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This is the fourth talk in a sequence, but the material is largely independent of
the previous talks. We will be mostly giving a brief first introduction to several
complex variables, and at the very end I will tie everything together by mentioning
some recent results in the subject that follow from the subelliptic real analysis we
have seen in the previous talks.

1. The Cauchy-Riemann complex ∂

Let Ω be a domain in Cn+1 with smooth boundary, n ≥ 1. We use the standard
Euclidean coordinates on Ω: z := (z1, . . . , zn+1),

zj := xj + iyj , j = 1, . . . , n+ 1.

For 1 ≤ j ≤ n+ 1, we introduce the following 1-forms with complex coefficients:

dzj := dxj + idyj , dzj := dxj − idyj .
A (1, 0) form is then a linear combination of the dzj ’s at each point (where the
coefficients may vary as the point varies). Similarly a (0, 1) form is a linear combi-
nation of the dzj ’s at every point. We also introduce the following complex vector
fields:

∂

∂zj
:=

1
2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
:=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
.

(The coefficients were chosen so that the ∂
∂zj and ∂

∂zj ’s are dual to the dzj and
dzj ’s.) A holomorphic vector field is then a linear combination of the ∂

∂zj ’s at each
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point, and an anti-holomorphic vector field is a linear combination of the ∂
∂zj ’s at

each point.1 A (p, q) form is an alternating tensor product of p (1, 0) forms and q
(0, 1) forms, and a (0, 0) form is just a function. From the analytic point of view, it
is no loss in generality to consider only the case of (0, q) forms, which we do from
now on. At each point, a basis of (0, q) forms is given by {dzI}, where

dzI := dzi1 ∧ · · · ∧ dziq if I = (i1, . . . , iq),

and I runs over all strictly increasing multi-indices of length q (i.e. i1 < i2 < · · · <
iq). We put a Hermitian metric on the space of (0, q) forms by making the previous
basis unitary at each point. We denote this pointwise Hermitian inner product by
〈·, ·〉. This allows us to put a global Hermitian inner product on the space of all
(0, q) forms on Ω, by letting

(u, v) =
∫

Ω

〈u, v〉,

where the integration is with respect to the standard Euclidean measure on Cn+1.
We write L2

(0,q)(Ω) for the space of all (0, q) forms on Ω whose norm under the
previous inner product is finite, and this is a Hilbert space.

We now define the Cauchy-Riemann operator ∂ on Ω.

Definition 1. The operator ∂ is defined, in the distributional sense, by

∂u :=
∑
I

n+1∑
j=1

∂uI

∂zj
dzj ∧ dzI if u =

∑
I

uIdz
I .

Hereafter sums like
∑
I will always mean sums over strictly increasing multi-

indices. ∂ sends (0, q) forms to (0, q + 1) forms. A function u is said to be holo-
morphic if ∂u = 0. Since we shall be working with the Hilbert space L2

(0,q)(Ω) in
a moment, from now on, however, unless otherwise specified, we shall take ∂ to be
the (unbounded) linear operator

∂ : L2
(0,q)(Ω)→ L2

(0,q+1)(Ω)

with domain

Dom(∂) = {u ∈ L2
(0,q)(Ω): the distributional ∂u ∈ L2

(0,q+1)(Ω)}

so that the Hilbert space operator ∂ agrees with the distributional ∂ whenever the
former is defined.

Another often useful reformulation of the definition of ∂ is the following. If u is
a function, we require ∂u to be the (0, 1) form satisfying

∂u(Z) = Z(u)

for all anti-holomorphic vector fields Z; if u is a (0, 1) form, we require ∂u to be
the (0, 2) form satisfying

(∂u)(Z1, Z2) = Z1(u(Z2))− Z2(u(Z1))− u([Z1, Z2])

1In more differential geometric terms, we are complexifying the tangent bundle of Ω and writing

it as the direct sum of two subbundles, T (1,0) and T (0,1), where the fiber of T (1,0) at each point
is the span of the ∂

∂zj ’s, and the fiber of T (0,1) at each point is the span of the ∂
∂zj ’s. In other

words, T (1,0) is the i-eigenspace of the complex structure J , and T (0,1) is the −i-eigenspace of
J . The (1, 0) forms are then complexified 1-forms that annihilates T (0,1), and the (0, 1) forms are

complexified 1-forms that annihilates T (1,0).
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for all anti-holomorphic vector fields Z1, Z2. We also require that

∂(u ∧ v) = (∂u) ∧ v + (−1)q1u ∧ (∂v)

whenever u is a (0, q1) form and v is a (0, q2) form. This defines the same distribu-
tional ∂ as above, and if Z1, . . . , Zn+1 is a local frame of anti-holomorphic vector
fields, while ω1, . . . , ωn+1 is the dual frame of (0, 1) forms, then locally, in the sense
of distribution, for u =

∑
I uIω

I , we have

(1) ∂u =
∑
I

n+1∑
j=1

Zj(uI)ωj ∧ ωI + terms that are 0-th order in u.

(The latter 0-th order terms arise when one takes ∂ωI , and are zero if ∂ωj = 0 for
all j.) We can then define the Hilbert space operator ∂ as above, and again from
now on the symbol ∂ shall refer to the Hilbert space operator.

One important property of the ∂ operator is that it forms a complex : in other
words, Range(∂) ⊆ Dom(∂), and

∂ ◦ ∂ = 0.

One fundamental question in several complex variables is to solve the following
inhomogeneous Cauchy-Riemann equation for u ∈ L2

(0,q)(Ω):

(2) ∂u = f.

