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Introduction

» Joint work with E. Stein (and an outgrowth of work of
Nagel-Ricci-Stein-Wainger, to appear)

» Motivating question: what happens when one compose two
operators of two different homogeneities?

» e.g. On RN one can associate two different dilations:
for x = (x’,xN) € RN, X > 0, one can define

A-x = (A, AxMN)  (isotropic)

Ao x = (A, \2x")  (non-isotropic)

» Associated to these are two norms, each homogeneous with
respect to one of these dilations:

x| = |x] + x"]

Ixll = x| + Y[/



There are also the dual norms, on the cotangent space of RV,
given by
€1 =1€'I + [En]

€l = 1¢'] + Il
One could look at multipliers e(&), with

0807 e(&)] < l¢| 118,

and their associated multiplier operators fe\f(f) = e(&)F(¢).
(These are just standard isotropic singular integral operators.)

One could also look at multipliers h(), with
020 h()| < llgf~1e=21A1,

and their associated multiplier operators ﬂ\f(g) = h(§)?(§).
(These are just non-isotropic singular integral operators,
arising e.g. when one solves the heat equation.)



Some motivating Questions

» What happens when one compose T, with T,7?
What kind of operator do we get?
What are the nature of the singularities of the multiplier, or
the kernel, of T, T47?

» What mapping properties does T T} satisfy?
When is it (say) weak-type (1,1)7

» The question of composition is quite easy, since we are dealing
with convolution operators on an abelian group RV,

» The question of mapping properties was already studied in a
paper of Phong and Stein in 1982.

» We are interested in these questions, because they serve as

toy model problems for what one needs to do in more general
settings.



» e.g. In several complex variables, in solving the 9-Neumann
problem on a smooth strongly pseudoconvex domain in C"*1,
one faces the problem of inverting the Calderon operator L.

» Roughly speaking, this amounts to composing an operator
with isotropic homogeneity, with an operator with
non-isotropic homogeneity:

Ot ~0_Opt

(at least when n > 1; c.f. Greiner-Stein 1977).

» Similar compositions arise in the study of the Hodge Laplacian
on k-forms on the Heisenberg group H" (Miiller-Peloso-Ricci
2012)



The role of flag kernels

» The flag kernels are integral kernels that are singular along
certain subspaces on RV (e.g. Nagel-Ricci-Stein 2001,
Nagel-Ricci-Stein-Wainger 2011, to appear).

» These are special cases of product kernels, which were studied
by many authors (e.g. R. Fefferman-Stein 1982, Journe 1985,
Nagel-Stein 2004).

» e.g. On the Heisenberg group H", a flag kernel could be
singular along the t-axis, and satisfies

K(z,8)| < lz[7(Jz* + [¢)) 7

along with some corresponding differential inequalities and
cancellation conditions.



Simple examples of flag kernels include both singular integral
kernels with isotropic homogeneities, and those with
non-isotropic homogeneities.

More sophisticated examples of flag kernels on H" are given
by the joint spectral multipliers m(Lo, iT), where m is a
Marcinkiewicz multiplier, and Lg is the sub-Laplacian
(Miiller-Ricci-Stein 1995, 1996).

The singular integral operators with flag kernels map LP to
LP, for 1 < p < 0o, and form an algebra under composition.

Thus if we want to compose a singular integral with isotropic
homogeneity, with one that has non-isotropic homogeneity, we
could have composed them in the class of all flag kernels.

But then we get as a result a flag kernel, which is singular
along some subspaces (whereas our original kernels are both
singular only at one point).



» It turns out one should consider the intersection of those flag
kernels that are singular along the t-axis, with those that are
singular along the z-axis, as in Nagel-Ricci-Stein-Wainger (to
appear). This gives rise to operators with mixed
homogeneities:

Kz, ) < (2] + [t 72" (|21 + [¢)) 7

along with differential inequalities and cancellation conditions.

» Our first result will be a pseudodifferential realization of the
above operators of with mixed homogeneities.

» The goal is to write them as pseudodifferential operators:
Taf) = [ abxf (e

for some suitable symbols a(x, &).



v

Nagel-Stein (1979) and Beals-Greiner (1988) has realized
those singular integrals with purely non-isotropic
homogeneities as pseudodifferential operators.

We will do so for singular integrals with mixed homogeneities;
in doing so, we will also consider operators of all orders (not
just order 0 ones, as singular integrals would be).

Our results will actually hold in a more general setting,
outside several complex variables; it will hold as long as a
smooth distribution of tangent subspaces (of constant rank) is
given on RV,

We will also see some geometric invariance of our class of
operators as we proceed.

A very step-2 theory!



Our set-up

» Suppose on RV, we are given a (global) frame of tangent
vectors, namely X1, ..., Xy, with X; = ZJ LA (x x) .

