On a class of pseudodifferential operators with mixed homogeneities

Po-Lam Yung
University of Oxford

July 25, 2014

Introduction

- Joint work with E. Stein (and an outgrowth of work of Nagel-Ricci-Stein-Wainger, to appear)
- Motivating question: what happens when one compose two operators of two different homogeneities?
- e.g. On \mathbb{R}^{N} one can associate two different dilations: for $x=\left(x^{\prime}, x^{N}\right) \in \mathbb{R}^{N}, \lambda>0$, one can define

$$
\begin{gathered}
\lambda \cdot x:=\left(\lambda x^{\prime}, \lambda x^{N}\right) \quad \text { (isotropic) } \\
\lambda \odot x:=\left(\lambda x^{\prime}, \lambda^{2} x^{N}\right) \quad \text { (non-isotropic) }
\end{gathered}
$$

- Associated to these are two norms, each homogeneous with respect to one of these dilations:

$$
\begin{gathered}
|x|=\left|x^{\prime}\right|+\left|x^{N}\right| \\
\|x\|=\left|x^{\prime}\right|+\left|x^{N}\right|^{1 / 2}
\end{gathered}
$$

- There are also the dual norms, on the cotangent space of \mathbb{R}^{N}, given by

$$
\begin{gathered}
|\xi|=\left|\xi^{\prime}\right|+\left|\xi_{N}\right| \\
\|\xi\|=\left|\xi^{\prime}\right|+\left|\xi_{N}\right|^{1 / 2}
\end{gathered}
$$

- One could look at multipliers $e(\xi)$, with

$$
\left|\partial_{\xi^{\prime}}^{\alpha} \partial_{\xi_{N}}^{\beta} e(\xi)\right| \lesssim|\xi|^{-|\alpha|-|\beta|},
$$

and their associated multiplier operators $\widehat{T_{e} f}(\xi)=e(\xi) \widehat{f}(\xi)$.
(These are just standard isotropic singular integral operators.)

- One could also look at multipliers $h(\xi)$, with

$$
\left|\partial_{\xi^{\prime}}^{\alpha} \partial_{\xi_{N}}^{\beta} h(\xi)\right| \lesssim\|\xi\|^{-|\alpha|-2|\beta|},
$$

and their associated multiplier operators $\widehat{T_{h} f}(\xi)=h(\xi) \widehat{f}(\xi)$. (These are just non-isotropic singular integral operators, arising e.g. when one solves the heat equation.)

Some motivating Questions

- What happens when one compose T_{e} with T_{h} ?

What kind of operator do we get?
What are the nature of the singularities of the multiplier, or the kernel, of $T_{e} T_{h}$?

- What mapping properties does $T_{e} T_{h}$ satisfy? When is it (say) weak-type (1,1)?
- The question of composition is quite easy, since we are dealing with convolution operators on an abelian group \mathbb{R}^{N}.
- The question of mapping properties was already studied in a paper of Phong and Stein in 1982.
- We are interested in these questions, because they serve as toy model problems for what one needs to do in more general settings.
- e.g. In several complex variables, in solving the $\bar{\partial}$-Neumann problem on a smooth strongly pseudoconvex domain in \mathbb{C}^{n+1}, one faces the problem of inverting the Calderon operator \square_{+}.
- Roughly speaking, this amounts to composing an operator with isotropic homogeneity, with an operator with non-isotropic homogeneity:

$$
\square_{+}^{-1} \simeq \square_{-} \square_{b}^{-1}
$$

(at least when $n>1$; c.f. Greiner-Stein 1977).

- Similar compositions arise in the study of the Hodge Laplacian on k-forms on the Heisenberg group \mathbb{H}^{n} (Müller-Peloso-Ricci 2012)

The role of flag kernels

- The flag kernels are integral kernels that are singular along certain subspaces on \mathbb{R}^{N} (e.g. Nagel-Ricci-Stein 2001, Nagel-Ricci-Stein-Wainger 2011, to appear).
- These are special cases of product kernels, which were studied by many authors (e.g. R. Fefferman-Stein 1982, Journe 1985, Nagel-Stein 2004).
- e.g. On the Heisenberg group \mathbb{H}^{n}, a flag kernel could be singular along the t-axis, and satisfies

$$
|K(z, t)| \lesssim|z|^{-2 n}\left(|z|^{2}+|t|\right)^{-1}
$$

along with some corresponding differential inequalities and cancellation conditions.