In other words, we want to solve the above equation weakly for u ∈ L2
(0,q)(Ω),

assuming f ∈ L2
(0,q+1)(Ω) is given. Since ∂ forms a complex, this equation can only

have a solution when the compatibility condition

∂f = 0

is satisfied, which we shall always assume from now on. Another way of viewing
this is that this system of equations is over-determined, and some compatibility
conditions must be imposed on the given data. The solution to the inhomogeneous
Cauchy-Riemann equation, if exists, is not unique; if u is a solution, so is u+ v for
any v in the kernel of ∂. Thus if we have a solution to the inhomogeneous Cauchy-
Riemann equation, we often orthogonally project to the orthogonal complement of
the kernel of ∂, and obtain the unique solution to the equation that is orthogonal
to the kernel of ∂. The latter solution is often called the canonical solution, and
this is usually the one that we are interested in.

2. Geometry of the domain: Pseudoconvexity

It turns out that solutions to the inhomogeneous Cauchy-Riemann equation (2)
may or may not exist in such a general formulation. To ensure the existence of
solutions, one needs to impose a local geometric condition at each point on the
boundary ∂Ω of Ω. This is usually formulated using the notion of pseudoconvexity,
to which we now turn.

Again let Ω be a domain in Cn+1 with smooth boundary. First we need the
concept of a holomorphic tangent vector at each point on ∂Ω.

Definition 2. For each point z ∈ ∂Ω, a holomorphic tangent vector at z is a
holomorphic vector at z that is tangent to ∂Ω. The space of all such is written
T

(1,0)
z (∂Ω).
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Hence T (1,0)
z (∂Ω) is a vector space of (complex) dimension n. Similarly we define

T
(0,1)
z (∂Ω), which is also n-dimensional, and we call each element in that an anti-

holomorphic tangent vector. Note that the direct sum of these is not the full tangent
space of ∂Ω; one direction is always missing (by a simple count of dimensions). It
is this failure of the holomorphic and anti-holomorphic tangent vectors to span the
tangent space at the boundary that eventually contributes to the subelliptic nature
of the subject, which we will see in a moment.

Now we shall define a Hermitian form on T
(1,0)
z (∂Ω) at each z ∈ ∂Ω. To do so,

fix a smooth defining function ρ on Ω. This means that

Ω = {z ∈ Cn+1 : ρ(z) > 0}

and that |dρ| 6= 0 on the boundary of Ω.

Definition 3. For each point z ∈ ∂Ω, the Levi form Lz at z is a Hermitian form
defined on T

(1,0)
z (∂Ω), given by the restriction of the Hermitian matrix

−
(

∂2ρ

∂zj∂zk
(z)
)

1≤j,k≤n+1

to T (1,0)
z (∂Ω).

More explicitly, if Z =
∑n+1
j=1 a

j ∂
∂zj and W =

∑n+1
j=1 b

j ∂
∂zj are tangent to ∂Ω at

z, then

Lz(Z,W ) := −
n+1∑
j,k=1

ajbk
∂2ρ

∂zj∂zk
(z).

Alternatively, for holomorphic tangent vector fields Z and W to ∂Ω,

Lz(Z,W ) = −d(∂ρ)(Z,W )(z) = −(∂ρ)[Z,W ](z).

Now suppose locally T is a purely imaginary vector field on ∂Ω that is tangent
to ∂Ω and that does not lie in the span of the holomorphic and anti-holomorphic
tangent vectors. Then since [Z,W ] is tangent to ∂Ω, it is a linear combination of
a holomorphic tangent vector, an anti-holomorphic vector and T . In the previous
formula for Lz(Z,W ), however, it is only the last component that contributes,
because ∂ρ annihilates any holomorphic and anti-holomorphic tangent vectors on
∂Ω. Hence if we now choose a local frame of holomorphic tangent vectors Z1, . . . , Zn
to ∂Ω and let

(3) [Zj , Zk] = cjkT (mod T 1,0(∂Ω)⊕ T 0,1(∂Ω)), 1 ≤ j, k ≤ n,

then the Levi form on ∂Ω is given by

Lz(Zj , Zk) = −(∂ρ)(T )cjk(z), 1 ≤ j, k ≤ n.

Now −∂ρ(T ) is real and nowhere vanishing, because T is purely imaginary and
annihilates ρ. Replacing T by −T if necessary, we may assume that −∂ρ(T ) > 0,
and thus the Levi form on on ∂Ω is essentially given by the n × n (Hermitian)
matrix (cjk(z)), which we call the Levi matrix.

The Levi form depends on the choice of the defining function ρ, and the Levi ma-
trix depends on both the choice of ρ, Z1, . . . , Zn and T , but the following concepts
will be independent of all such:
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Definition 4. A domain Ω is said to be pseudoconvex at a point z ∈ ∂Ω if the Levi
form at z (or the Levi matrix at z) is non-negative definite. It is simply said to be
pseudoconvex if it is pseudoconvex at every point on the boundary.

Definition 5. A domain Ω is said to be strongly pseudoconvex at a point z ∈ ∂Ω
if the Levi form at z (or the Levi matrix at z) is positive definite. It is simply
said to be strongly pseudoconvex if it is strongly pseudoconvex at every point on the
boundary.

The names pseudoconvex and strongly pseudoconvex are chosen because every
(smooth) convex domain is pseudoconvex, and every (smooth) strictly convex do-
main is strongly pseudoconvex.

There is actually a notion of pseudoconvexity for domains whose boundary is
not smooth, but we shall not discuss that.

3. Solvability of the Cauchy-Riemann operator ∂

The notion of pseudoconvexity is very important in several complex variables.
This can be seen for instance from the following theorem, which underlies one of
the starting point of the subject:

Theorem 1. Let Ω be a bounded smooth pseudoconvex domain in Cn+1. Then for
all q ≥ 0, for any f ∈ L2

(0,q+1)(Ω) with ∂f = 0, there exists u ∈ L2
(0,q)(Ω) such that

∂u = f .