» We assume that all AJ,:(X) are C* functions, and that
AL (x) € L=(RN) for all multiindices J.

» We also assume that \det(AJ,:(x))\ is uniformly bounded from
below on RV,

» Let D be the distribution of tangent subspaces on RV given
by the span of {Xi,..., Xn_1}.

» Our constructions below seem to depend on the choice of the
frame Xi, ..., Xy, but ultimately the class of operators we
introduce will only depend on D.

» No curvature assumption on D is necessary!



An example: the contact distribution on H!

(Picture courtesy of Assaf Naor)



Geometry of the distribution

» We write 0%, ..., 6N for the frame of cotangent vectors dual
to X1,..., Xn.

» We will need a variable seminorm p, (&) on the cotangent
bundle of RV, defined as follows.

» Given £ = Z,N:l &idx’, and a point x € RV, we write

N
£= (M&)ib'.
i=1

Then
N—-1

px(§) == Z |(M£)il.

i=1

» We also write [{| = ZlNzl |i| for the Euclidean norm of &.



» The variable seminorm py(€) induces a quasi-metric d(x, y)
on RV,

» If x,y € RN with |[x — y| < 1, we write

1
px(€) + €[22

» We also write |x — y| for the Euclidean distance between x
and y.

d(x,y) ::sup{ (x—y)-le}.



Our class of symbols with mixed homogeneities

» The symbols we consider will be assigned two different
‘orders’, namely m and n, which we think of as the ‘isotropic’
and ‘non-isotropic’ orders of the symbol respectively.

> In the case of the constant distribution, it is quite easy to
define the class of symbols we are interested in: given
m,n € R, if ag(x,&) € C°(T*RN) is such that

l0(x, )1 < (1+ [eh™(1 + [1€1)"
040806, 20(x, )| Ss.008 (14 6™ (1 + [1€ll)™

where

N
€l = 1€ + [En]™? if &= gidx',
i=1

then we say ag € S™"(Dy). (Note that in this situation,
L+ [l€]l = 1+ pe(€) + €[



More generally, suppose D is a distribution as before (in
particular, we fix the frame Xy, ..., Xy, and its dual frame
0,...,0N). Given x € RN and

N . N )
£= &dx' = (ML)0,
i=1 i=1

write

N
M& = (My&)idx'.
i=1
Then we say a € S™"(D), if and only if

a(x,f) = ao(X, fo)

for some ag € S™"(Dy).



» e.g. Suppose we are on R3. Pick coordinates x = (x!, x?, t),
and dual coordinates £ = (&1, &2, 7). Define

0 0 0 0 0
X1= = +2x° = Xo = — — 2xt— Xa= =
L= g TN 2o " T a
and
D := span{ X1, X2}.

Then identifying R3 with the Heisenberg group H*, D is
sometimes called the contact distribution.

We then have a € S™"(D), if and only if
a(xt, X%, 1,61, €2 1) = ag(xt, X2, t, & + 2x37, & — 2xMr,7)

for some ag € S™"(Dy).

» The condition a € S™"(D) can also be phrased in terms of
suitable differential inequalities.



» e.g. Still consider the contact distribution D on H!.
Recall coordinates x = (x1,x2,t) on H!, and dual coordinates

f = (51,{2,7’). Let

0 0 0
D, = — —2x° 2xt—
or 5§1+ 2&’
and
D=2 v 0, p @ 50 5O

ox1 o0&’ Ox? 0’ ot

Then a € S™"(D), if and only if a(x, &) € C°(H! x R3)
satisfies

la(x, ) < (1+[€)™(L+ px(€) + €[Y2)",

0 D Dja(x, )] < (L4 €)™ (1 + pel€) +1€/2)"71)

where D; is composition of any number of the Dy, Ds, Ds.



Back to the general set up. We call elements of S™"(D) a
symbol of order (m, n).

Our class of symbols S™" is quite big.

S™0 contains every standard (isotropic) symbol of order m:
la(x, &)l < (1 +[¢)™

108 0 a(x, )| Sas (L+1¢)) 1

Also, S%" contains the following class of symbols, which we
think of as non-isotropic symbols of order n:

a0, )1 S (L+ px(&) + [€[12)"

108 D7 D?a(x, €)| Sa.s (1+ px(€) + [/ 101=28

Many of the results below for S™" has an (easier)
counter-part for these non-isotropic symbols.



Our class of pseudodifferential operators with mixed
homogeneities

» To each symbol a € S™"(D), we associate a
pseudodifferential operator

Taf(x) = [ | ale OO 4dk.

We denote the set of all such operators W™"(D).

» We remark that W™"(D) depends only on the distribution D,
and not on the choice of the vector fields Xi,..., Xy (nor on
the choice of a coordinate system on RV).

(Geometric invariance!)

