
ON SOME SUBELLIPTIC REAL ANALYSIS

PO-LAM YUNG

In this and the next talk we shall analyze some real partial differential operators
that are subelliptic in nature. This will pave our way towards a discussion of some
subelliptic systems of equations that naturally arise in several complex variables in
the last talk.

We shall begin by discussing some background material, and work ourselves
towards some Sobolev type Lp − Lq estimates in this context.

1. Hormander’s Theorem

Let X1, . . . , Xn be some smooth real vector fields on RN . A commutator of these
vector fields of length r is a vector field of the form

[Xi1 , [Xi2 , [. . . , [Xir−1 , Xir ]]]].

Definition 1 (Hormander [3]). The vector fields X1, . . . , Xn are said to satisfy
Hormander’s finite type condition at a point ξ if they and their commutators of
length ≤ r span the tangent space of RN at ξ for some positive integer r. The
smallest r for which this holds is called the type of X1, . . . , Xn at ξ.

For simplicity, in such a situation we shall often just say that X1, . . . , Xn are
of finite type r. Note that in general we may have fewer vector fields than the
Euclidean dimension of the underlying space. In other words, n may be smaller
than N .

One trivial example is the case when we have N vector fields ∂
∂x1

, . . . , ∂
∂xN

on RN .
These vector fields are of finite type 1. The analysis associated with these vector
fields are well-known. What we do below can be thought of as a generalization of
this analysis.

Two more interesting examples are:

Example 1. On R2, where the coordinates are given by (x, t), let

X1 =
∂

∂x
, X2 = xr ∂

∂t
, r ≥ 1.

Then [X1, [X1, [. . . , [X1, X2]]]] = r! ∂
∂t where the bracket has length r + 1. Hence

X1, X2 are of finite type r + 1 at 0. (For simplicity, we shall focus below on the
case where r = 1.)

Example 2. On R3, where the coordinates are given by (x, y, t), let

X1 =
∂

∂x
, X2 =

∂

∂y
+ x

∂

∂t
.

Then [X1, X2] = ∂
∂t , so X1, X2 are of finite type 2 at 0.
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These will serve as our main motivating examples. As we shall see shortly, in
Example 2, it is possible to make R3 into a Lie group H, so that X1, X2 become
left-invariant vector fields on H. This makes its study easier than Example 1.

In studying vector fields that satisfy this finite type condition, Hormander intro-
duced the following ‘sum of squares’ operator

(1) L =
n∑

j=1

X2
j .

When X1, . . . , XN are just ∂
∂x1

, . . . , ∂
∂xN

on RN , this L is just the ordinary Laplace
operator; it is second order elliptic. The remarkable fact about this L is that while
in general L fails to be elliptic, it is nonetheless hypoellpitic:

Definition 2. A partial differential operator L is said to be hypoelliptic on an open
set Ω if for any open subset U ⊆ Ω and for any distribution u on Ω that satisfies
Lu ∈ C∞(U), we have u ∈ C∞(U).

Theorem 1 (Hormander). Suppose X1, . . . , Xn are smooth real vector fields of
finite type r at every point on an open set Ω ⊆ RN , and L be the sum of squares
operator defined by (1). Then there exists ε > 0 such that for all u ∈ C∞

c (Ω) and
s,m ∈ R, we have

(2) ‖u‖W s+ε,2 . ‖Lu‖W s,2 + ‖u‖W−m,2 .

In fact ε = 21−r will do.

It then follows that such L is hypoelliptic on Ω. This theorem is very remarkable
because in general such operators L are not elliptic. For example, in Example 1
above, if r = 1 and L = X2

1 + X2
2 = ∂2

∂x2 + x2 ∂2

∂t2 , then a simple dilation invariance
argument shows that we cannot have

‖u‖W 2,2 . ‖Lu‖L2 + ‖u‖L2

for all smooth functions u supported in a neighborhood of 0; in other words we
cannot gain as many as two derivatives in L2 knowing only Lu ∈ L2. In fact if
‖u‖W ε,2 . ‖Lu‖L2 +‖u‖L2 for all smooth u supported in a neighborhood of 0, then
ε ≤ 1. Hence L cannot be elliptic.