To prove the theorem, we shall need the theory of closed operators on Hilbert
spaces. Recall that a densely defined linear operator T : H1 → H2 between two
Hilbert spaces is said to be closed if its graph is closed in H1 × H2. It is easy to
check that the operator ∂ : L2

(0,q)(Ω)→ L2
(0,q+1)(Ω) we defined is a closed operator.

At this point it is convenient to introduce the Hilbert space adjoint of ∂, denoted
by

∂
∗

: L2
(0,q+1)(Ω)→ L2

(0,q)(Ω).

In other words, if f ∈ L2
(0,q+1)(Ω), then f ∈ Dom(∂

∗
) if and only if there is some

v ∈ L2
(0,q)(Ω) such that

(u, v) = (∂u, f) for all u ∈ L2
(0,q)(Ω) ∩Dom(∂),

and in this case we define
∂
∗
f = v.

Then ∂
∗

is also a densely defined, linear and closed operator. To get a sense of
what this is, note that if f =

∑
J fJdz

J ∈ L2
(0,q+1)(Ω) ∩ Dom(∂

∗
) is smooth up

to the boundary, then an easy integration by parts argument shows that f has to
satisfy the following boundary condition, namely that

n+1∑
j=1

fjJ′
∂ρ

∂zj
= 0 on ∂Ω

for all strictly increasing multi-indices J ′ of length q, where ρ is a defining function
of Ω with the additional property that |∇ρ| = 1 on the boundary (so that ∇ρ is
the inward unit normal). Hereafter we shall write fjJ′ = εJ,jJ

′
fJ if j /∈ J ′, where

J is the strictly increasing multi-index that is a permutation of (j, J ′1, . . . , J
′
q), and
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εJ,jJ
′

is the sign of this permutation. We shall also let fjJ′ = 0 if j ∈ J ′. In a sense
that we shall make precise below, this is the condition that the normal components
of f vanishes on the boundary of Ω. In fact for the above f one then also obtains

∂
∗
f = −

∑
J′

n+1∑
j=1

∂fjJ′

∂zj
dzJ

′
on Ω.

In terms of a local frame of (0, 1) forms ω1, . . . , ωn+1 and its dual frame of anti-
holomorphic vector fields Z1, . . . , Zn+1, we can also write

∂
∗
f = −

∑
J′

n+1∑
j=1

Zj(fjJ′)ωJ
′
+ terms that are 0-th order in f

if f =
∑
I fIω

I , by (1). Note that ∂
∗

forms a complex because ∂ does.
Abstractly, it is easy to check that the orthogonal complement of (the closure

of) the range of ∂ in L2
(0,q+1)(Ω) is the kernel of ∂

∗
. Hence

(4) L2
(0,q+1)(Ω) = Kernel(∂

∗
)⊕ Range(∂)

where ⊕ denotes an orthogonal direct sum.
Going back to the inhomogeneous Cauchy-Riemann equation ∂u = f , suppose

that f ∈ L2
(0,q+1)(Ω) with ∂f = 0. We want to find u ∈ L2

(0,q)(Ω) ∩ Dom(∂) such
that ∂u = f . To find such an u amounts to showing that f ∈ Range(∂). But using
(4) we can decompose

f = f1 + f2, f1 ∈ Kernel(∂
∗
), f2 ∈ Range(∂).

Note that as a result f2 ∈ Kernel(∂). Since we already have f ∈ Kernel(∂), we have
f1 ∈ Kernel(∂) as well. If we could show that

(i) Kernel(∂) ∩Kernel(∂
∗
) = {0} on L2

(0,q+1)(Ω), and
(ii) Range(∂) is closed in L2

(0,q+1)(Ω),

then f1 = 0, hence f = f2 ∈ Range(∂) as desired. Hence we are reduced to showing
(i) and (ii). This can be accomplished in one stroke if we could show the following
basic estimate (q ≥ 0):

(5) ‖f‖L2 ≤ C(‖∂f‖L2 + ‖∂∗f‖L2), f ∈ L2
(0,q+1)(Ω) ∩Dom(∂) ∩Dom(∂

∗
).

In fact it is clear that (5) implies (i), and from (5) it follows that

‖f‖L2 ≤ C‖∂∗f‖L2

for all f ∈ L2
(0,q+1)(Ω) ∩ Dom(∂

∗
) orthogonal to the kernel of ∂

∗
, so the range of

∂
∗

is closed in L2
(0,q)(Ω), and (ii) follows. Hence it is tempted to prove the basic

estimate on all bounded smooth pseudoconvex domains Ω.
It turns out that while the basic estimate does hold on all bounded smooth pseu-

doconvex domains Ω, it is not so easy to establish that directly. Here Hormander
introduced a very clever trick, and he proved instead a weighted version of the basic
estimate. From there one can still conclude the proof of Theorem 1, and in fact
then one can conclude that the original basic estimate (5) holds as stated. We omit
the details.

At this point we point out that the basic estimate is only a very weak estimate.
In general, if ∂f and ∂

∗
f are in L2, one is tempted to ask whether u would be gain
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some derivatives in L2. It turns out that on strongly pseudoconvex domains one
gains 1/2 derivatives, as Kohn proved in the following theorem.

Theorem 2. On every bounded smooth strongly pseudoconvex domain Ω ⊆ Cn+1,
for any q ≥ 0, we have

‖f‖
W

1
2 ,2 ≤ C(‖∂f‖L2 + ‖∂∗f‖L2), f ∈ L2

(0,q+1)(Ω) ∩Dom(∂) ∩Dom(∂
∗
).