- Simple examples of flag kernels include both singular integral kernels with isotropic homogeneities, and those with non-isotropic homogeneities.
- More sophisticated examples of flag kernels on \mathbb{H}^{n} are given by the joint spectral multipliers $m\left(\mathcal{L}_{0}, i T\right)$, where m is a Marcinkiewicz multiplier, and \mathcal{L}_{0} is the sub-Laplacian (Müller-Ricci-Stein 1995, 1996).
- The singular integral operators with flag kernels map L^{p} to L^{p}, for $1<p<\infty$, and form an algebra under composition.
- Thus if we want to compose a singular integral with isotropic homogeneity, with one that has non-isotropic homogeneity, we could have composed them in the class of all flag kernels.
- But then we get as a result a flag kernel, which is singular along some subspaces (whereas our original kernels are both singular only at one point).
- It turns out one should consider the intersection of those flag kernels that are singular along the t-axis, with those that are singular along the z-axis, as in Nagel-Ricci-Stein-Wainger (to appear). This gives rise to operators with mixed homogeneities:

$$
|K(z, t)| \lesssim(|z|+|t|)^{-2 n}\left(|z|^{2}+|t|\right)^{-1}
$$

along with differential inequalities and cancellation conditions.

- Our first result will be a pseudodifferential realization of the above operators of with mixed homogeneities.
- The goal is to write them as pseudodifferential operators:

$$
T_{a} f(x)=\int_{\mathbb{H}^{n}} a(x, \xi) \hat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

for some suitable symbols $a(x, \xi)$.

- Nagel-Stein (1979) and Beals-Greiner (1988) has realized those singular integrals with purely non-isotropic homogeneities as pseudodifferential operators.
- We will do so for singular integrals with mixed homogeneities; in doing so, we will also consider operators of all orders (not just order 0 ones, as singular integrals would be).
- Our results will actually hold in a more general setting, outside several complex variables; it will hold as long as a smooth distribution of tangent subspaces (of constant rank) is given on \mathbb{R}^{N}.
- We will also see some geometric invariance of our class of operators as we proceed.
- A very step-2 theory!

Our set-up

- Suppose on \mathbb{R}^{N}, we are given a (global) frame of tangent vectors, namely X_{1}, \ldots, X_{N}, with $X_{i}=\sum_{j=1}^{N} A_{i}^{j}(x) \frac{\partial}{\partial x^{j}}$.
- We assume that all $A_{i}^{j}(x)$ are C^{∞} functions, and that $\partial_{x}^{J} A_{i}^{j}(x) \in L^{\infty}\left(\mathbb{R}^{N}\right)$ for all multiindices J.
- We also assume that $\left|\operatorname{det}\left(A_{j}^{j}(x)\right)\right|$ is uniformly bounded from below on \mathbb{R}^{N}.
- Let \mathcal{D} be the distribution of tangent subspaces on \mathbb{R}^{N} given by the span of $\left\{X_{1}, \ldots, X_{N-1}\right\}$.
- Our constructions below seem to depend on the choice of the frame X_{1}, \ldots, X_{N}, but ultimately the class of operators we introduce will only depend on \mathcal{D}.
- No curvature assumption on \mathcal{D} is necessary!