Opeartors satisfying (2) are said to be subelliptic on Ω. They are in general not
as well behaved as elliptic operators; nevertheless they are hypoelliptic. Similar
phenomena were in fact first observed in the study of several complex variables.
The analysis there, however, is more complicated, because the equations involved
there are systems of equations (rather than a single scalar equation as we had
above). We shall only turn to several complex variables in the next talk.

The finite type condition is really the correct condition to impose here, because
without this, Hormander’s theorem, as well as all the results that we shall describe
in what follows, will fail to hold by simple considerations of dilation invariance.

A word about the proof of Hormander’s theorem. It is based on the technique
of commutator estimates. For instance, in the Example 1 we had above, it is easy
to see that

(3) ‖X1u‖2L2 + ‖X2u‖2L2 ≤ ‖Lu‖2L2 + ‖u‖2L2

for all u ∈ C∞
c (Ω) where Ω is a neighborhood of 0 in R2; one just has to observe

that upon integrating by parts,

‖X1u‖2L2 + ‖X2u‖2L2 = (u, Lu)L2 ≤ ‖u‖L2‖Lu‖L2 .
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Thus it remains to bound∥∥∥∥ ∂

∂t
u

∥∥∥∥2

W− 1
2 ,2

=
(

[X1, X2]u, ∆− 1
2
∂u

∂t

)
L2

.

But integrating by parts, we can write this as

−
(

X2u, X1∆− 1
2
∂u

∂t

)
L2

+
(

X1u, X2∆− 1
2
∂u

∂t

)
L2

.

Commuting X1 and X2 past ∆− 1
2 ∂

∂t , and using that ∆− 1
2 ∂

∂t preserves L2 with (3),
one bounds this by

‖X2u‖L2 (‖X1u‖L2 + C‖u‖L2) + ‖X1u‖L2 (‖X2u‖L2 + C‖u‖L2)

.(‖Lu‖L2 + ‖u‖L2)2

This proves
‖u‖

W
1
2 ,2 . ‖Lu‖L2 + ‖u‖L2

for all smooth u supported near 0. The proof of the general theorem follows a
similar line and estimates

‖u‖W ε,2 .
r∑

k=1

∑
i1,...,ik

∥∥[Xi1 , [Xi2 , [. . . , [Xik−1 , Xik
]]]]u

∥∥
W ε−1,2 + ‖u‖L2

by commutator estimates.

2. Sharp Lp estimates

Hormander’s theory was based on commutator estimates and thus L2 in nature.
The next breakthrough in the theory came when Rothschild and Stein [5] proved
the following Lp estimate for the sum of squares operator.

Theorem 2 (Rothschild-Stein). Let L =
∑n

j=1 X2
j be as in Theorem 1. Then for

all all Ω′ b Ω, there is a constant C > 0 such that for all functions u ∈ C∞(Ω), we
have

‖XjXku‖Lp(Ω′) ≤ C
(
‖Lu‖Lp(Ω) + ‖u‖Lp(Ω)

)
for all 1 < p < ∞.

By introducing an analytic family of operators and interpolation, one can also
prove the following estimate:

‖au‖
W

2
r

,p . ‖Lu‖Lp(Ω) + ‖u‖Lp(Ω), 1 < p < ∞

for all smooth cut-off a ∈ C∞
c (Ω) (where the implicit constant depends on a). This

improves Hormander’s theorem even when p = 2. We shall not pursue this further.

2.1. The case of homogeneous groups. The proof of Theorem 2 comes in two
steps. The first step, roughly speaking, consists of studying the special case when
the underlying space is a Lie group, and when the vector fields X1, . . . , Xn are
left-invariant. The advantage of considering such a situation is that one can define
convolutions in this case:

(f ∗ g)(ξ) =
∫

f(ξ · η−1)g(η)dη,

and left-invariant vector fields are very compatible with convolutions:

Xj(f ∗ g) = f ∗ (Xjg).
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In particular
L(f ∗ g) = f ∗ (Lg).