Here ‖f‖
W

1
2 ,2 is the componentwise Sobolev norm of f . We omit the proof.

4. The Kohn Laplacian and the ∂-Neumann problem

There is another system of equations in several complex variables that is closely
related to the inhomogeneous Cauchy-Riemann equations (2). This is formulated
using the Kohn Laplacian, which we denote by �. On L2

(0,q)(Ω) (q ≥ 0), this is
defined as the Hilbert space operator

� := ∂∂
∗

+ ∂
∗
∂.

In other words, the domain of � is given by

Dom(�) := {U ∈ Dom(∂) ∩Dom(∂
∗
) : ∂U ∈ Dom(∂

∗
), ∂
∗
U ∈ Dom(∂)},

and for U ∈ Dom(�),
�U := ∂∂

∗
U + ∂

∗
∂U.

So � sends (0, q) forms to (0, q) forms, and � is a densely defined, linear, closed
operator on L2

(0,q)(Ω). In fact it is also (unbounded) self-adjoint on L2
(0,q)(Ω).

The system of equations that we shall look at is just

(6) �U = f ;

in other words, given f ∈ L2
(0,q)(Ω), we want to find U ∈ L2

(0,q)(Ω) ∩Dom(�) such
that �U = f . This is called the ∂-Neumann problem, because if U were smooth,
then the condition that U ∈ Dom(�) is just the conditions that U ∈ Dom(∂

∗
) and

that ∂U ∈ Dom(∂
∗
), and the second one is a Neumann-type boundary condition

on U : it says, in a sense that can be made precise, that the complex normal
derivatives of the tangential components of U vanish on the boundary. It is this
second boundary condition that is difficult to deal with, and that’s why the word
Neumann enters into the name of the equation.

To solve (6), observe that since � is self-adjoint, we have the following orthogonal
decomposition of L2

(0,q)(Ω) for all q ≥ 0:

L2
(0,q)(Ω) = Kernel(�)⊕ Range(�).

Hence for (6) to be solvable, we need f to be orthogonal to the kernel of �. But a
moment’s reflection reveals that

Kernel(�) = Kernel(∂) ∩Kernel(∂
∗
),

and if Ω is bounded smooth and pseudoconvex, this is equal to{
{0} if q ≥ 1
Kernel(∂) if q = 0

by (i) of the previous section. In fact we have the following existence theorem for
the ∂-Neumann problem:
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Theorem 3. Let Ω be a bounded smooth pseudoconvex domain in Cn+1.
(a) If q ≥ 1, then for any f ∈ L2

(0,q)(Ω), there exists a unique U ∈ L2
(0,q)(Ω) ∩

Dom(�) such that �U = f .
(b) If q = 0, then for any f ∈ L2

(0,q)(Ω) orthogonal to the kernel of ∂, there exists
some U ∈ L2

(0,q)(Ω)∩Dom(�) such that �U = f , and this U is unique modulo
the kernel of ∂.

To prove this theorem, all that one needs to prove now is that the range of �
is closed in L2

(0,q)(Ω) for all q ≥ 0, but this is a consequence of Theorem 1. There
is even a formula for the solution operator2 for � in terms of the relative solution
operators of ∂, but we omit the details.

What is remarkable here is that conversely, if we can solve ∂-Neumann prob-
lem, we can solve the inhomogeneous Cauchy-Riemann equations. Suppose f ∈
L2

(0,q+1)(Ω) (q ≥ 0) satisfies ∂f = 0. Let U ∈ L2
(0,q+1)(Ω) ∩Dom(�) solve

�U = f.

Then we claim that
u := ∂

∗
U

is the canonical solution to
∂u = f.

In fact if we take ∂ of both sides of the equation �U = f , we get

∂(∂
∗
∂U) = 0.

But then ∂
∗
∂U ∈ Kernel(∂) ∩ Kernel(∂

∗
) = {0}, and thus the equation �U = f

reduces to
∂∂
∗
U = f.

So if u = ∂
∗
U , then ∂u = f . Moreover, it is clear that ∂

∗
U is orthogonal to the

kernel of ∂. Thus ∂
∗
U is the canonical solution to ∂u = f .

This is very nice because the system �U = f is usually easier to deal with than
the system ∂u = f . On one hand this is because �U = f is usually almost an
uncoupled system: the number of unknown component functions in U is the same
as the number of given component functions in f , and the system �U = f is very
often almost diagonal (in fact in some simple model case that we shall see in a
moment, the system is entirely uncoupled to a number of scalar equations for the
components of U). As such they are easier to manipulate. On the other hand,
�U = f is now a boundary value problem, because the condition that U ∈ Dom(�)
is a boundary condition (at least for U that are smooth up to the boundary). There
is a general paradigm for solving boundary value problems, as we shall discuss in the
next section. For now, let us remember that when we studied the inhomogeneous
Cauchy-Riemann equation, the canonical solution was the one that is orthogonal
to the kernel of ∂. That condition is very hard to use in general, because that
is a global condition, and in particular is not preserved under localization. The
boundary conditions of the ∂-Neumann problem, on the other hand, are easier to
deal with, because they are local in nature. Thus for instance, in the study of the
regularity of the solutions to ∂u = f , very often one first studies the regularity of
the solutions to �U = f and obtain the regularity of u from that of U .

2or relative solution operator if q = 0
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5. Reduction to the boundary

There is a very general paradigm of solving boundary value problems by reducing
it to a problem solely on the boundary. We shall describe one instance of this in
the Euclidean setting.

Suppose we want to solve, on the upper half space Rn+1
+ = {xn+1 > 0}, the

following Neumann boundary value problem:{
∆u = f on Rn+1

+
∂u

∂xn+1 = 0 on ∂Rn+1
+ .

