
A SUBELLIPTIC L1 DUALITY INEQUALITY

PO-LAM YUNG

In the last talk, we discussed some subelliptic real analysis associated to vector
fields that satisfy Hormander’s finite type condition. We established a Sobolev
inequality for functions whose subelliptic gradient is in Lp, 1 ≤ p < Q, where Q is
the (local) non-isotropic dimension associated to such a situation. Today we shall
discuss a remedy of the failure of this embedding at the end-point when p = Q.
This will have applications in several complex variables, as we will see next time.

1. Subelliptic Sobolev inequality

First we recall some results from last time. Let X1, . . . , Xn be some smooth real
vector fields on RN . They are said to satisfy Hormander’s finite type condition at
the point 0 if they and their commutators of length ≤ r span the tangent space of
RN at 0 for some positive integer r. The smallest r for which this holds is called
the type of X1, . . . , Xn at 0.

The trivial example is when there are N vector fields on RN , namely the coor-
dinate vector fields ∂

∂x1
, . . . , ∂

∂xN
. They are of finite type 1. In general n may be

smaller than N , as in the following example:

Example 1.

X̃ =
∂

∂x
, Ỹ =

∂

∂y
+ x

∂

∂t
on R3.

These vector fields are of finite type 2 at every point.

Another example we considered is

Example 2.

X =
∂

∂x
, Y = x

∂

∂t
on R2.

These vector fields are of finite type 2 at 0.

When X1, . . . , Xn satisfy Hormander’s finite type condition, the sum of squares
operator

L =
n∑

j=1

X2
j

is hypoelliptic (in fact subelliptic), and we constructed a parametrix of L which
allowed us to obtain sharp Lp estimates on the solutions to the equation

Lu = f.

From the size of the parametrix, we also deduced the following subelliptic Sobolev
inequality for functions. The crucial notion here is that of a (local) non-isotropic
dimension:
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Definition 1. Suppose X1, . . . , Xn are smooth real vector fields that are of finite
type r at 0. Take commutators of X1, . . . , Xn of length ≤ j and restrict them
to 0; call the subspace of the tangent space at 0 that they span Vj(0). Clearly
Vj−1(0) ⊆ Vj(0) for all j; we let

n1 = dimV1(0) and nj = dimVj(0)− dimVj−1(0) for j ≥ 2.

We then define the non-isotropic dimension Q at 0 to be

Q =
r∑

j=1

jnj .

For example, in Example 1, Q = 4; in Example 2, Q = 3.

Theorem 1 (Subelliptic Sobolev inequality for functions). Let X1, . . . , Xn and Q
be as in the previous definition. Then there exists a neighborhood Ω of 0 and C > 0
such that if u ∈ C∞

c (Ω) and 1 ≤ p < Q, then

‖u‖Lp∗ (Ω) ≤ C
(
‖∇bu‖Lp(Ω) + ‖u‖Lp(Ω)

)
,

1
p∗

=
1
p
− 1

Q

where ∇bu = (X1u, . . . , Xnu). Moreover the inequality cannot hold for any bigger
value of p∗.

This generalizes the classical Sobolev inequality on RN , and the fact that the
inequality fails to hold for any bigger p∗ shows that our notion of non-isotropic
dimension Q is the correct one.

2. L1-duality inequality

2.1. Euclidean situation. The previous subelliptic Sobolev inequality fails at the
end-point p = Q. In the Euclidean space, this is just the well-known failure of the
embedding W 1,N into L∞. In the first talk, we have already seen the following
remedy of this failure:

Theorem 2 (L1-duality inequality). Suppose f = (f1, . . . , fN ) is a divergence free
vector field on RN , i.e.

N∑
j=1

∂fj

∂xj
= 0

where each of the fj are smooth and compactly supported. Then for any test function
Φ ∈ C∞

c (RN ), we have ∣∣∣∣∫
RN

f1Φ
∣∣∣∣ . ‖f‖L1‖∇Φ‖LN .