Hence if we can find a distribution K such that

LK = δ0,

then u = f ∗ K solves Lu = f . To find such a distribution K we need a little
more: we need that the Lie group to carry an automorphic dilation, making it a
homogeneous group. Thus it makes sense to talk about homogeneous functions or
distributions on the group, and also the degree of a differential operator. It also
allows us to talk about the homogeneous dimension Q of the group. What will
happen is that L will be a homogeneous differential operator of degree 2, and we
will be able to find a homogeneous distribution K of degree −(Q − 2) that solves
LK = δ0 if X1, . . . , Xn form a basis of left-invariant vector fields of degree 1. (c.f.
the case of the ordinary Laplacian ∆ on RN .) We can then obtain an estimate of
u in terms of Lu.

An example is given by our Example 2 above. If we use coordinates (x, y, t) on
R3 and make it a group H by imposing the group law

(x, y, t) · (α, β, γ) = (x + α, y + β, t + γ + xβ),

then our vector fields X1 = ∂
∂x and X2 = ∂

∂y + x ∂
∂t become left-invariant. We can

also define a dilation on H by setting

δλ(x, y, t) = (λx, λy, λ2t), λ > 0.

δλ is a group automorphism for each λ > 0. A function f on H is said to be
homogeneous of degree k if

f(δλ(x, y, t)) = λkf(x, y, t)

for all (x, y, t) and λ. For example, the ‘norm function’

|(x, y, t)| := |x|+ |y|+ |t|1/2

is homogeneous of degree 1, and |(x, y, t)|k is homogeneous of degree k. If P is
a differential operator on H, then it is said to be homogeneous of degree k if P
lowers the degree of every homogeneous function by k. For instance, X1 = ∂

∂x and
X2 = ∂

∂y + x ∂
∂t are of degree 1, and L = X2

1 + X2
2 is of degree 2. In fact X1, X2

is a basis of left-invariant vector fields of degree 1. The homogeneous dimension
Q of this group is said to be 4, because if we pull back the Haar measure dxdydt
of the group by the automorphic dilation δλ, we get λ4dxdydt. In particular, a
distribution of degree −4 on the group would just barely fail to be in integrable
with respect to the Haar measure (just like |x|−n barely fails to be integrable in
Rn).

In this example it is particularly easy to invert the operator L and obtain esti-
mates as in the Theorem; in fact there is a homogeneous distribution K of degree
−(4− 2) such that u = f ∗K solves Lu = f . Hence for u ∈ C∞

c (H),

XjXku = XjXk(Lu ∗K),

and letting the derivatives fall on K, we see that XjXku can be obtained from Lu
by convolving against a distribution of the critical degree −4. It turns out that
there is a variant of the theory of singular integrals on H, and applying that theory
one can conclude that

‖XjXku‖Lp . ‖Lu‖Lp
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for all 1 < p < ∞.
The group in this example is usually called the first Heisenberg group, and it

arises naturally from considerations in both several complex variables and quantum
mechanics.

In general, if X1, . . . , Xn is a basis of left-invariant vector fields of degree 1 on
a homogeneous group of homogeneous dimension Q, and L =

∑n
j=1 X2

j , then a
solution operator to L is given by convolving against a homogeneous distribution
of degree −(Q− 2), and we can conclude the proof of the theorem in this situation.

2.2. Lifting of vector fields. The second step to proving the theorem involves a
reduction to the special case considered in the first step. This is done by a technique
called lifting of the vector fields involved. It is the most transparent to illustrate
this with our Example 1 above. Suppose again we are on R2 with coordinates (x, t)
and X1 = ∂

∂x , X2 = x ∂
∂t , L = X2

1 +X2
2 . It is impossible to make X1 and X2 the left-

invariant vector fields of any homogeneous group; in fact the left-invariant vector
field of any Lie group cannot vanish on a lower dimensional submanifold, but X2

does. It is, nonetheless, possible to lift these vector fields to the homogeneous group
H ' R3 we considered in the example in the first step and make such left-invariant
vector fields on H: Consider the projection

π : H → R2, π(x, y, t) = (x, t),

and let

X̃1 =
∂

∂x
, X̃2 =

∂

∂y
+ x

∂

∂t
.