(Here u and f are just scalar-valued functions.) Then letting u0 be the restriction
of u to ∂Rn+1

+ , from ∆u = f we have

u = u0 ∗ P +Gf

where P is the Poisson kernel and G is the Green’s operator on the upper half
space. Hence to solve for u is to solve for u0. But the only other requirement of u
is that ∂u

∂xn+1 = 0 on ∂Rn+1
+ . This is just the condition that

∂(u0 ∗ P )
∂xn+1

(x, 0) = −∂(Gf)
∂xn+1

(x, 0) for all x ∈ Rn.

The left-hand side of the equality is just

∂

∂xn+1

∣∣∣∣
xn+1=0

∫
Rn

û0(ξ)e−2πxn+1|ξ|e2πix·ξdξ =
∫

Rn

−2π|ξ|û0(ξ)e2πix·ξdξ

= −(−∆Rn)
1
2u0(x),

where ∆Rn is the ordinary Laplacian on the boundary. Hence the condition on u0

is that

−(−∆Rn)
1
2u0(x) = −∂(Gf)

∂xn+1
(x, 0) for all x ∈ Rn,

or

−∆Rnu0(x) = (−∆Rn)
1
2
∂(Gf)
∂xn+1

(x, 0) for all x ∈ Rn,

and we have reduced the solution of the original boundary value problem to the
solution of this elliptic problem on the boundary.

There is a similar story when we solve �U = f for U ∈ Dom(�), except that in
this case the boundary conditions for U are not elliptic, meaning that the boundary
operator that one needs to solve in this case is not elliptic. Nevertheless, when
the domain Ω is say strongly pseudoconvex, one is then led to solve a subelliptic
boundary operator3, and one can obtain bounds for such, which in turn implies
bounds for U .

6. The boundary tangential Cauchy-Riemann complex ∂b

It turns out that on the boundary of any smooth domain Ω in Cn+1, there is
another natural differential complex which is usually denoted as ∂b. To define this,
let z ∈ ∂Ω, and let Λ(0,q)

z (Cn+1) be the restriction of all (0, q) forms in Cn+1 to
z. Consider the alternating algebra given by the direct sum of these, when q runs
from 0 through n + 1. Let Iz be the ideal of this algebra generated by all (0, 1)

3This is basically the boundary Laplacian �b that we shall encounter in a moment.
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forms that annihilates T 0,1
z (∂Ω), and let I(0,q)

z be the vector space of (0, q) forms in
Iz. Then we define Λ(0,q)

z (∂Ω) to be the quotient

Λ(0,q)
z (∂Ω) := Λ(0,q)

z (Cn+1)/I(0,q)
z ,

and a (0, q) form on ∂Ω is by definition an association to each z ∈ ∂Ω an element
of Λ(0,q)

z (∂Ω)4. Note that on ∂Ω, the highest non-trivial level of forms is given by
q = n; in other words, there is no non-zero (0, n+ 1) forms on ∂Ω.

To define ∂b, let π be the natural projection map

π : Λ(0,q)(Cn+1)→ Λ(0,q)(∂Ω).

Given any smooth (0, q) form ub on ∂Ω, we pick a smooth (0, q) form u on Ω such
that

π(u) = ub;

then we define ∂bub by letting

∂bub := π(∂u).

Obviously ∂b sends a (0, q) form on the boundary to a (0, q + 1) form on the
boundary; it is easy to check that the right side is defined independent of the
choice of u, and we extend the definition of ∂b to distributions naturally. It is then
clear that ∂b also forms a complex:

∂b ◦ ∂b = 0.

Now we shall pick, at each point, a Hermitian metric on the space of all (0, q)
forms on ∂Ω. Let ρ be a defining function of Ω for which |dρ| = 1 near the boundary
of Ω. Then let ω1, . . . , ωn be (0, 1) forms on Ω such that ω1, . . . , ωn,−2i∂ρ form
a local unitary basis of (0, 1) forms near ∂Ω. Take the restriction of ω1, . . . , ωn to
∂Ω, and project them onto ∂Ω using the map π. These then become (0, 1) forms
on ∂Ω, and we denote them by ω1

b , . . . , ω
n
b . A basis of (0, q) forms on ∂Ω is given

by {ωIb}, where I runs over all strictly increasing multiindices of length q and

ωIb = ωi1b ∧ · · · ∧ ω
iq
b if I = (i1, . . . , iq).

(Again each ik ∈ {1, . . . , n}.) The Hermitian metric on (0, q) forms on ∂Ω is then
defined by making {ωIb} a unitary basis at each point of ∂Ω, and we denote this by
〈·, ·〉.

With this pointwise Hermitian metric, we define a global Hermitian inner product
on L2

(0,q)(∂Ω), the space of all (0, q) forms on ∂Ω with coefficients in L2, by letting

(ub, vb) :=
∫
∂Ω

〈ub, vb〉dσ,

where dσ is the induced surface measure on ∂Ω. This makes L2
(0,q)(∂Ω) a Hilbert

space, and allows us to talk about the Hilbert space operator ∂b. The Hilbert space
adjoint of this is denoted by ∂

∗
b , and sends (0, q+1) forms on the boundary to (0, q)

forms on the boundary; again it forms a complex because ∂b does. We can again
form the boundary Laplacian by letting

�b = ∂b∂
∗
b + ∂

∗
b∂b,

4In other words, Λ(0,q)(∂Ω) is a vector bundle over ∂Ω, and a (0, q) form on ∂Ω is a section of
this vector bundle.
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and this maps the space of (0, q) forms on the boundary into itself. Note however
that unlike the case of ∂

∗
, now there is no boundary conditions for forms in the

domain of ∂
∗
b or �b, because ∂Ω does not have a boundary. The subelliptic nature

of the problem is now contained instead in the fact that �b is more or less like a
sum of squares operator we have seen, where the vector fields do not span the full
tangent space. It follows that the operator �b itself is not elliptic, but only at best
subelliptic.

