along
certain subspaces on RN (e.g. Nagel-Ricci-Stein 2001,
Nagel-Ricci-Stein-Wainger 2011, to appear).

I These are special cases of product kernels, which were studied
by many authors (e.g. R. Fefferman-Stein 1982, Journe 1985,
Nagel-Stein 2004).

I e.g. On the Heisenberg group Hn, a flag kernel could be
singular along the t-axis, and satisfies

|K (z , t)| . |z |−2n(|z |2 + |t|)−1

along with some corresponding differential inequalities and
cancellation conditions.



I Simple examples of flag kernels include both singular integral
kernels with isotropic homogeneities, and those with
non-isotropic homogeneities.

I More sophisticated examples of flag kernels on Hn are given
by the joint spectral multipliers m(L0, iT ), where m is a
Marcinkiewicz multiplier, and L0 is the sub-Laplacian
(Müller-Ricci-Stein 1995, 1996).

I The singular integral operators with flag kernels map Lp to
Lp, for 1 < p <∞, and form an algebra under composition.

I Thus if we want to compose a singular integral with isotropic
homogeneity, with one that has non-isotropic homogeneity, we
could have composed them in the class of all flag kernels.

I But then we get as a result a flag kernel, which is singular
along some subspaces (whereas our original kernels are both
singular only at one point).



I It turns out one should consider the intersection of those flag
kernels that are singular along the t-axis, with those that are
singular along the z-axis, as in Nagel-Ricci-Stein-Wainger (to
appear). This gives rise to operators with mixed
homogeneities:

|K (z , t)| . (|z |+ |t|)−2n(|z |2 + |t|)−1

along with differential inequalities and cancellation conditions.

I Our first result will be a pseudodifferential realization of the
above operators of with mixed homogeneities.

I The goal is to write them as pseudodifferential operators:

Taf (x) =

ˆ
Hn

a(x , ξ)f̂ (ξ)e2πix ·ξdξ

for some suitable symbols a(x , ξ).



I Nagel-Stein (1979) and Beals-Greiner (1988) has realized
those singular integrals with purely non-isotropic
homogeneities as pseudodifferential operators.

I We will do so for singular integrals with mixed homogeneities;
in doing so, we will also consider operators of all orders (not
just order 0 ones, as singular integrals would be).

I Our results will actually hold in a more general setting,
outside several complex variables; it will hold as long as a
smooth distribution of tangent subspaces (of constant rank) is
given on RN .

I We will also see some geometric invariance of our class of
operators as we proceed.

I A very step-2 theory!



Our set-up

I Suppose on RN , we are given a (global) frame of tangent
vectors, namely X1, . . . ,XN , with Xi =

∑N
j=1 Aj

i (x) ∂
∂x j
.

I We assume that all Aj
i (x) are C∞ functions, and that

∂Jx Aj
i (x) ∈ L∞(RN) for all multiindices J.

I We also assume that | det(Aj
i (x))| is uniformly bounded from

below on RN .

I Let D be the distribution of tangent subspaces on RN given
by the span of {X1, . . . ,XN−1}.

I Our constructions below seem to depend on the choice of the
frame X1, . . . ,XN , but ultimately the class of operators we
introduce will only depend on D.

I No curvature assumption on D is necessary!



An example: the contact distribution on H1

(Picture courtesy of Assaf Naor)



Geometry of the distribution

I We write θ1, . . . , θN for the frame of cotangent vectors dual
to X1, . . . ,XN .

I We will need a variable seminorm ρx(ξ) on the cotangent
bundle of RN , defined as follows.

I Given ξ =
∑N

i=1 ξidx i , and a point x ∈ RN , we write

ξ =
N∑
i=1

(Mxξ)iθ
i .

Then

ρx(ξ) :=
N−1∑
i=1

|(Mxξ)i |.

I We also write |ξ| =
∑N

i=1 |ξi | for the Euclidean norm of ξ.



I The variable seminorm ρx(ξ) induces a quasi-metric d(x , y)
on RN .

I If x , y ∈ RN with |x − y | < 1, we write

d(x , y) := sup

{
1

ρx(ξ) + |ξ|1/2
: (x − y) · ξ = 1

}
.

I We also write |x − y | for the Euclidean distance between x
and y .



Our class of symbols with mixed homogeneities

I The symbols we consider will be assigned two different
‘orders’, namely m and n, which we think of as the ‘isotropic’
and ‘non-isotropic’ orders of the symbol respectively.

I In the case of the constant distribution, it is quite easy to
define the class of symbols we are interested in: given
m, n ∈ R, if a0(x , ξ) ∈ C∞(T ∗RN) is such that

|a0(x , ξ)| . (1 + |ξ|)m(1 + ‖ξ‖)n

|∂Jx ∂αξ′∂
β
ξN

a0(x , ξ)| .J,α,β (1 + |ξ|)m−β(1 + ‖ξ‖)n−|α|

where

‖ξ‖ = |ξ′|+ |ξN |1/2 if ξ =
N∑
i=1

ξidx i ,

then we say a0 ∈ Sm,n(D0). (Note that in this situation,
1 + ‖ξ‖ ' 1 + ρx(ξ) + |ξ|1/2.)