Then
dπ(X̃1) = X1, dπ(X̃2) = X2,

and X̃1, X̃2 is called a lift of X1, X2. The advantage here is that X̃1, X̃2 forms a
basis of left-invariant vector fields of degree 1 on H, and we know how to handle
such. Any function u on R2 can be lifted to a function ũ on H by pulling back via
π: we define ũ := u ◦ π, i.e.

ũ(x, y, t) = u(x, t).

Since dπ(X̃k) = Xk, we have

X̃kũ = X̃ku.

Define now
L̃ := X̃2

1 + X̃2
2 .

Then if Lu = f on R2, we have L̃ũ = f̃ , so ũ can be recovered from f̃ by a
convolution, and this enables one to solve Lu = f . This in turn allows one to
obtain estimates to the solution of Lu = f .

In general, given real vector fields X1, . . . , Xn satisfying Hormander’s condition,
it is not always possible to lift the vector fields and make them the left-invariant
vector fields of a homogeneous group. What can be done, however, is that we
can always approximate the lifted vector fields by left-invariant vector fields of a
homogeneous group. This incurs additional (lower degree) error terms, and the
formula we get will not be exact. Nevertheless one gets a parametrix for the sum
of squares operator L. It is the size of the kernel of this parametrix to which we
now turn.
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3. Kernel estimates and subelliptic geometry

First we observe that in the group case, the size of the parametrix to the sum
of squares operator L is pretty much dictated by homogeneity. To understand the
size of the parametrix in the general case, however, we need a better understanding
of the underlying subelliptic geometry.

Let Ω ⊆ RN be an open set. Given a smooth real vector field X on Ω, let
exp(X)ξ be the time-1-flow along the integral curve of X starting at a point ξ (if
the flow does not flow out of Ω in time 1). For instance, if X =

∑
j=1 aj

∂
∂xj

has
constant coefficients, then exp(X)ξ is just the point ξ + a where a = (a1, . . . , aN )
(as long as ξ + a ∈ Ω). If the underlying space is a Lie group and if X is a left-
invariant vector field, then exp(X)ξ is just the product ξ · exp(X) taken using the
group multiplication.

Suppose as usual that X1, . . . , Xn are smooth real vector fields of finite type r

at every point of Ω. For each 1 ≤ j ≤ r, let {Xjk}
ñj

k=1 be an enumeration of the
commutators of X1, . . . , Xn of length j. For any point ξ and any small r > 0, let
B(ξ, r) be the set of all points of the form

exp

 r∑
j=1

ñj∑
k=1

ajkXjk

 ξ, |ajk| ≤ rj for all j, k.

In other words, roughly speaking one is allowed to go further in some directions
(namely those represented by commutators of shorter lengths) than in others (those
only represented by long commutators). Thus B(ξ, r) is usually thought of as the
non-isotropic ball centered at ξ and of radius r. This in turns allows us to define a
‘metric’ ρ on Ω: we set ρ(ξ, η) to be the infimum of all r > 0 such that η ∈ B(ξ, r).
This metric may not be finite for all ξ, η ∈ Ω, but if η is in a sufficiently small
neighborhood of ξ then ρ(ξ, η) is finite.

What is remarkable here is that Nagel, Stein and Wainger [4] obtained a bound
on the parametrix of L =

∑n
j=1 X2

j in terms of the volumes of the balls, as well as
the metric, defined by the vector fields X1, . . . , Xn:

Theorem 3 (Nagel-Stein-Wainger). If K(ξ, η) is the parametrix of L as above,
then near the diagonal we have

|K(ξ, η)| . ρ(ξ, η)2

|B(ξ, ρ(ξ, η))|
, when N ≥ 3;

|XjK(ξ, η)| . ρ(ξ, η)
|B(ξ, ρ(ξ, η))|

, when N ≥ 2; and

|XjXkK(ξ, η)| . 1
|B(ξ, ρ(ξ, η))|

, when N ≥ 2

where in the last two estimates the derivatives Xj and Xk can fall on either ξ or η.
Here the volumes of the balls are computed using the Euclidean volume measure.