This inequality appeared in the work of van Schaftingen [6], Lanzani-Stein [4] and
Bourgain-Brezis [1], [2]. This is a very remarkable inequality. Using this estimate,
we have already seen the proof of the following Sobolev inequality for differential
forms on RN :

Corollary 1. If u is a compactly supported smooth q form on RN , where q 6= 1
nor N − 1, then

‖u‖
L

N
N−1

. ‖du‖L1 + ‖d∗u‖L1 .

One can also deduce, from the above theorem, an elliptic estimate in L1 for the
following system of equations:
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Corollary 2. Let U and F be smooth compactly supported vector fields on RN such
that ∆U = F (componentwise). If F is divergence free, then

‖∇U‖
L

N
N−1

. ‖F‖L1 .

This is remarkable because in general U is not in W 2,1; otherwise the inequality
becomes trivial. The proof is just by duality: If Φ is a vector field on RN , then

(∆
1
2 U,Φ) = (∆U,∆− 1

2 Φ) = (F,∆− 1
2 Φ) . ‖F‖L1‖∇∆− 1

2 Φ‖LN = ‖F‖L1‖Φ‖LN .

2.2. Subelliptic case. The goal today is to derive the following subelliptic version
of L1-duality inequality [7].

Theorem 3 (Subelliptic L1-duality inequality). Let X1, . . . , Xn be smooth real
vector fields in a neighborhood of 0 in RN . Suppose they are linearly independent
at 0 and their commutators of length ≤ r span the tangent space at 0. Let Q be the
non-isotropic dimension at 0. Then there exists a neighborhood U of 0 and C > 0
such that if

X1f1 + · · ·+ Xnfn = 0
on U with f1, . . . , fn ∈ C∞

c (U), and if Φ ∈ C∞
c (U), then∣∣∣∣∫

U

f1(x)Φ(x)dx

∣∣∣∣ ≤ C‖f‖L1(U)

(
‖∇bΦ‖LQ(U) + ‖Φ‖LQ(U)

)
where ∇bΦ = (X1Φ, . . . , XnΦ).

When the underlying space is a homogeneous group and when X1, . . . , Xn is
a basis of left-invariant vector fields of degree 1 on the group, this theorem was
proved by Chanillo and van Schaftingen [3]. This theorem, however, is more general
because we only need the vector fields to satisfy Hormander’s finite type condition.
We shall make crucial use of their argument in the proof below.

For simplicity, we shall just look at the proof of the following model situation:
Let

X =
∂

∂x
, Y = x

∂

∂t
on R2

as in Example 2. In this case the non-isotropic dimension Q at 0 is 3. Note that
there is no structure of a Lie group on R2 that could make both X and Y left-
invariant vector fields, because Y vanishes on only the t-axis. Hence the result of
Chanillo-van Schaftingen does not apply. Nevertheless, we have:

Theorem 4. If f1, f2 are smooth and compactly supported functions on R2 and

Xf1 + Y f2 = 0,

then for all Φ ∈ C∞
c (R2),∣∣∣∣∫

R2
f1Φ

∣∣∣∣ ≤ C‖f‖L1(R2)‖∇bΦ‖L3(R2)

where ∇bΦ = (XΦ, Y Φ).

Strictly speaking this is not a special case of Theorem 3, because X and Y are
not linearly independent at 0; but this is where the main idea of the proof is the
most transparent, and we shall only discuss the need for linear independence of the
vector fields, as well as some other complications that arise in general, towards the
end of the talk.
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Before we describe the proof of this model theorem, it helps to remember how
its Euclidean analog (i.e. Theorem 2) is proved.

Suppose
∑N

j=1
∂fj

∂xj
= 0. To estimate

∫
RN f1(x)Φ(x)dx, we first freeze the first

coordinate x1 and consider∫
RN−1

f1(x1, x
′)Φ(x1, x

′)dx′.