» One sees that W™"(D) is the correct class of operators to
study, via the following kernel estimates:



Theorem (Stein-Y. 2013)

If T € V™"(D) with m > —1 and n > —(N — 1), then one can
write

P00 = [ FOIK(xy)dy.
where the kernel K(x,y) satisfies
KO S b=y |70 d (x, y) 7200m),

X020, K x| S = y (N5 g x, ) -2004me1o),

Here X' refers to any of the ‘good’ vector fields X, ..., Xn_1 that
are tangent to D, and the subscripts x, y indicates that the
derivatives can act on either the x or y variables.

» c.f. two-flag kernels of Nagel-Ricci-Stein-Wainger



Main theorems

Theorem (Stein-Y. 2013)
If T, € U™"(D) and T, € W™ (D), then
Tio T € wmtmintn'(p),

Furthermore, if T{ is the adjoint of Ty with respect to the
standard L2 inner product on RN, then we also have

T; € wmn(D).

In particular, the class of operators W0 form an algebra under
composition, and is closed under taking adjoints.

» Proof unified by introducing some suitable compound symbols.



Theorem (Stein-Y. 2013)

If T € WO9(D), then T maps LP(RN) into itself for all 1 < p < oc.

» Operators in W0 are operators of type (1/2,1/2). As such
they are bounded on L.

» But operators in W% may not be of weak-type (1,1); this
forbids one to run the Calderon-Zygmund paradigm in proving
LP boundedness — use Littlewood-Paley projections instead,
and need to introduce some new strong maximal functions.

> Nonetheless, there are two very special ideals of operators
inside W90 namely W& =2 and W5 for € > 0.

(The fact that these are ideals of the algebra W0 follows
from the earlier theorem). They satisfy:



Theorem (Stein-Y. 2013)
If T € We=2¢ or WS¢ for some ¢ > 0, then

(a) T is of weak-type (1,1), and
(b) T maps the Hélder space A*(RN) into itself for all a > 0.

» An analogous theorem holds for some non-isotropic Holder
spaces *(RN).

» Proof of (a) by kernel estimates

» Proof of (b) by Littlewood-Paley characterization of the
Holder spaces A“.



Theorem (Stein-Y. 2013)

Suppose T € V™" with

m>-1, n>—-(N—-1), m+n<0, and 2m-+n<0.

For p > 1, define an exponent p* by

1 1 — min lm+n| |2m + n|
if1/p > . Then:

(i) T:LP— LP" forl < p < p* < oo, and

(i) if M0 2,(,"i1", then T is weak-type (1,1%).

> These estimates for S™" are better than those obtained by
composing between the optimal results for S%" and ™9,



» For example, take the example of the 1-dimensional
Heisenberg group H' (so N = 3).

» If Ty is a standard (or isotropic) pseudodifferential operator of
order —1/2 (so Ty € W~1/20) and T, is a non-isotropic
pseudodifferential operator of order —1 (so To € W%~1), then
the best we could say about the operators individually are just

To: L*3 512 Ty 12— 13
But according to the previous theorem,
Tl o T2: L4/3 — L4,

which is better.
» Proof of (i) by interpolation between W20 and W—1—(N-1),

» Proof of (ii) by kernel estimates.



Some applications

» One can localize the above theory of operators of class ™"
to compact manifolds without boundary.

> Let M = 0% be the boundary of a strongly pseudoconvex
domain Q in C"*1, n > 1.

» Then the Szegd projection S is an operator in W52 for all
e > 0; c.f. Phong-Stein (1977).

» Furthermore, the Dirichlet-to-O-Neumann operator [y, which
one needs to invert in solving the d-Neumann problem on €,
has a parametrix in W1=2; c.f. Greiner-Stein (1977),
Chang-Nagel-Stein (1992).



Epilogue

» On R, we know that if Tf := f  |y| 717 0 < a < 1, then
[Tl e < Cl[f[re,

whenever

1 1

—=——qa, l<p<g<oo.

qg p
There are many known proofs; below we sketch one that is
perhaps less commonly known, and that is reminiscent of our

proof of the smoothing properties for our class W™ " above.



The idea is to use complex interpolation: For s € C with
0 < Res <1, let ks be the tempered distribution

ks(y) = (1+s) 'Oy [,

so that when 0 < Res < 1, we have ky(y) = s|y|~1*>.
Let Tsf = f x ks for f € S.

Then when Res = 1, we have T,: L1 — L, since it is then a
convolution against a bounded function.

Also when Res =0, we have T5: L' — L" for all 1 < r < o0,
since ks is then a Calderon-Zygmund kernel (one can check
that ks € L™ for such s, since kg, being a derivative, satisfies
a cancellation condition).

Interpolation then shows that T,: LP — L9, when

1 1
—=——qa, l<p<g<oo.
q P