An example: the contact distribution on \mathbb{H}^{1}

(Picture courtesy of Assaf Naor)

Geometry of the distribution

- We write $\theta^{1}, \ldots, \theta^{N}$ for the frame of cotangent vectors dual to X_{1}, \ldots, X_{N}.
- We will need a variable seminorm $\rho_{\chi}(\xi)$ on the cotangent bundle of \mathbb{R}^{N}, defined as follows.
- Given $\xi=\sum_{i=1}^{N} \xi_{i} d x^{i}$, and a point $x \in \mathbb{R}^{N}$, we write

$$
\xi=\sum_{i=1}^{N}\left(M_{x} \xi\right)_{i} \theta^{i}
$$

Then

$$
\rho_{x}(\xi):=\sum_{i=1}^{N-1}\left|\left(M_{x} \xi\right)_{i}\right|
$$

- We also write $|\xi|=\sum_{i=1}^{N}\left|\xi_{i}\right|$ for the Euclidean norm of ξ.
- The variable seminorm $\rho_{x}(\xi)$ induces a quasi-metric $d(x, y)$ on \mathbb{R}^{N}.
- If $x, y \in \mathbb{R}^{N}$ with $|x-y|<1$, we write

$$
d(x, y):=\sup \left\{\frac{1}{\rho_{x}(\xi)+|\xi|^{1 / 2}}:(x-y) \cdot \xi=1\right\}
$$

- We also write $|x-y|$ for the Euclidean distance between x and y.

Our class of symbols with mixed homogeneities

- The symbols we consider will be assigned two different 'orders', namely m and n, which we think of as the 'isotropic' and 'non-isotropic' orders of the symbol respectively.
- In the case of the constant distribution, it is quite easy to define the class of symbols we are interested in: given $m, n \in \mathbb{R}$, if $a_{0}(x, \xi) \in C^{\infty}\left(T^{*} \mathbb{R}^{N}\right)$ is such that

$$
\begin{aligned}
&\left|a_{0}(x, \xi)\right| \lesssim(1+|\xi|)^{m}(1+\|\xi\|)^{n} \\
&\left|\partial_{x}^{J} \partial_{\xi^{\prime}}^{\alpha} \partial_{\xi_{N}}^{\beta} a_{0}(x, \xi)\right| \lesssim J, \alpha, \beta \\
&(1+|\xi|)^{m-\beta}(1+\|\xi\|)^{n-|\alpha|}
\end{aligned}
$$

where

$$
\|\xi\|=\left|\xi^{\prime}\right|+\left|\xi_{N}\right|^{1 / 2} \quad \text { if } \xi=\sum_{i=1}^{N} \xi_{i} d x^{i}
$$

then we say $a_{0} \in S^{m, n}\left(\mathcal{D}_{0}\right)$. (Note that in this situation, $\left.1+\|\xi\| \simeq 1+\rho_{x}(\xi)+|\xi|^{1 / 2}.\right)$

- More generally, suppose \mathcal{D} is a distribution as before (in particular, we fix the frame X_{1}, \ldots, X_{N}, and its dual frame $\left.\theta^{1}, \ldots, \theta^{N}\right)$. Given $x \in \mathbb{R}^{N}$ and

$$
\xi=\sum_{i=1}^{N} \xi_{i} d x^{i}=\sum_{i=1}^{N}\left(M_{x} \xi\right)_{i} \theta^{i}
$$

write

$$
M_{x} \xi=\sum_{i=1}^{N}\left(M_{x} \xi\right)_{i} d x^{i}
$$

Then we say $a \in S^{m, n}(\mathcal{D})$, if and only if

$$
a(x, \xi)=a_{0}\left(x, M_{x} \xi\right)
$$

for some $a_{0} \in S^{m, n}\left(\mathcal{D}_{0}\right)$.

- e.g. Suppose we are on \mathbb{R}^{3}. Pick coordinates $x=\left(x^{1}, x^{2}, t\right)$, and dual coordinates $\xi=\left(\xi_{1}, \xi_{2}, \tau\right)$. Define

$$
x_{1}=\frac{\partial}{\partial x^{1}}+2 x^{2} \frac{\partial}{\partial t}, \quad x_{2}=\frac{\partial}{\partial x^{2}}-2 x^{1} \frac{\partial}{\partial t}, \quad x_{3}=\frac{\partial}{\partial t}
$$

and

$$
\mathcal{D}:=\operatorname{span}\left\{X_{1}, X_{2}\right\} .
$$

Then identifying \mathbb{R}^{3} with the Heisenberg group $\mathbb{H}^{1}, \mathcal{D}$ is sometimes called the contact distribution.

