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Abstract. The following are notes taken (by Jianhui Li and Po-Lam Yung) from a mini-

course given by Ruixiang Zhang, on a proof of the Szemeredi-Trotter theorem using poly-

nomial partitioning. The technique of low-degree polynomial partitioning is also discussed.

The note takers have also taken the opportunity to expand these notes slightly; in particu-

lar, they have also benefited from a blog post on the same topic by Terence Tao, and some

exposition of incidence geometry by Larry Guth in his paper on restriction I.

A celebrated theorem in incidence geometry is the following theorem about incidences of

points and lines in R2:

Theorem 1 (Szemeredi-Trotter). Let P be a finite set of points in R2, and L be a finite

set of lines in R2. Let I(P,L) be the set of incidences of P and L, i.e. I(P,L) = {(p, `) ∈
P × L : p ∈ `}. Then

|I(P,L)| ≤ C(|P |2/3|L|2/3 + |P |+ |L|)
for some universal constant C.

To prove this, we begin by observing a trivial bound:

Lemma 2. Let P and L be finite sets of points and lines in R2 respectively. Then

(1) |I(P,L)| ≤ |P |2 + |L|

and

(2) |I(P,L)| ≤ |L|2 + |P |.

Proof. Let L = L1 ∪L2, where L1 is the set of all lines in L that passes through at most one

point in P , and L2 is the set of all lines in L that passes through at least two points in P .

Then

|I(P,L1)| =
∑
`∈L1

|` ∩ P | ≤ |L1| ≤ |L|,

while

|I(P,L2)| ≤ |P |2
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since one can define an injective map I(P,L2)→ P×P , so that an incidence (p, `) ∈ I(P,L2)

is mapped into a pair (p, p′) ∈ P×P with p′ ∈ `\{p}. (The injectivity of the map comes from

the fact that two points in R2 determine a unique straight line through them.) Together, we

see that

|I(P,L)| = |I(P,L2)|+ |I(P,L1)| ≤ |P |2 + |L|.
Similarly, by writing P = P1 ∪ P2, where P1 is the set of all points in P that lie on at most

one line in L, and P2 is the set of all points in P that lie on at least two lines in L, we see

that

|I(P,L)| = |I(P1, L)|+ |I(P2, L)| ≤ |L|2 + |P |.
�

Next we note that a divide and conquer argument can yield a slightly better bound:

Proposition 3. Let P and L be finite sets of points and lines in R2 respectively. Then

(3) |I(P,L)| . |P ||L|1/2 + |L|

and

(4) |I(P,L)| . |L||P |1/2 + |P |.

Proof. Indeed, let k be some positive integer to be determined, and partition P = P1∪· · ·∪Pk
so that each Pi has roughly |P |/k points. Then

|I(P,L)| =
k∑
i=1

|I(Pi, L)|,

so applying the trivial bound (1) to each term on the right hand side, and using that

|Pi| . |P |/k, we get

|I(P,L)| . k

(
|P |
k

)2

+ k|L| = |P |
2

k
+ k|L|.

This is true for all positive integers k, so if |P |2 ≥ |L|, then we can take k to be roughly

|P |/|L|1/2. This gives

|I(P,L)| . |P ||L|1/2 if |P |2 ≥ |L|;
but if |P |2 ≤ |L|, then (1) gives already that |I(P,L)| ≤ 2|L|. Thus in either case (3) holds.

Similarly one can prove (4) using (2), by partitioning the given collection of lines. �

The above divide-and-conquer is quite rough; we were basically partitioning the given

points (or lines) randomly. One can substantially improve the efficiency of the divide-and-

conquer process if we use polynomial partitioning, which we introduce below.

First we have to recall the Borsuk-Ulam theorem from algebraic topology:
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Theorem 4 (Borsuk-Ulam). Let m ∈ N, and F : Sm → Rm be a continuous map. Then

there exists Q ∈ Sm such that F (Q) = F (−Q).