Since x1 is now fixed, Φ(x1, x
′) is just a function defined on the hyperplane over

which we are integrating. For each positive parameter λ (which we shall choose in
a minute depending on x1), we shall decompose this function on the hyperplane as
follows: we shall find two functions Φx1

1 and Φx1
2 , defined on the hyperplane1, such

that
Φ(x1, x

′) = Φx1
1 + Φx1

2 on the hyperplane,
i.e.

Φ(x1, x
′) = Φx1

1 (x1, x
′) + Φx1

2 (x1, x
′) for all x′ ∈ RN−1,

and such that we control L∞ norm of the first function and the gradient in L∞ of
the second; more precisely, we require{

‖Φx1
1 ‖L∞(dx′) ≤ Cλ

1
N ‖∇x′Φ‖LN (dx′)(x1)

‖∇x′Φx1
2 ‖L∞(dx′) ≤ Cλ

1
N−1‖∇x′Φ‖LN (dx′)(x1).

The power of λ here is dictated by homogeneity, and the decomposition can be
achieved by decomposing Φx1 into the sum of its high frequency component and its
low frequency component using Littlewood-Paley theory. We then need to estimate∫

RN−1
f1(x1, x

′)Φx1
1 (x1, x

′)dx′ and
∫

RN−1
f1(x1, x

′)Φx1
2 (x1, x

′)dx′.

The first one is easy: we can just do

‖f1‖L1(dx′)(x1)‖Φx1
1 ‖L∞(dx′)

and apply the estimate for Φx1
1 ; for the second integral, we apply fundamental

theorem of calculus to f1:

f1(x1, x
′) =

∫ x1

−∞

∂f1

∂x1
(s, x′)ds.

Plug this into the second integral, we are led to estimate∫ x1

−∞

∫
RN−1

∂f1

∂x1
(s, x′)Φx1

2 (x1, x
′)dx′ds.

But using the divergence free condition on f , we can write ∂f1
∂x1

as

∂f1

∂x1
= −

N∑
j=2

∂fj

∂xj
.

Since we are integrating over the whole space RN−1, we can then integrate by parts
and let the derivatives fall on Φx1

2 . All in all, this is bounded by

‖f‖L1(dx)‖∇x′Φx1
2 ‖L∞(dx′)

1We are putting the superscript x1 on the two functions in the decomposition to emphasize
that the decomposition depends on x1.
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and we can again apply our defining estimate for ∇x′Φx1
2 . This shows∫

RN−1
f1(x1, x

′)Φ(x1, x
′)dx′

.
(
‖f1‖L1(dx′)(x1)λ

1
N + ‖f‖L1(dx)λ

1
N−1

)
‖∇x′Φ‖LN (dx′)(x1)

for each fixed x1. If we pick λ = λ(x1) such that this sum is minimized, and
then integrate in x1, applying Holder’s inequality we can conclude the proof of
Theorem 2.

To prove Theorem 4, we shall also freeze x and consider∫
R

f1(x, t)Φ(x, t)dt.

We shall then need a decomposition lemma for Φ similar to the one above. But
this time the argument cannot be as simple. The reason is that our vector fields
have variable coefficients. In fact suppose for each x we have a decomposition of
Φ(x, t) = Φx

1(x, t) + Φx
2(x, t) such that we control Φx

1 in L∞(dt) and Y Φx
2 = x

∂Φx
2

∂t
in L∞(dt). Then if we apply fundamental theorem of calculus to f1 to estimate∫

R
f1(x, t)Φx

2(x, t)dt,

we get

f1(x, t) =
∫ x

−∞
(Xf1)(s, t)ds

and thus using the divergence condition,∫
R

f1(x, t)Φx
2(x, t)dt =

∫ x

−∞

∫
R
−(Y f2)(s, t)Φx

2(x, t)dtds.

Now if we try to integrate by parts in Y , we are in trouble: because (Y f2)(s, t) is
really s∂f2

∂t (s, t), and if we integrate by parts we get∫ x

−∞

∫
R

f2(s, t)s
∂Φx

2

∂t
(x, t)dtds.