We then have $a \in S^{m, n}(\mathcal{D})$, if and only if

$$
a\left(x^{1}, x^{2}, t, \xi^{1}, \xi^{2}, \tau\right)=a_{0}\left(x^{1}, x^{2}, t, \xi_{1}+2 x^{2} \tau, \xi_{2}-2 x^{1} \tau, \tau\right)
$$

for some $a_{0} \in S^{m, n}\left(\mathcal{D}_{0}\right)$.

- The condition $a \in S^{m, n}(\mathcal{D})$ can also be phrased in terms of suitable differential inequalities.
- e.g. Still consider the contact distribution \mathcal{D} on \mathbb{H}^{1}. Recall coordinates $x=\left(x^{1}, x^{2}, t\right)$ on \mathbb{H}^{1}, and dual coordinates $\xi=\left(\xi_{1}, \xi_{2}, \tau\right)$. Let

$$
D_{\tau}=\frac{\partial}{\partial \tau}-2 x^{2} \frac{\partial}{\partial \xi_{1}}+2 x^{1} \frac{\partial}{\partial \xi_{2}}
$$

and

$$
D_{1}=\frac{\partial}{\partial x^{1}}+2 \tau \frac{\partial}{\partial \xi_{2}}, \quad D_{2}=\frac{\partial}{\partial x^{2}}-2 \tau \frac{\partial}{\partial \xi_{1}}, \quad D_{3}=\frac{\partial}{\partial t}
$$

Then $a \in S^{m, n}(\mathcal{D})$, if and only if $a(x, \xi) \in C^{\infty}\left(\mathbb{H}^{1} \times \mathbb{R}^{3}\right)$ satisfies

$$
\begin{gathered}
|a(x, \xi)| \lesssim(1+|\xi|)^{m}\left(1+\rho_{x}(\xi)+|\xi|^{1 / 2}\right)^{n} \\
\left|\partial_{\xi}^{\alpha} D_{\xi}^{\beta} D_{J} a(x, \xi)\right| \lesssim(1+|\xi|)^{m-\beta}\left(1+\rho_{x}(\xi)+|\xi|^{1 / 2}\right)^{n-|\alpha|}
\end{gathered}
$$

where D_{J} is composition of any number of the D_{1}, D_{2}, D_{3}.

- Back to the general set up. We call elements of $S^{m, n}(\mathcal{D})$ a symbol of order (m, n).
- Our class of symbols $S^{m, n}$ is quite big.
- $S^{m, 0}$ contains every standard (isotropic) symbol of order m :

$$
\begin{aligned}
|a(x, \xi)| & \lesssim(1+|\xi|)^{m} \\
\left|\partial_{\xi}^{\alpha} \partial_{x}^{J} a(x, \xi)\right| & \lesssim \alpha, J(1+|\xi|)^{m-|\alpha|}
\end{aligned}
$$

- Also, $S^{0, n}$ contains the following class of symbols, which we think of as non-isotropic symbols of order n :

$$
\begin{gathered}
|a(x, \xi)| \lesssim\left(1+\rho_{x}(\xi)+|\xi|^{1 / 2}\right)^{n} \\
\left|\partial_{\xi}^{\alpha} D_{\xi}^{\beta} D^{J} a(x, \xi)\right| \lesssim \alpha, \beta, J \\
\left(1+\rho_{x}(\xi)+|\xi|^{1 / 2}\right)^{n-|\alpha|-2 \beta}
\end{gathered}
$$

- Many of the results below for $S^{m, n}$ has an (easier) counter-part for these non-isotropic symbols.

Our class of pseudodifferential operators with mixed homogeneities

- To each symbol $a \in S^{m, n}(\mathcal{D})$, we associate a pseudodifferential operator

$$
T_{a} f(x)=\int_{\mathbb{R}^{N}} a(x, \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

We denote the set of all such operators $\Psi^{m, n}(\mathcal{D})$.