The formula that enters here are as follows. If Z1, . . . , Zn+1 is a local frame of
holomorphic vectors on Ω in which the first n are tangent to ∂Ω, and if ω1, . . . , ωn+1

is the dual frame of (0, 1) forms on Ω, then if ub =
∑
I uIω

I
b is a (0, q) form on ∂Ω,

we have, by (1), that

∂bub =
∑
I

n∑
j=1

Zj(uI)ω
j
b ∧ ω

I
b + terms that are 0-th order in ub,

in the sense of distributions, and thus

∂
∗
bub = −

∑
J′

n∑
j=1

Zj(ujJ′)ωJ
′

b + terms that are 0-th order in ub.

It follows that5

�bub = −
∑
I

 ∑
1≤j≤n
j∈I

ZjZj +
∑

1≤j≤n
j /∈I

ZjZj

uIω
I
b+ terms that are first order in ub.

There are two reasons why one would like to study ∂b and �b. One is that these
are natural boundary analogues of the operators ∂ and � that acts in the interior,
In fact one can ask the analogues of the problems we asked before, namely to solve

∂bub = fb, ub ⊥ Kernel of ∂b

given that ∂bfb = 0, and to solve

�bUb = fb, ub ⊥ Kernel of �b

given that fb is orthogonal to the kernel of �b. If we impose sufficient geometric
condition on the boundary of Ω, the analysis of the latter is simpler because there
are no boundary conditions for Ub to be in the domain of �b; but as we have seen
before, now the operator �b itself is not elliptic but only subelliptic, and we need a
version of the subelliptic analysis we discussed in the previous talks for systems to
analyze this. Another reason for analyzing ∂b and �b is that this analysis actually
helps us understand ∂ and �. This is because �b is basically the operator that
arise when we reduce the boundary value problem �U = f to the boundary. It is
the easiest to see this in the case of a special example, and this is the Heisenberg
group that we have incidentally seen in the previous talks, which we discuss next.

5This latter expression for �b, however, is usually too imprecise for any analysis.
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7. A model case: the Heisenberg group

We shall now describe a particular example in several complex variables that is
particularly easy to compute and serves as a good model for all strongly pseudo-
convex domains. This is the upper half space Un+1 ⊆ Cn+1, defined by

Un+1 := {w = (w′, wn+1) ∈ Cn+1 : Im wn+1 > |w′|2}.

It plays the same role as the ordinary upper half-plane Rn+1
+ = {xn+1 > 0} in

Euclidean harmonic analysis, which models any smooth domain in Rn+1. In fact
Un+1 is strongly pseudoconvex, and models any strongly pseudoconvex domains
in Cn+1. To see that Un+1 is strongly pseudoconvex, first choose a basis of (0, 1)
forms on Un+1, namely

ωj := dwj (1 ≤ j ≤ n) and ωn+1 := −2i∂ρ = dwn+1 + 2i
n∑
j=1

wjdwj ,

where ρ := Im wn+1 − |w′|2 is a defining function for Un+1, and the corresponding
dual basis of anti-holomorphic vector fields is then given by

Zj :=
∂

∂wj
− 2iwj

∂

∂wn+1 (1 ≤ j ≤ n) and Zn+1 :=
∂

∂wn+1 .

Then for 1 ≤ j, k ≤ n,

[Zj , Zk] = −2iδjk

(
∂

∂wn+1 +
∂

∂wn+1

)
,

so

∂ρ([Zj , Zk]) = − 1
2i
ωn+1([Zj , Zk]) = δjk

everywhere on Un+1, and in particular the Levi form is given by the n× n identity
matrix at every point of ∂Un+1. The latter is certainly positive definite, and this
proves that Un+1 is strongly pseudoconvex.

It is particularly easy to describe the ∂ complex in terms of this basis, because
[Zj , Zk] = 0 for all j, k. In particular, ∂ωj = 0 for all j, and thus by our alternative
description of ∂ given at the beginning, we have

∂u =
∑
I

n+1∑
j=1

Zj(uI)ωj ∧ ωI if u =
∑
I

uIω
I ,

at least in the sense of distributions.
To describe ∂

∗
, we need to put a Hermitian metric at each point on the space

of (0, q) forms on Un+1. The metric we put now, however, is slightly different from
the one that we have described so far: we are not going to put the Euclidean metric
on (0, q) forms. Rather, we are going to make {ωI} a unitary basis at every point
of Un+1. Then we have an inner product on the space of all (0, q) forms on Un+1,
namely

(u, v) =
∫
Un+1

∑
I

uIvIdw if u =
∑
I

uIω
I and v =

∑
I

vIω
I ,

and L2
(0,q)(U

n+1) is the space of all (0, q) forms whose norm under this inner product
is finite. We can now define the Hilbert space operator ∂, and its Hilbert space
adjoint ∂

∗
as before.
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Now the Hilbert space operator ∂
∗

has a very nice description in terms of this ba-
sis. If f =

∑
I fIω

I on Un+1 is smooth up to the boundary and vanishes sufficiently
fast at infinity, then f ∈ Dom∂

∗
if and only if

fI = 0 on the boundary of Un+1 whenever n+ 1 ∈ I.
In this case

∂
∗
f = −

∑
J′

n+1∑
j=1

Zj(fjJ′)dωJ
′

on Un+1.