It is thus important to compute the volumes of these balls defined by the vector
fields. In fact in the same paper, Nagel, Stein and Wainger proved a formula
for the volumes of these balls, by considering the Jacobian determinant of the
exponential map. We refrain, however, from giving the full formula because it is
rather complicated. We shall just observe that for our simple Example 1 where we
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have X1 = ∂
∂x and X2 = x ∂

∂t on R2, it is easy to compute the exponential map
explicitly, and if one carries out the computation, one sees that

|B((x, t), r)| '

{
|x|r2 if r < |x|
r3 if r ≥ |x|

,

which is exactly what the formula of Nagel-Stein-Wainger would give us in this
special case. It is thus clear that these balls satisfy the volume doubling property :

|B(ξ, 2r)| ≤ C|B(ξ, r)|

for all sufficiently small r, which also holds in the general situation by the results
of Nagel-Stein-Wainger.

We remark that while the above estimates of the kernel does not look symmetric
in ξ and η, it is more or less so: this is because

|B(ξ, ρ(ξ, η))| ' |B(η, ρ(ξ, η))|

by the doubling property.
We also remark that the following notion of Carnot-Caratheodory distance also

often arises in a discussion of subelliptic geometry. The starting point is the theorem
of Caratheodory [1] and Chow [2]:

Theorem 4 (Caratheodory, Chow). Suppose X1, . . . , Xn are smooth real vector
fields on a connected open set Ω satisfying Hormander’s condition at every point.
Then for any two points p, q ∈ Ω, there is a piecewise smooth curve joining p to q
such that at every point where the curve is smooth, the tangent vector to the curve
is a linear combination of X1, . . . , Xn.

This allows us to define a metric on Ω.

Definition 3. Let X1, . . . , Xn be as in the previous theorem. The Carnot-
Caratheodory distance between two points p and q, denoted d(p, q), is the infimum
of all r > 0 such that the following holds: there exists a piecewise smooth curve
φ : [0, 1] → Ω joining p to q such that whenever φ is smooth,

φ′(t) =
n∑

j=1

aj(t)Xj(φ(t)) with |aj(t)| ≤ r for all j.

It is a consequence of the previous theorem that this distance is finite between
any two points on Ω (again we are assuming Ω to be connected). This notion of
distance is also of interest in control theory.

The problem with such a definition is that it is very difficult to compute. It is
thus quite remarkable that Nagel, Stein and Wainger proved in their paper that
this Carnot-Caratheodory metric d is locally equivalent to our more explicit metric
ρ that we described before.

4. Sobolev inequality for functions

We are now ready to discuss a subellptic Sobolev inequality for functions. The
question is the following. Suppose X1, . . . , Xn are smooth real vector fields on RN ,
and that they are finite type at a point, say 0. If u is a nice compactly supported
smooth function and we control u, X1u, . . . , Xnu in Lp, can we say that u ∈ Lq

locally for some q > p ?
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If we are in the Euclidean situation where the vector fields are ∂
∂x1

, . . . , ∂
∂xN

on
RN , then the answer is given by the classical Sobolev inequality: For u ∈ C∞

c (RN ),
we have

‖u‖Lp∗ . ‖∇u‖Lp ,
1
p∗

=
1
p
− 1

N
,

where 1 ≤ p < N . The gain in exponent here depends on the dimension of the
underlying space. The higher the dimension, the less one gains. What happens, in
general, is that we shall need a local notion of non-isotropic dimension attached to
these vector fields that satisfy the finite type condition, and only formulate a local
Sobolev inequality in terms of that. In fact in the subelliptic case, the non-isotropic
dimension will be bigger than the Euclidean dimension N of the underlying space,
and thus we gain less than the Euclidean situation (as expected).