- We remark that $\Psi^{m, n}(\mathcal{D})$ depends only on the distribution \mathcal{D}, and not on the choice of the vector fields X_{1}, \ldots, X_{N} (nor on the choice of a coordinate system on \mathbb{R}^{N}).
(Geometric invariance!)
- One sees that $\Psi^{m, n}(\mathcal{D})$ is the correct class of operators to study, via the following kernel estimates:

Theorem (Stein-Y. 2013)

If $T \in \Psi^{m, n}(\mathcal{D})$ with $m>-1$ and $n>-(N-1)$, then one can write

$$
T f(x)=\int_{\mathbb{R}^{N}} f(y) K(x, y) d y
$$

where the kernel $K(x, y)$ satisfies

$$
\begin{aligned}
|K(x, y)| & \lesssim|x-y|^{-(N-1+n)} d(x, y)^{-2(1+m)} \\
\left|\left(X^{\prime}\right)_{x, y}^{\gamma} \partial_{x, y}^{\delta} K(x, y)\right| & \lesssim|x-y|^{-(N-1+n+|\gamma|)} d(x, y)^{-2(1+m+|\delta|)} .
\end{aligned}
$$

Here X^{\prime} refers to any of the 'good' vector fields X_{1}, \ldots, X_{N-1} that are tangent to \mathcal{D}, and the subscripts x, y indicates that the derivatives can act on either the x or y variables.

- c.f. two-flag kernels of Nagel-Ricci-Stein-Wainger

Main theorems

Theorem (Stein-Y. 2013)
If $T_{1} \in \Psi^{m, n}(\mathcal{D})$ and $T_{2} \in \Psi^{m^{\prime}, n^{\prime}}(\mathcal{D})$, then

$$
T_{1} \circ T_{2} \in \Psi^{m+m^{\prime}, n+n^{\prime}}(\mathcal{D})
$$

Furthermore, if T_{1}^{*} is the adjoint of T_{1} with respect to the standard L^{2} inner product on \mathbb{R}^{N}, then we also have

$$
T_{1}^{*} \in \Psi^{m, n}(\mathcal{D})
$$

In particular, the class of operators $\Psi^{0,0}$ form an algebra under composition, and is closed under taking adjoints.

- Proof unified by introducing some suitable compound symbols.

Theorem (Stein-Y. 2013)
If $T \in \Psi^{0,0}(\mathcal{D})$, then T maps $L^{p}\left(\mathbb{R}^{N}\right)$ into itself for all $1<p<\infty$.

- Operators in $\Psi^{0,0}$ are operators of type $(1 / 2,1 / 2)$. As such they are bounded on L^{2}.
- But operators in $\Psi^{0,0}$ may not be of weak-type $(1,1)$; this forbids one to run the Calderon-Zygmund paradigm in proving L^{p} boundedness \rightarrow use Littlewood-Paley projections instead, and need to introduce some new strong maximal functions.
- Nonetheless, there are two very special ideals of operators inside $\Psi^{0,0}$, namely $\Psi^{\varepsilon,-2 \varepsilon}$ and $\Psi^{-\varepsilon, \varepsilon}$ for $\varepsilon>0$. (The fact that these are ideals of the algebra $\Psi^{0,0}$ follows from the earlier theorem). They satisfy:

Theorem (Stein-Y. 2013)
If $T \in \Psi^{\varepsilon,-2 \varepsilon}$ or $\Psi^{-\varepsilon, \varepsilon}$ for some $\varepsilon>0$, then
(a) T is of weak-type $(1,1)$, and
(b) T maps the Hölder space $\Lambda^{\alpha}\left(\mathbb{R}^{N}\right)$ into itself for all $\alpha>0$.

- An analogous theorem holds for some non-isotropic Hölder spaces $\Gamma^{\alpha}\left(\mathbb{R}^{N}\right)$.
- Proof of (a) by kernel estimates
- Proof of (b) by Littlewood-Paley characterization of the Hölder spaces Λ^{α}.