We use this to prove the polynomial ham sandwich theorem:

Theorem 5 (Polynomial Ham Sandwich Theorem). For any N open sets in U1, . . . , UN of

finite volume in Rd, there exists a non-zero polynomial Q ∈ R[x1, . . . , xd], of degree . N1/d,

such that

|Uj ∩Q+| = |Uj ∩Q−|
for all 1 ≤ j ≤ N , where Q+ = {x ∈ Rd : Q(x) > 0} and Q− = {x ∈ Rd : Q(x) < 0}.

Proof. Let D be the smallest positive integer for which
(
D+d
d

)
> N . Then D . N1/d. The

vector space V := {p ∈ R[x1, . . . , xd] : deg(p) ≤ D} has dimension
(
D+d
d

)
, and can hence be

identified with Rm+1 where m :=
(
D+d
d

)
− 1 ≥ N . A point Q ∈ Sm can then be identified

with a polynomial Q ∈ V : this allows us to define a map F : Sm → Rm, so that the j-th

coordinate of F (Q) is given by

|Uj ∩Q+| − |Uj ∩Q−|

for j = 1, . . . , N , and 0 for j = N + 1, . . . ,m. This map is continuous, and the Borsuk-Ulam

theorem guarantees the existence of Q ∈ Sm such that F (Q) = F (−Q). But this map is also

odd by construction, so we conclude F (Q) = 0. We have thus a non-zero polynomial Q for

which |Uj ∩Q+| = |Uj ∩Q−| for all 1 ≤ j ≤ N . �

We deduce the following corollary of the polynomial ham sandwich theorem:

Corollary 6. Suppose S1, . . . , SN are finite collection of points in Rd, there exists a non-zero

polynomial Q ∈ R[x1, . . . , xd], of degree ≤ AdN
1/d, such that for any j = 1, . . . , N , the sets

Sj ∩Q+ and Sj ∩Q− each contains at most |Sj|/2 points. Here Ad is a constant depending

only on d.

Proof. For each ε > 0, let U1, . . . , UN be an ε neighborhood of S1, . . . , SN . Let Qε be a

non-zero polynomial of degree D . N1/d, such that |Uj ∩Qε
+| = |Uj ∩Qε

−| for all 1 ≤ j ≤ N .

We may assume that all the Qε are in Sm, the unit sphere in the space of polynomials of

degree ≤ D. We may then find a sequence εk → 0, such that Qεk(x) converges to a non-zero

polynomial Q(x) locally uniformly. If for some j = 1, . . . , N , the set Sj ∩Q+ contains more

than |Sj|/2 points, then the same would be true for Qεk for all sufficiently large k, and this

contradicts our choice of Qε. Similarly for Sj ∩Q−. �

This in turn leads to the important cell decomposition theorem:

Theorem 7. Given any N points in Rd, and any D > 1, there exists a non-zero polynomial

Q ∈ R[x1, . . . , xd], of degree ≤ CdD, such that Rd \ Z(Q) is the union of < 2Dd open sets
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(called cells), and each cell contains ≤ N/Dd of the given points. Here Cd is a constant

depending only on d.

Proof. We claim there is a (large enough) constant Bd, such that given any N points in Rd,

and any n ∈ N, there exists a non-zero polynomial Q ∈ R[x1, . . . , xd], of degree ≤ Bd2
n/d,

such that Rd \ Z(Q) can be written as the union of 2n open sets, each of which contains

≤ N/2n given points. If this is true, then given D > 1, we will pick n ∈ N such that

2n−1 < Dd ≤ 2n for some n ∈ N, and apply this statement with this n. Then since

Bd2
n/d = 21/dBd2

(n−1)/d < 21/dBdD
d, 2n < 2Dd and N/2n ≤ N/Dd, we obtain our desired

conclusion with Cd = 21/dBd.