But we do not control s
∂Φx

2
∂t (x, t)! In fact what we control is only (Y Φx

2)(x, t), which
is x

∂Φx
2

∂t (x, t). Hence we need a different idea, and the correct decomposition lemma
is the following:

Lemma 1 (Decomposition Lemma). Given any Φ ∈ C∞
c (R2), any a ∈ R and any

λ > 0, there is a decomposition of the function Φ on the line {x = a}, given by

Φ(a, t) = Φa
1(a, t) + Φa

2(a, t) for all t,

and an extension of the second function Φa
2 into the whole R2, such that{

‖Φa
1‖L∞(dt) ≤ Cλ

1
3 MI(a)

‖∇bΦa
2‖L∞(dxdt) ≤ Cλ

1
3−1MI(a)

,

where
I(x) = ‖∇bΦ‖L3(dt)(x),

and M is the Hardy-Littlewood maximal function on R.
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Note that we are not only controlling Y Φa
2 on the line {x = a} (which would not

be enough for the following argument), but also controlling the X and Y derivative
of the extended Φa

2 everywhere on R2. In the Euclidean situation this extension
of the second function is also implicitly present. There we were just extending the
function so that it is constant in the x1 variable, thus making its derivative in x1

direction identically zero. Such a simple extension is not sufficient in the subelliptic
case; thus the proof of this lemma is quite a bit more involved than its Euclidean
analogue, and it is why the maximal function enters.

Assuming this lemma for the moment, it is not hard to complete the proof of
Theorem 4:

Proof of Theorem 4. Again we freeze x = a and consider the integral∫
R

f1(a, t)Φ(a, t)dt.

Let λ > 0 be a parameter, which we shall choose in a moment depending on a. On
the line {x = a}, we have the following decomposition according to the Lemma:

Φ(a, t) = Φa
1(a, t) + Φa

2(a, t).

Extend Φa
2 to the whole R2 as in the Lemma. Then we need to estimate∫

R
f1(a, t)Φa

1(a, t)dt +
∫

R
f1(a, t)Φa

2(a, t)dt.

The first integral can be estimated by

‖f1‖L1(dt)(a)‖Φa
1‖L∞(dt) . ‖f1‖L1(dt)(a)λ

1
3 MI(a).

The second integral can be dealt with as follows: apply the fundamental theorem
of calculus to the product f1Φa

2 (and not just f1 itself!). Then

f1(a, t)Φa
2(a, t) =

∫ a

−∞
(X(f1Φa

2))(s, t)ds.

Plug this into the second integral. Then that is equal to∫ a

−∞

∫
R
(Xf1)(s, t)Φa

2(s, t) + f1(s, t)(XΦa
2)(s, t)dtds.

Now
Xf1 = −Y f2,

and this time we can integrate by parts in Y because both f2 and Φa
2 are evaluated

at the same point (s, t). This gives∫ a

−∞

∫
R

f2(s, t)(Y Φa
2)(s, t) + f1(s, t)(XΦa

2)(s, t)dtds.

Estimating using the Lemma, we can bound this by

‖f‖L1(dxdt)λ
1
3−1MI(a).

Together,∫
R

f1(a, t)Φ(a, t)dt .
(
‖f1‖L1(dt)(a)λ

1
3 + ‖f‖L1(dxdt)λ

1
3−1

)
MI(a)

for each fixed a. Picking λ = λ(a) to optimize the sum, we see that∣∣∣∣∫
R

f1(a, t)Φ(a, t)dt

∣∣∣∣ ≤ C‖f‖
1
3
L1(dxdt)‖f1‖

2
3
L1(dt)(a)MI(a)
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for all a. Integrating in a and applying Holder’s inequality, we get the desired
bound∣∣∣∣∫

R2
f1(a, t)Φ(a, t)dadt

∣∣∣∣ ≤ C‖f‖L1(dxdt)‖MI‖L3(dx) ≤ C‖f‖L1(dxdt)‖∇bΦ‖L3(dxdt)

because the maximal function M is bounded on L3(dx). �

To prove the decomposition lemma, we need again the idea of lifting to a homo-
geneous group [5]. Recall that R3 is a Lie group under the group law

(x, y, t) · (u, v, w) = (x + u, y + v, t + w + xv).