Theorem (Stein-Y. 2013)

Suppose $T \in \Psi^{m, n}$ with

$$
m>-1, \quad n>-(N-1), \quad m+n \leq 0, \quad \text { and } \quad 2 m+n \leq 0 .
$$

For $p \geq 1$, define an exponent p^{*} by

$$
\frac{1}{p^{*}}:=\frac{1}{p}-\gamma, \quad \gamma:=\min \left\{\frac{|m+n|}{N}, \frac{|2 m+n|}{N+1}\right\}
$$

if $1 / p>\gamma$. Then:
(i) $T: L^{p} \rightarrow L^{p^{*}}$ for $1<p \leq p^{*}<\infty$; and
(ii) if $\frac{m+n}{N} \neq \frac{2 m+n}{N+1}$, then T is weak-type $\left(1,1^{*}\right)$.

- These estimates for $S^{m, n}$ are better than those obtained by composing between the optimal results for $S^{0, n}$ and $S^{m, 0}$.
- For example, take the example of the 1-dimensional Heisenberg group \mathbb{H}^{1} (so $N=3$).
- If T_{1} is a standard (or isotropic) pseudodifferential operator of order $-1 / 2$ (so $T_{1} \in \Psi^{-1 / 2,0}$), and T_{2} is a non-isotropic pseudodifferential operator of order -1 (so $T_{2} \in \psi^{0,-1}$), then the best we could say about the operators individually are just

$$
T_{2}: L^{4 / 3} \rightarrow L^{2}, \quad T_{1}: L^{2} \rightarrow L^{3} .
$$

But according to the previous theorem,

$$
T_{1} \circ T_{2}: L^{4 / 3} \rightarrow L^{4}
$$

which is better.

- Proof of (i) by interpolation between $\Psi^{0,0}$ and $\Psi^{-1,-(N-1)}$.
- Proof of (ii) by kernel estimates.

Some applications

- One can localize the above theory of operators of class $\Psi^{m, n}$ to compact manifolds without boundary.
- Let $M=\partial \Omega$ be the boundary of a strongly pseudoconvex domain Ω in $\mathbb{C}^{n+1}, n \geq 1$.
- Then the Szegö projection S is an operator in $\Psi^{\varepsilon,-2 \varepsilon}$ for all $\varepsilon>0$; c.f. Phong-Stein (1977).
- Furthermore, the Dirichlet-to- $\bar{\partial}$-Neumann operator \square_{+}, which one needs to invert in solving the $\bar{\partial}$-Neumann problem on Ω, has a parametrix in $\Psi^{1,-2}$; c.f. Greiner-Stein (1977), Chang-Nagel-Stein (1992).

Epilogue

- On \mathbb{R}, we know that if $T f:=f *|y|^{-1+\alpha}, 0<\alpha<1$, then

$$
\|T f\|_{L^{q}} \leq C\|f\|_{L^{p}}
$$

whenever

$$
\frac{1}{q}=\frac{1}{p}-\alpha, \quad 1<p<q<\infty .
$$

There are many known proofs; below we sketch one that is perhaps less commonly known, and that is reminiscent of our proof of the smoothing properties for our class $\Psi^{m, n}$ above.

- The idea is to use complex interpolation: For $s \in \mathbb{C}$ with $0 \leq \operatorname{Re} s \leq 1$, let k_{s} be the tempered distribution

$$
k_{s}(y)=(1+s)^{-1} \partial_{y}^{2}|y|^{1+s},
$$

so that when $0<\operatorname{Re} s \leq 1$, we have $k_{s}(y)=s|y|^{-1+s}$.

- Let $T_{s} f=f * k_{s}$ for $f \in \mathcal{S}$.
- Then when $\operatorname{Re} s=1$, we have $T_{s}: L^{1} \rightarrow L^{\infty}$, since it is then a convolution against a bounded function.
- Also when $\operatorname{Re} s=0$, we have $T_{s}: L^{r} \rightarrow L^{r}$ for all $1<r<\infty$, since k_{s} is then a Calderon-Zygmund kernel (one can check that $\widehat{k}_{s} \in L^{\infty}$ for such s, since k_{s}, being a derivative, satisfies a cancellation condition).
- Interpolation then shows that $T_{\alpha}: L^{p} \rightarrow L^{q}$, when

$$
\frac{1}{q}=\frac{1}{p}-\alpha, \quad 1<p<q<\infty
$$