Definition 4. Suppose X1, . . . , Xn are smooth real vector fields that are of finite
type r at 0. Take commutators of X1, . . . , Xn of length ≤ j and restrict them
to 0; call the subspace of the tangent space at 0 that they span Vj(0). Clearly
Vj−1(0) ⊆ Vj(0) for all j; we let

n1 = dimV1(0) and nj = dimVj(0)− dimVj−1(0) for j ≥ 2.

We then define the non-isotropic dimension Q at 0 to be

Q =
r∑

j=1

jnj .

For example, in Example 1 where we had ∂
∂x , x ∂

∂t on R2, at 0 we have n1 = 1
and n2 = 1, so Q = 1× 1 + 2× 1 = 3; in Example 2 where we had ∂

∂x , ∂
∂y + x ∂

∂t on
R3, at 0 we have n1 = 2 and n2 = 1, so Q = 1× 2 + 2× 1 = 4.

Theorem 5. Let X1, . . . , Xn and Q be as in the previous definition. Then there
exists a neighborhood Ω of 0 and C > 0 such that if u ∈ C∞

c (Ω) and 1 ≤ p < Q,
then

‖u‖Lp∗ (Ω) ≤ C
(
‖∇bu‖Lp(Ω) + ‖u‖Lp(Ω)

)
,

1
p∗

=
1
p
− 1

Q

where ∇bu = (X1u, . . . , Xnu) is the subelliptic gradient of u.

For example, in Example 1, this says we have a Sobolev inequality where 3 plays
the role of the usual dimension; in fact by dilation invariance, we can scale the
lower order term ‖u‖Lp away, and get

‖u‖Lp∗ .

∥∥∥∥∂u

∂x

∥∥∥∥
Lp

+
∥∥∥∥x

∂u

∂t

∥∥∥∥
Lp

,
1
p∗

=
1
p
− 1

3

for all u ∈ C∞
c (R2), where 1 ≤ p < 3.

A few remarks are in order. First, it was already proven, in the paper of
Nagel-Stein-Wainger, that if u,∇bu ∈ Lp

loc, then u ∈ W
1
r ,p

loc where r is the type
of X1, . . . , Xn. This already gives, by the classical Sobolev embedding, that locally
u ∈ Lq

loc for some q > p. But this is not as sharp as the previous theorem, because

u ∈ W
1
r ,p

loc is a homogeneous estimate that does not distinguish the good directions
from the bad ones. In other words, we are not using the fact that we gain more
derivatives in the good directions than in the bad ones, and thus we lose.

Second, the above result is known when X1, . . . , Xn is a basis of left-invariant vec-
tor fields of degree 1 on a homogeneous group. In fact more was known: Caponga,
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Danielli and Garafalo proved a similar inequality, but with a possibly different Q,
that depends on the doubling condition on the volumes of the balls associated to
the vector fields. This is, however, not as sharp as what we have above; in fact our
Q is the smallest possible Q for which the theorem could hold, by some approximate
dilation invariance. Thus the p∗ we have is optimal.

As a simple application of this Sobolev inequality, let’s observe the following
Lp − Lq estimate for the solution of the sum of squares operator L =

∑n
j=1 X2

j : in
fact under the assumptions of Theorem 2, if 1 < p < Q/2, we then have

‖u‖
L

Qp
Q−2p (Ω′)

. ‖Lu‖Lp(Ω) + ‖u‖Lp(Ω).

There are two slightly different, but closely related, proofs to the Theorem 5,
when p > 1. The first one is more complicated, and extends to the case p = 1. The
second one, while elementary in nature, does not appear to extend to p = 1. We
shall describe both of those.