Thus the Hilbert space operator � can be described as follows: if U is smooth up
to the boundary and vanishes at infinity, then a (0, q) form U ∈ Dom(�) if and
only if {

UI = 0 on ∂Un+1 whenever n+ 1 ∈ I,
Zn+1UI = 0 on ∂Un+1 whenever n+ 1 /∈ I.

In this case, �U is just

(7) �U =
∑
n+1/∈I

�tan
q (UI)ωI +

∑
n+1∈I

�nor
q (UI)ωI

where �tan
q , �nor

q are scalar differential operators acting on functions, defined by

�tan
q := Ln−2q −

1
2

(
∂2

∂t2
+

∂2

∂ρ2

)
and

�nor
q := Ln−2q+2 −

1
2

(
∂2

∂t2
+

∂2

∂ρ2

)
.

Here the Lα’s are scalar tangential differential operators acting on functions, given
by

Lα := −1
2

n∑
j=1

(
ZjZj + ZjZj

)
+ iαT

where

T =
1
2i

[Zj , Zj ] = 2Re
(

∂

∂wn+1

)
.

We can also write Lα as

(8) Lα = −1
4

n∑
j=1

(
X2
j + Y 2

j

)
+ iαT

where Xj , Yj are real vector fields such that Zj = 1
2 (Xj − iYj). Thus to solve the

∂-Neumann problem, we are reduced to solving the scalar equations

(9) �tan
q φ = ψ on Un+1, Zn+1φ = 0 on ∂Un+1

and

(10) �nor
q φ = ψ on Un+1, φ = 0 on ∂Un+1;

note how we have uncoupled the original system �U = f .
The boundary value problem (10) involving a Dirichlet boundary condition is

actually elliptic, and as such it is easy to deal with. The problem (9) involving
a complex Neumann condition, on the other hand, is not elliptic, because the
boundary condition Zn+1φ = 0 is not elliptic. In fact if we carry out the reduction
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to the boundary, the operator that interwines is precisely Ln−2q, and from (8) we
see that this is a variant of the sum of squares operators we have seen in the previous
talks. This operator is not elliptic; it is only subelliptic. It is where the subelliptic
analysis we have seen enters into the picture.

Note that it is here that we also see the role of the boundary Laplacian �b in
this problem; in fact from the same derivation of the formula of � in (7), forgetting
about the contribution of Zn+1 and Zn+1, one sees that the boundary Laplacian
�b acts on (0, q) forms on the boundary by acting componentwise by Ln−2q. In
fact in our previous notation, ∂bω

j
b = 0 for all j, and ω1

b , . . . , ω
n
b becomes a unitary

basis of (0, 1) forms on ∂Un+1; thus at least in the sense of distributions,

∂bub =
∑
I

n∑
j=1

Zj(uI)ω
j
b ∧ ω

I
b if ub =

∑
I

uIω
I
b ,

∂
∗
bfb = −

∑
J′

n∑
j=1

Zj(fjJ′)dωJ
′

b if fb =
∑
I

fIω
I
b ,

and if Ub =
∑
I UIω

I
b is a (0, q) form on ∂Un+1, then by the same computation as

in the derivation of (7) (which we did not really carry out),

�bUb =
∑
I

Ln−2q(UI)ωIb

The upshot is that in the aforementioned reduction of the boundary value prob-
lem (9) to the boundary, the operator that arises, namely Ln−2q, is basically our
boundary Laplacian �b. Thus it is important to be able to solve �b and obtain
estimates for that.

In the situation of the upper half-space Un+1 we are rather fortunate. This is
because the boundary ∂Un+1 of Un+1 is also a Lie group: if w = (w′, wn+1) ∈
∂Un+1, then it induces a biholomorphism of Un+1 into itself by translation, by
sending

(ζ ′, ζn+1) 7→ (ζ ′ + w′, ζn+1 + Re wn+1 + 2iζ ′ · w′ + i|w′|2).

There is a one-to-one correspondence between points on ∂Un+1 and biholomor-
phisms of Un+1 of this form, and the set of all biholomorphisms of Un+1 that arises
as such form a group. This gives ∂Un+1 the structure of the Lie group, which is
usually called the Heisenberg group6. In fact this is a homogeneous group, in the
sense that it carries an automorphic dilation. With this structure of a homogeneous
group on ∂Un+1, one can then solve Ln−2q (and hence �b) on ∂Un+1 rather explic-
itly: this is because Ln−2q is a homogeneous left-invariant differential operator of
degree 2, and we can solve this by convolving against a homogeneous distribution
of degree −(Q − 2), where Q(= 2n + 2) is the homogeneous dimension of ∂Un+1.
This is more or less what we have done in the second talk, and we omit the details.

8. Some regularity results for �b and �

We shall now describe some regularity results for �b, and their consequences for
the solutions to the ∂-Neumann problem.

6The Euclidean analog of this is just that ∂Rn+1
+ is diffeomorphic to Rn, which is a Lie group

in itself, and which acts on ∂Rn+1
+ by translation in the obvious way.
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Theorem 4. Let Ω be a bounded smooth strongly pseudoconvex domain in Cn+1.
Then for q ≥ 0, there exists an operator Kb such that for all fb ∈ L2

(0,q)(∂Ω),

fb = �bKbfb + Sbfb

where Sb is the orthogonal projection onto the kernel of �b, and Kbfb is orthogonal
to the kernel of �b. Furthermore, if Z1, . . . , Zn is a local frame of holomorphic
tangent vectors to ∂Ω, we have

‖Q(Z,Z)Kbfb‖Lp . ‖fb‖Lp , 1 < p <∞,
where Q(Z,Z) is any quadratic (non-commutative) polynomial in Z1, . . . , Zn, Z1,
. . . , Zn.