We call this the Heisenberg group H. This is a homogeneous group in the sense
that it carries an automorphic dilation:

δλ(x, y, t) = (λx, λy, λ2t), λ > 0.

The vector fields X̃ = ∂
∂x and Ỹ = ∂

∂y + x ∂
∂t in Example 1 then form a basis of

left-invariant vector fields of degree 1 on H. Now our vector fields X = ∂
∂x , Y = x ∂

∂t

on R2 can be lifted to X̃ and Ỹ on H via the map

π : H → R2, π(x, y, t) = (x, t),

in the sense that
dπ(X̃) = X, dπ(Ỹ ) = Y.

The function Φ on R2 can also be lifted to a function Φ̃ on H, by pulling back via
the map π:

Φ̃ := Φ ◦ π.

Then clearly
X̃Φ̃ = X̃Φ, Ỹ Φ̃ = Ỹ Φ.

The advantage of lifting, i.e. working with Φ̃ on H rather than working with Φ on
R2, is that we can take advantage of the convolution on H: for any two functions
φ, η on H, we define their convolution by

(φ ∗ η)(ξ) =
∫

H

φ(ξ · ζ)η(ζ)dζ,

where dζ = dxdydt is the Haar measure of H. (This is a slight change of notation
from last time, but this is the convenient one for our present purpose.) The left-
invariant vector fields on H works very well with this convolution: in fact

(1) (X̃φ) ∗ η = −φ ∗ (X̃η), (Ỹ φ) ∗ η = −φ ∗ (Ỹ η) on H.

There is no way of defining any ‘convolution’ on R2 such that the analogue of this
property is satisfied by our original vector fields X and Y on R2. This is the basic
reason why we needed the lifting in the first place.

We need one more construction before we can prove the Decomposition Lemma.
For λ > 0, let Iλ be the dilation of functions on H that preserves the L1 norms:

(Iλη)(x, y, t) = λ−4η(λ−1x, λ−1y, λ−2t).

Then a simple calculation shows that

(2)
d

dλ
Iλη = X̃IλD1η + Ỹ IλD2η

for some differential operators D1 and D2. (This is basically the subelliptic corre-
spondence of the heuristic that any function φ that integrates to 0 on Rn can be
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written as a sum
∑

j
∂

∂xj
φj for some φj , except that we are claiming that it suffices

to use only the vector fields of degree 1, namely X̃ and Ỹ in our case.) In fact,

(Iλη)(x, y, t) =
∫

R3
η̂(λξ1, λξ2, λ

2ξ3)e2πi(xξ1+yξ2+tξ3)dξ,

and if we differentiate with respect to λ, we get

d

dλ
Iλη = λ−1Iλ

(
∂

∂x
(xη) +

∂

∂y
(yη) +

∂

∂t
(2tη)

)
.

Writing ∂
∂y as Ỹ − ∂

∂tx and ∂
∂t as [X̃, Ỹ ], this is equal to

λ−1Iλ

(
X̃(xη) + Ỹ (yη) + (X̃Ỹ − Ỹ X̃)((2t− xy)η)

)
and if we now commute one of X̃ or Ỹ in each term outside Iλ, using that

λ−1IλX̃ = X̃Iλ, λ−1IλỸ = Ỹ Iλ,

we get that equal to X̃IλD1η + Ỹ IλD2η for some differential operators D1 and D2

as desired.