The first proof relies on the parametrix we constructed for the sum of squares
L =

∑n
j=1 X2

j . Take a, b, c ∈ C∞
c supported in a neighborhood of 0, such that b = 1

on the support of a and c = 1 on the support of b. Then from the parametrix of L,
one obtains the following representation formula:

au =
n∑

j=1

Tj(bXju) + T0(cu)

for some integral operators T0, . . . , Tn. In particular, if we take c ≡ 1 near 0 and Ω
to be an open set contained in the set where c ≡ 1, then for all u ∈ C∞

c (Ω),

u =
n∑

j=1

Tj(Xju) + T0u.

In the Euclidean situation, all that we have done here would be just that if K is
the fundamental solution to ∆ so that u = K ∗∆u, then

u = K ∗
N∑

j=1

∂2u

∂x2
j

=
N∑

j=1

∂K

∂xj
∗ ∂u

∂xj
.

This allows us to reproduce u from its derivatives; in fact in the Euclidean case
we can also obtain an estimate of these kernels ∂K

∂xj
, and a similar estimate is also

available in the subelliptic case. It turns out that the kernels of Tj , which we also
denote by Tj(ξ, η), satisfy locally

|Tj(ξ, η)| . ρ(ξ, η)
|B(ξ, ρ(ξ, η))|

(and are smooth away from the diagonal). The claim is that these kernels are
in weak-L

Q
Q−1 (dη) uniformly in ξ, and in weak-L

Q
Q−1 (dξ) uniformly in η. It will

then follow that the operators Tj maps Lp to weak-Lp∗ for all 1 ≤ p < Q, and by
Marcinkiewicz interpolation we conclude the theorem in the case p > 1. The case
p = 1 will then follow from Maz’ya’s truncation argument, which we discussed last
time.

So it remains to establish the weak-type estimates for the kernel which is

ρ(ξ, η)
|B(ξ, ρ(ξ, η))|
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near the diagonal. At this stage it is best to restrict ourselves to the simple Example
1 where where we had ∂

∂x , x ∂
∂t on R2. Remember that

|B((x, t), r)| '

{
|x|r2 if r < |x|
r3 if r ≥ |x|

.

Hence if we fix ξ = (x, t) and let r = r(η) = ρ(ξ, η), then

ρ(ξ, η)
|B(ξ, ρ(ξ, η))|

'

{
(|x|r)−1 if r < |x|
r−2 if r ≥ |x|

.

Now look at the set of η for which the left side above is greater than α. If α ≤ |x|−2,
then this set is just basically where r−2 > α, i.e. the non-isotropic ball B(ξ, α−1/2).
Since α−1/2 ≥ |x|, this ball has area ' (α−1/2)3 = α−3/2, which is what we need
(because now Q = 3 and we wanted to show that the kernel is uniformly in weak-
L

Q
Q−1 ). If now α > |x|−2, then the desired set is just the set of η where (|x|r)−1 > α,

i.e. the non-isotropic ball B(ξ, (|x|α)−1), and since (|x|α)−1 < |x|, the area of this
ball is ' |x|(|x|α)−2 . α−3/2 as desired. By symmetry we may reverse the role of ξ
and η. A similar analysis can be carried out in the general case, and this establishes
the theorem.

The second proof is more elementary in nature and consists of a potential esti-
mate for the lifted function. Again it is the most transparent to look at the case
X1 = ∂

∂x , X2 = x ∂
∂t on R2. Recall the lifting of these vector fields to the group

H ' R3 via the map
π : H → R2, π(x, y, t) = (x, t).

We had a basis of left-invariant vector fields of degree 1 on H, namely

X̃1 =
∂

∂x
, X̃2 =

∂

∂y
+ x

∂

∂t
.

Now given a function u ∈ C∞
c (R2). Lift it to H by setting

ũ(x, y, t) = u(x, t).