By the previous paradigm for solving boundary value problems, one can then
conclude the following:

Theorem 5. Let Ω be a bounded smooth strongly pseudoconvex domain in Cn+1.
Suppose Z1, . . . , Zn are linearly independent holomorphic vector fields on Ω that are
tangent to ∂Ω on ∂Ω, and Zn+1 is a holomorphic vector field on Ω that is linearly
independent with Z1, . . . , Zn. If U ∈ L2

(0,q)(Ω) ∩ Dom(�) for some q ≥ 1, and
�U = f on Ω, then

‖Q(Z,Z)U‖Lp + ‖Zn+1U‖W 1,p . ‖f‖Lp , 1 < p <∞,
where again Q(Z,Z) is any quadratic (non-commutative) polynomial in Z1, . . . ,
Zn, Z1, . . . , Zn.

We omit the details. We shall, however, mention that there is the following
remarkable generalization of Theorem 4 about the ∂b complex on the boundary. To
describe this, we need two definitions.

Definition 6. Let Ω be a smooth domain in Cn+1. It is said to be of finite com-
mutator type m, if near each point on ∂Ω, there is a local frame of holomorphic
tangent vectors Z1, . . . , Zn such that the commutators of Z1, . . . , Zn, Z1, . . . , Zn of
length ≤ m span the (complexified) tangent space to ∂Ω at that point.

Note that there is just one direction in the tangent space of ∂Ω that is not
spanned by Z1, . . . , Zn, Z1, . . . , Zn. This is the direction T in our definition of the
Levi matrix. If Ω is strongly pseudoconvex, then since the Levi matrix (cjk) is
positive definite at every point, in particular c11 > 0. Hence in this case T is in
the span of commutators of Z1, . . . , Zn, Z1, . . . , Zn of length ≤ 2, and Ω is of finite
commutator type 2.

Next we remember that the Levi form of a smooth domain is a Hermitian form at
every point on the boundary. As such they can be diagonalized, and the eigenvalues
are real. The eigenvalues are non-negative if the domain is pseudoconvex.

Definition 7. Let Ω be a smooth pseudoconvex domain in Cn+1. It is said to have
comparable Levi eigenvalues if there is a constant C > 0 such that for any z ∈ ∂Ω,
and for any eigenvalues λ1(z), λ2(z) of the Levi form at z, we have λ1(z) ≤ Cλ2(z).

Again if Ω is a bounded smooth strongly pseudoconvex domain in Cn+1, then
it has comparable Levi eigenvalues; also any pseudoconvex domain in C2 trivially
have comparable Levi eigenvalues, because the Levi matrix in this case is just a
1× 1 matrix.

The following theorem generalizes Theorem 4:
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Theorem 6. Let Ω be a bounded smooth pseudoconvex domain in Cn+1. Suppose
Ω is of finite commutator type, and Ω has comparable Levi eigenvalues. Then for
q ≥ 0, there exists an operator Kb such that for all fb ∈ L2

(0,q)(∂Ω),

fb = �bKbfb + Sbfb

where Sb is the orthogonal projection onto the kernel of �b, and Kbfb is orthogonal
to the kernel of �b. Furthermore, if Z1, . . . , Zn is a local frame of holomorphic
tangent vectors to ∂Ω, we have

‖Q(Z,Z)Kbfb‖Lp . ‖fb‖Lp , 1 < p <∞,

where Q(Z,Z) is any quadratic (non-commutative) polynomial in Z1, . . . , Zn, Z1,
. . . , Zn.

This is a result of Christ [2] in the case n = 2, and a result of Koenig [6] when
n ≥ 3. From this one can also deduce a regularity theorem for the ∂-Neumann
problem on such domains, as was done in Koenig [7].

9. Sobolev inequalities for (0, q) forms

We shall end by discussing some Sobolev inequalities for the ∂b complex, follow-
ing [9].

Theorem 7. Let Ω be a bounded smooth strongly pseudoconvex domain in Cn+1.
Then for all (0, q) forms ub on ∂Ω that are smooth up to the boundary, if ub ∈
Dom(∂

∗
b) and q 6= 1 nor n− 1, then

‖ub‖
L

Q
Q−1
. ‖∂bub‖L1 + ‖∂∗bub‖L1 , Q = 2n+ 2.

More generally, we have:

Theorem 8. Let Ω be a bounded smooth pseudoconvex domain in Cn+1 of finite
commutator type m, and that has comparable Levi eigenvalues. Then for all (0, q)
forms ub on ∂Ω that are smooth up to the boundary, if ub ∈ Dom(∂

∗
b) and q 6= 1

nor n− 1, then

‖ub‖
L

Q
Q−1
. ‖∂bub‖L1 + ‖∂∗bub‖L1 , Q = 2n+m.

The proof of the latter is by means of duality, and the L1 duality inequality
we have seen last time. This is entirely analogous to the proof of the Euclidean
theorem; one just need to observe that under our conditions for Ω, we can apply
locally the L1 duality inequality to the vector fields that are the real and imaginary
parts of a basis of holomorphic tangent vector fields, and this is possible because
they are of finite type m, and that they are linearly independent. The non-isotropic
dimension would then be given by Q = 2n + m, because a commutator of length
m is needed to span the missing direction. Finally, one can conclude the proof by
duality using the estimates for the relative solution operators Kb in Theorem 6,
because all the conditions of Ω in that theorem are satisfied here. The details are
omitted.

This is a very rough outline of the big picture in several complex variables, and
its relations to subelliptic analysis. Hopefully through these we have seen some
interesting aspects of the subject, and below one can find some standard references
in the subject should one wishes to pursue further.
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