Proof of Lemma 1. By the invariance of the decomposition under the dilation

(x, t) 7→ (λx, λ2t),

without loss of generality we may assume that λ = 1. Given Φ ∈ C∞
c (R2), a ∈ R,

let η be any C∞
c bump function on H with

∫
H

η = 1. On the line {x = a}, we
define

Φa
2(a, t) = (Φ̃ ∗ η)(a, y, t)

where y ∈ R is arbitrary (in fact the right side does not depend on y). We also
define

Φa
1(a, t) = Φ(a, t)− Φa

2(a, t).
Now extend Φa

2 to R2 by setting

Φa
2(a + s, t) = (Φ̃ ∗ Iλsη)(a, y, t)

for any y, where
λs :=

√
1 + s2.

We shall now derive the desired estimates on Φa
1 and Φa

2 .
First

(XΦa
2)(a + s, t) =

d

ds
Φa

2(a + s, t) =
d

ds
(Φ̃ ∗ Iλsη)(a, y, t).

But by (2),
d

ds
(Φ̃ ∗ Iλs

η) = Φ̃ ∗
(
X̃Iλs

η1 + Ỹ Iλs
η2

) dλs

ds
for some bump functions η1, η2. The exact form of η1 and η2 are not important,
and we shall simply abuse notation and write η for both of them. Integrating by
parts using the crucial identities (1), we get

−
(
X̃Φ̃ + Ỹ Φ̃

)
∗ Iλs

η · dλs

ds
.

Using X̃Φ̃ = X̃Φ, Ỹ Φ̃ = Ỹ Φ and bounding dλs

ds = s√
1+s2 by 1, we bound the above

in absolute value by
(|X̃Φ|+ |Ỹ Φ|) ∗ Iλs

|η|.
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Writing out the convolution, this is just∫
H

|∇bΦ|(a + u, t + w + av)λ−4
s |η|(λ−1

s u, λ−1
s v, λ−2

s w)dudvdw.

We estimate this in 3 steps: first apply Holder inequality in the integral in w, and
bound this by ∫

R2
I(a + u)λ−4+ 4

3
s

∥∥η
(
λ−1

s u, λ−1
s v, w

)∥∥
L3/2(dw)

dudv;

remember
I(x) = ‖∇bΦ‖L3(dt)(x).

Then the crucial step now is to observe that I(a + u) does not depend on v, and
thus in the integral, we can integrate v out (which is the variable we added in the
lifting process), getting∫

R
I(a + u)λ−4+ 4

3+1
s

∥∥η
(
λ−1

s u, v, w
)∥∥

L3/2(dw)L1(dv)
du.

We can then bound this by the maximal function λ
−4+ 4

3+1+1
s MI(a) = λ

− 2
3

s MI(a),
and since λs ≥ 1, this proves the estimate for XΦa

2 .
To estimate Y Φa

2 , first observe that

(Y Φa
2)(a + s, t) = (a + s)

∂

∂t

(
(Φ̃ ∗ Iλs

η)(a, y, t)
)

,

and

a
∂

∂t

(
(Φ̃ ∗ Iλsη)(a, y, t)

)
=

((
a

∂

∂t
Φ̃

)
∗ Iλsη

)
(a, y, t) = ((Ỹ Φ̃) ∗ Iλsη)(a, y, t),

s
∂

∂t

(
(Φ̃ ∗ Iλsη)(a, y, t)

)
= s

((
∂

∂t
Φ̃

)
∗ Iλsη

)
(a, y, t) = s

(
([X̃, Ỹ ]Φ̃) ∗ Iλsη

)
(a, y, t).

For the latter, we integrate by parts using our crucial identity (1), and get
s

λs

(
X̃Φ̃ ∗ Iλs

η1 + Ỹ Φ̃ ∗ Iλs
η2

)
for some bump functions η1 and η2; again we abuse notation and just write these
as η. Bounding s

λs
= s√

1+s2 by 1, we get

|(Y Φa
2)(a + s, t)| ≤ (|X̃Φ|+ |Ỹ Φ|) ∗ Iλs |η|(a, y, t).