Let’s establish the claim by induction on n. When n = 1 this follows directly from

Corollary 6: we just use Corollary 6 to bisect 1 collection of points. If Qn is the polynomial

one obtains from the induction hypothesis for a certain n ∈ N, and S1, . . . , S2n are the given

points in the 2n open sets that make up Rd \ Z(Qn), then to prove the claim for n+ 1, one

just use Corollary 6 to bisect S1, . . . , S2n by an additional bisecting polynomial, of degree

≤ Ad2
n/d, and multiply the bisecting polynomial to Qn. This gives a polynomial Qn+1, of

degree at most

Bd2
n/d + Ad2

n/d =
Bd + Ad

21/d
2(n+1)/d,

such that Rd \ Z(Qn+1) can be written as 2n+1 open sets, each of which contains ≤ N/2n+1

given points. One can ensure that Bd+Ad

21/d
≤ Bd by choosing Bd sufficiently large at the outset

(since Ad is just a fixed dimensional constant coming from Corollary 6). This concludes our

induction, and hence the proof of the theorem. �

We remark that the cells in the above theorem may not be connected. But a theorem of

Oleinik-Petrovskii, Milnor, and Thom states the following:

Theorem 8 (Oleinik-Petrovsky, Milnor, Thom). Let V ⊂ Rd be an algebraic subset defined

by equations of degrees ≤ D. Then the number of connected components of V is at most

D(2D − 1)d−1 (which in particular is < 2d−1Dd).

This implies that if Z(Q) denotes the zero set of Q, then Rd\Z(Q) has at most .d (degQ)d

connected components. As a result, by replacing 2Dd in the Theorem 7 by CdD
d for some

dimensional constant Cd, we may assume that the cells there are all connected (this will not

be necessary for our purposes below).

We would like to draw now a naive comparison between the cell decomposition Theorem 7

with the following simple fact from high school algebra

Fact. If E is a finite subset of R that contains at most D points, then there exists a non-zero

polynomial P ∈ R[x] of degree ≤ D, that vanishes at every point of E.
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The cell decomposition Theorem 7 is a somewhat fancier theorem with a similar flavour:

we are asking, in Theorem 7, not just the existence of a non-zero low-degree polynomial that

does something to our given point set, but the existence of both some partitioning of our

point set, and the existence of a non-zero low-degree polynomial that gives that particular

partition. We note that the simple algebraic fact above (or its contrapositive) is also the key

to Dvir’s resolution of the finite field Kakeya conjecture.

We are now ready to prove the Szemeredi-Trotter theorem.

Proof of the Szemeredi-Trotter theorem. The strategy is to divide and conquer using the cell

decomposition theorem. Let P and L be finite sets of points and lines in R2. We want to

show the existence of some universal constant C, such that

(5) |I(P,L)| ≤ C(|P |2/3|L|2/3 + |P |+ |L|).

One can certainly find such C from Lemma 2 if |P |2 ≤ |L| or |L|2 ≤ (4C2)
3/2|P |, where C2

is as in Theorem 7. We will show that by enlarging the constant C once if necessary, we can

also have (5) when

(6) |P |2 ≥ |L| and |L|2 ≥ (4C2)
3/2|P |.

Assume now (6) holds. Let D be the least integer > |P |2/3|L|−1/3. Then since |P |2 ≥ |L|,
we have D > 1, and hence D ≤ 2|P |2/3|L|−1/3. We apply the cell decomposition Theorem 7

with this D to the point set P , to obtain a non-zero polynomial Q of degree ≤ C2D, such

that each cell that makes up R2 \Z(Q) contains ≤ |P |/D2 points from P . We partition the

lines L into a disjoint union of La and Lc, where

La := {` ∈ L : ` ⊂ Z(Q)}, and Lc := L \ La,

and partition the points P into a disjoint union

P = (P ∩ Z(Q)) ∪ (P \ Z(Q)).