It was known that for functions on H, we have the following pointwise estimate:

(4) |ũ(x, y, t)| .
∫

H

(
|X̃1ũ|+ |X̃2ũ|

)
((x, y, t) · (α, β, γ))

dαdβdγ

|(α, β, γ)|Q̃−1
,

where again
|(α, β, γ)| = |α|+ |β|+ |γ| 12

is the norm function, and Q̃ = 4. This is just the analog of the Euclidean potential
estimate

|u(x)| .
∫

RN

|∇u|(x + y)
dy

|y|N−1
,

which one could prove by applying the fundamental theorem of calculus along
straight lines radiating from x, and averaging over all possible directions. A similar
construction can be carried out in the group H; a notable feature here is that
we are controlling the function by derivatives not in all directions but only in
the directions X̃1 and X̃2. In other words, we do not have [X̃1, X̃2] on the right
hand side, which is needed to span the tangent space. This is because we can
write [X̃1, X̃2] as X̃1X̃2 − X̃2X̃1 and integrate by parts once as in the commutator
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estimate of Hormander, thereby controlling that by X̃1 and X̃2 only. This said
about formula (4), we shall assume its validity and proceed as follows.

First, observe that (4) reduces to

|u(x, t)| .
∫

H

(|X1u|+ |X2u|) (x + α, t + γ + xβ)
dαdβdγ

|(α, β, γ)|3

because (x, y, t)·(α, β, γ) = (x+α, y+β, t+γ+xβ) and (X̃j ũ)(x, y, t) = (Xju)(x, t).
Writing ∇bu = (X1u, X2u), we get

|u(x, t)| .
∫

H

|∇bu|(x + α, t + γ + xβ)
dαdβdγ

|(α, β, γ)|3
.

Let now 1 < p < Q and 1
p∗ = 1

p −
1
Q . We shall take Lp∗ norm of both sides in the

t and x variables successively. First, taking Lp∗(dt) norm, we get

‖u‖Lp∗ (dt)(x) .
∫

R2

∥∥∥∥∫
R
|∇bu|(x + α, t + γ + xβ)

dγ

|(α, β, γ)|3

∥∥∥∥
Lp∗ (dt)

dαdβ.

In the integral on the right-hand side, we are fixing x, α and β and considering the
norm of the integral in γ. If we let F (t) = |∇bu|(x + α, t + xβ), then this norm is
just ∥∥∥∥∫

R

F (t + γ)
|(α, β, γ)|3

dγ

∥∥∥∥
Lp∗ (dt)

.

But the kernel here, |(α, β, γ)|−3, is not only bounded near γ = 0 (when α, β are
not both 0), but also integrable as γ → ∞. Hence for almost every (α, β), we can
bound this by∥∥∥∥∫

R

F (t + γ)
|(α, β, γ)|3

dγ

∥∥∥∥
Lp∗ (dt)

. ‖F‖Lp(dt)‖|(α, β, γ)|−3‖Lr(dγ),

where
1
r

= 1 +
1
p∗
− 1

p
= 1− 1

Q
=

2
3
.

But then

‖|(α, β, γ)|−3‖Lr(dγ) ' (|α|+ |β|)−3+2× 2
3 = (|α|+ |β|)− 5

3 .

The remarkable thing in this procedure is that ‖F‖Lp(dt) no longer depends on β;
in fact

‖F‖Lp(dt) = ‖∇bu‖Lp(dt)(x + α).
Putting these together,

‖u‖Lp∗ (dt)(x) .
∫

R2
‖∇bu‖Lp(dt)(x + α)

dαdβ

(|α|+ |β|) 5
3
.

Hence we can integrate away the variable β we added in the lifting process, and
obtain

‖u‖Lp∗ (dt)(x) .
∫

R
‖∇bu‖Lp(dt)(x + α)

dα

|α| 23
.

If one now invokes fractional integration on R, one gets the desired estimate.
What we have done above is really like a product theory of fractional integral

operators, and it is not clear whether one can adapt such an argument to prove
weak-type estimates; in fact in product theory we usually cannot do so.
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Again the two proofs are actually very closely related to each other; they are
similar in spirit in the sense that both of them requires a lifting to a higher dimen-
sional group, and one needs to integrate away the additional variable somewhere in
the argument.

Finally, let us end by mentioning that the Sobolev inequality above fails in
general at the endpoint p = Q. In the next talk, we shall discuss a remedy of
this failure, and in the last one we shall discuss some applications of these ideas to
several complex variables.
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