I More generally, suppose D is a distribution as before (in
particular, we fix the frame X1, . . . ,XN , and its dual frame
θ1, . . . , θN). Given x ∈ RN and

ξ =
N∑
i=1

ξidx i =
N∑
i=1

(Mxξ)iθ
i ,

write

Mxξ =
N∑
i=1

(Mxξ)idx i .

Then we say a ∈ Sm,n(D), if and only if

a(x , ξ) = a0(x ,Mxξ)

for some a0 ∈ Sm,n(D0).



I e.g. Suppose we are on R3. Pick coordinates x = (x1, x2, t),
and dual coordinates ξ = (ξ1, ξ2, τ). Define

X1 =
∂

∂x1
+ 2x2 ∂

∂t
, X2 =

∂

∂x2
− 2x1 ∂

∂t
, X3 =

∂

∂t
,

and
D := span{X1,X2}.

Then identifying R3 with the Heisenberg group H1, D is
sometimes called the contact distribution.

We then have a ∈ Sm,n(D), if and only if

a(x1, x2, t, ξ1, ξ2, τ) = a0(x1, x2, t, ξ1 + 2x2τ, ξ2 − 2x1τ, τ)

for some a0 ∈ Sm,n(D0).

I The condition a ∈ Sm,n(D) can also be phrased in terms of
suitable differential inequalities.



I e.g. Still consider the contact distribution D on H1.
Recall coordinates x = (x1, x2, t) on H1, and dual coordinates
ξ = (ξ1, ξ2, τ). Let

Dτ =
∂

∂τ
− 2x2 ∂

∂ξ1
+ 2x1 ∂

∂ξ2
,

and

D1 =
∂

∂x1
+ 2τ

∂

∂ξ2
, D2 =

∂

∂x2
− 2τ

∂

∂ξ1
, D3 =

∂

∂t
.

Then a ∈ Sm,n(D), if and only if a(x , ξ) ∈ C∞(H1 × R3)
satisfies

|a(x , ξ)| . (1 + |ξ|)m(1 + ρx(ξ) + |ξ|1/2)n,

|∂αξ Dβ
ξ DJa(x , ξ)| . (1 + |ξ|)m−β(1 + ρx(ξ) + |ξ|1/2)n−|α|,

where DJ is composition of any number of the D1,D2,D3.



I Back to the general set up. We call elements of Sm,n(D) a
symbol of order (m, n).

I Our class of symbols Sm,n is quite big.

I Sm,0 contains every standard (isotropic) symbol of order m:

|a(x , ξ)| . (1 + |ξ|)m

|∂αξ ∂Jx a(x , ξ)| .α,J (1 + |ξ|)m−|α|

I Also, S0,n contains the following class of symbols, which we
think of as non-isotropic symbols of order n:

|a(x , ξ)| . (1 + ρx(ξ) + |ξ|1/2)n

|∂αξ Dβ
ξ DJa(x , ξ)| .α,β,J (1 + ρx(ξ) + |ξ|1/2)n−|α|−2β

I Many of the results below for Sm,n has an (easier)
counter-part for these non-isotropic symbols.



Our class of pseudodifferential operators with mixed
homogeneities

I To each symbol a ∈ Sm,n(D), we associate a
pseudodifferential operator

Taf (x) =

ˆ
RN

a(x , ξ)f̂ (ξ)e2πix ·ξdξ.

We denote the set of all such operators Ψm,n(D).

I We remark that Ψm,n(D) depends only on the distribution D,
and not on the choice of the vector fields X1, . . . ,XN (nor on
the choice of a coordinate system on RN).
(Geometric invariance!)

I One sees that Ψm,n(D) is the correct class of operators to
study, via the following kernel estimates:



Theorem (Stein-Y. 2013)

If T ∈ Ψm,n(D) with m > −1 and n > −(N − 1), then one can
write

Tf (x) =

ˆ
RN

f (y)K (x , y)dy ,

where the kernel K (x , y) satisfies

|K (x , y)| . |x − y |−(N−1+n)d(x , y)−2(1+m),

|(X ′)γx ,y∂
δ
x ,yK (x , y)| . |x − y |−(N−1+n+|γ|)d(x , y)−2(1+m+|δ|).

Here X ′ refers to any of the ‘good’ vector fields X1, . . . ,XN−1 that
are tangent to D, and the subscripts x , y indicates that the
derivatives can act on either the x or y variables.

I c.f. two-flag kernels of Nagel-Ricci-Stein-Wainger



Main theorems

Theorem (Stein-Y. 2013)

If T1 ∈ Ψm,n(D) and T2 ∈ Ψm′,n′(D), then

T1 ◦ T2 ∈ Ψm+m′,n+n′(D).