We can then bound the latter as before by MI(a), as desired.
Finally, to bound Φa

1 on the line {x = a}, observe that

Φa
1(a, t) = (Φ̃− Φ̃ ∗ η)(a, y, t) = −

∫ 1

0

d

dλ
(Φ̃ ∗ Iλη)(a, y, t)dλ

because η is a bump function on H with integral 1, and Iλη converges weakly to
the δ function at 0 as λ → 0. We can carry out exactly what we did when we
estimated XΦa

2 to estimate d
dλ (Φ̃ ∗ Iλ)η(a, y, t); in fact∣∣∣∣ d

dλ
(Φ̃ ∗ Iλη)(a, y, t)

∣∣∣∣ ≤ Cλ−
2
3 MI(a).

Integrating in λ, we get the desired estimate for Φa
1 .

�



10 PO-LAM YUNG

This completes the proof of our model theorem. We remark that the choice
λs =

√
1 + s2 is just a convenient one; all we need for λs is that it is a smooth

function of s, equals 1 at s = 0, and grows like |s| as |s| → ∞.
We have chosen to estimate Y Φa

2 in an ad hoc manner above, but there is a more
conceptual way of doing it and that would carry through in general.

Several other difficulties need to be overcome if we were to prove the general
Theorem 3:

(1) Suppose we are estimating
∫

RN f1(x)Φ(x)dx, where X1f1 + · · ·+Xnfn = 0,
and we want to freeze the x1 variable. We would want to do so because
we would want to change the X1 derivative of f1 into some Xj derivatives,
j ≥ 2, and integrate by parts. However, to do so, we need X2, . . . , Xn to
be tangent to the hyperplanes where x1 is constant. This is in general not
possible (e.g. if the brackets of X2, . . . , Xn already span RN at every point).
Fortunately, when the X1, . . . , Xn are linearly independent, a perturbation
argument works, and we can modify X2, . . . , Xn by a small multiple of X1 to
make them tangent to the hyperplanes where x1 is constant. This goes back
to an observation we made towards the end of the first talk, that proves if
X1, . . . , XN are linearly independent at 0 in RN and X1f1+· · ·+XNfN = 0,
then locally ∣∣∣∣∫

RN

f1Φ
∣∣∣∣ . ‖f‖L1 (‖∇Φ‖LN + ‖Φ‖LN ) .

The above explains why we needed linear independence of the vector
fields in Theorem 3; it is not known whether or not it is necessary.

Note that this problem does not arise in our simple model case, because
Y = x ∂

∂t is tangent to the hyperplanes where x is constant, and we had no
problem integrating by parts then.

(2) It is not always possible to lift vector fields satisfying Hormander’s condition
to left-invariant vector fields of degree 1 on a homogeneous group. What
can be done, in general, is just to approximate, at every point, the lifted
vector fields by left-invariant vector fields of a homogeneous group. The
errors that arise in this approximation needs to be taken care of. But they
are of lower degree in homogenity, and are not too difficult to control.

For our application next time, it is crucial to observe that we can allow, in the
duality Theorem 3, that X1f1 + · · ·+ Xnfn be non-zero in L1:

Theorem 5. Let X1, . . . , Xn be as in Theorem 3. Let Q be the non-isotropic
dimension at 0. Then there exists a neighborhood U of 0 and C > 0 such that if

X1f1 + · · ·+ Xnfn = g

on U with f1, . . . , fn, g ∈ C∞
c (U), and if Φ ∈ C∞

c (U), then∣∣∣∣∫
U

f1(x)Φ(x)dx

∣∣∣∣ ≤ C
(
‖f‖L1‖Φ‖NLQ

1
+ ‖g‖L1‖Φ‖LQ

)
where ‖Φ‖NLQ

1
:= ‖∇bΦ‖LQ + ‖Φ‖LQ , and ∇bΦ = (X1Φ, . . . , XnΦ).

The proof of this theorem is the same as the proof of Theorem 3, except that
in addition we need to control ‖Φa

2‖L∞ in our decomposition lemma. We omit the
details.
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Next time we shall begin by discussing some backgrounds in several complex
variables. We shall then apply this subelliptic duality inequality to prove some L1

Sobolev inequalities for (0, q) forms in that setting.
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