Furthermore, if T ∗1 is the adjoint of T1 with respect to the
standard L2 inner product on RN , then we also have

T ∗1 ∈ Ψm,n(D).

In particular, the class of operators Ψ0,0 form an algebra under
composition, and is closed under taking adjoints.

I Proof unified by introducing some suitable compound symbols.



Theorem (Stein-Y. 2013)

If T ∈ Ψ0,0(D), then T maps Lp(RN) into itself for all 1 < p <∞.

I Operators in Ψ0,0 are operators of type (1/2, 1/2). As such
they are bounded on L2.

I But operators in Ψ0,0 may not be of weak-type (1,1); this
forbids one to run the Calderon-Zygmund paradigm in proving
Lp boundedness → use Littlewood-Paley projections instead,
and need to introduce some new strong maximal functions.

I Nonetheless, there are two very special ideals of operators
inside Ψ0,0, namely Ψε,−2ε and Ψ−ε,ε for ε > 0.
(The fact that these are ideals of the algebra Ψ0,0 follows
from the earlier theorem). They satisfy:



Theorem (Stein-Y. 2013)

If T ∈ Ψε,−2ε or Ψ−ε,ε for some ε > 0, then

(a) T is of weak-type (1,1), and

(b) T maps the Hölder space Λα(RN) into itself for all α > 0.

I An analogous theorem holds for some non-isotropic Hölder
spaces Γα(RN).

I Proof of (a) by kernel estimates

I Proof of (b) by Littlewood-Paley characterization of the
Hölder spaces Λα.



Theorem (Stein-Y. 2013)

Suppose T ∈ Ψm,n with

m > −1, n > −(N − 1), m + n ≤ 0, and 2m + n ≤ 0.

For p ≥ 1, define an exponent p∗ by

1

p∗
:=

1

p
− γ, γ := min

{
|m + n|

N
,
|2m + n|

N + 1

}
if 1/p > γ. Then:

(i) T : Lp → Lp∗ for 1 < p ≤ p∗ <∞; and

(ii) if m+n
N 6= 2m+n

N+1 , then T is weak-type (1, 1∗).

I These estimates for Sm,n are better than those obtained by
composing between the optimal results for S0,n and Sm,0.



I For example, take the example of the 1-dimensional
Heisenberg group H1 (so N = 3).

I If T1 is a standard (or isotropic) pseudodifferential operator of
order −1/2 (so T1 ∈ Ψ−1/2,0), and T2 is a non-isotropic
pseudodifferential operator of order −1 (so T2 ∈ Ψ0,−1), then
the best we could say about the operators individually are just

T2 : L4/3 → L2, T1 : L2 → L3.

But according to the previous theorem,

T1 ◦ T2 : L4/3 → L4,

which is better.

I Proof of (i) by interpolation between Ψ0,0 and Ψ−1,−(N−1).

I Proof of (ii) by kernel estimates.



Some applications

I One can localize the above theory of operators of class Ψm,n

to compact manifolds without boundary.

I Let M = ∂Ω be the boundary of a strongly pseudoconvex
domain Ω in Cn+1, n ≥ 1.

I Then the Szegö projection S is an operator in Ψε,−2ε for all
ε > 0; c.f. Phong-Stein (1977).

I Furthermore, the Dirichlet-to-∂-Neumann operator �+, which
one needs to invert in solving the ∂-Neumann problem on Ω,
has a parametrix in Ψ1,−2; c.f. Greiner-Stein (1977),
Chang-Nagel-Stein (1992).



Epilogue

I On R, we know that if Tf := f ∗ |y |−1+α, 0 < α < 1, then

‖Tf ‖Lq ≤ C‖f ‖Lp ,

whenever
1

q
=

1

p
− α, 1 < p < q <∞.

There are many known proofs; below we sketch one that is
perhaps less commonly known, and that is reminiscent of our
proof of the smoothing properties for our class Ψm,n above.



I The idea is to use complex interpolation: For s ∈ C with
0 ≤ Re s ≤ 1, let ks be the tempered distribution

ks(y) = (1 + s)−1∂2y |y |1+s ,

so that when 0 < Re s ≤ 1, we have ks(y) = s|y |−1+s .

I Let Ts f = f ∗ ks for f ∈ S.

I Then when Re s = 1, we have Ts : L1 → L∞, since it is then a
convolution against a bounded function.

I Also when Re s = 0, we have Ts : Lr → Lr for all 1 < r <∞,
since ks is then a Calderon-Zygmund kernel (one can check
that k̂s ∈ L∞ for such s, since ks , being a derivative, satisfies
a cancellation condition).

I Interpolation then shows that Tα : Lp → Lq, when

1

q
=

1

p
− α, 1 < p < q <∞.