This allows us to partition the incidences I(P,L) into 3 contributions:

I(P,L) = I(P,La) ∪ I(P ∩ Z(Q), Lc) ∪ I(P \ Z(Q), Lc).

We count them one by one.

Let’s start with I(P \ Z(Q), Lc). Let {Oi} be a listing of all the cells that make up

R2 \ Z(Q). Then

|I(P \ Z(Q), Lc)| =
∑
i

|I(P ∩Oi, Lc)| =
∑
i

|I(P ∩Oi, Lc,i)|,

where Lc,i = {` ∈ Lc : `∩Oi 6= ∅}. By the trivial bound (1), we see that the latter is bounded

by

(7)
∑
i

(
|P ∩Oi|2 + |Lc,i|

)
.
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Now |P ∩Oi| ≤ |P |/D2 ≤ |P |/(|P |2/3|L|−1/3)2 = |P |−1/3|L|2/3, so∑
i

|P ∩Oi|2 ≤ |P |−1/3|L|2/3
∑
i

|P ∩Oi| = |P |2/3|L|2/3;

also, each line in Lc can only intersect at most deg(Q) + 1 of the cells {Oi}. Hence∑
i

|Lc,i| ≤ |Lc|(deg(Q) + 1),

which is ≤ 2|L| deg(Q) ≤ 2C2D|L| ≤ 4C2|P |2/3|L|2/3. Altogether this shows

(8) |I(P \ Z(Q), Lc)| ≤ (4C2 + 1)|P |2/3|L|2/3.

(Incidentally, we note that the competition between the two terms in (7) is what dictates

the choice of D in the application of the cell decomposition theorem.)

Next we count I(P ∩Z(Q), Lc). Since each line ` ∈ Lc intersects Z(Q) at at most deg(Q)

points, we have

|I(P ∩ Z(Q), Lc)| ≤ |Lc| deg(Q) ≤ |L| deg(Q),

which is ≤ C2D|L| ≤ 2C2|P |2/3|L|2/3 by our bound on deg(Q) and on D. This gives

(9) |I(P ∩ Z(Q), Lc)| ≤ 2C2|P |2/3|L|2/3.

Finally we count I(P,La). We proceed by induction on |L|: assume we have already the

desired bound (5) for all families of points and lines that contain fewer lines than |L|. Note

that Q cannot contain more than degQ linear factors. Thus

|La| ≤ deg(Q) ≤ C2D ≤ 2C2|P |2/3|L|−1/3.

By our assumption that |L|2 ≥ (4C2)
3/2|P |, we have then

|La| ≤
|L|
2
.

So |I(P,La)| can be estimated by the induction hypothesis, obtaining

|I(P,La)| ≤ C(|P |2/3|La|2/3 + |P |+ |La|),

which gives

(10) |I(P,La)| ≤ C2−2/3|P |2/3|L|2/3 + C|P |+ C|L|.

From (8), (9) and (10), we get

|I(P,L)| ≤ (6C2 + 1 + C2−2/3)|P |2/3|L|2/3 + C(|P |+ |L|).

If C were chosen large enough so that 6C2+1+C2−2/3 ≤ C, then we can close the induction,

and conclude that (5) is true for our family P and L as well. This completes our proof. �
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We note that (8), (9) and (10) correspond to contributions from the cells, transversal

contributions from the walls of the cells, and tangential contributions from the walls of the

cells respectively. A similar trichotomy is present in the work of Guth on Fourier restriction

in 3 dimensions.

The Szemeredi-Trotter theorem is a theorem about incidences of points and lines in R2.

One can ask the same question in Rn where the dimension d > 2. The above proof of

the Szemeredi-Trotter theorem uses polynomial partitioning with a polynomial of degree

∼ |P |2/3|L|−1/3, which is medium sized if say |P | ∼ |L|. If one tries to directly adapt the

above proof to the higher dimensional case, one runs into difficulty dealing with the algebraic

part of the incidences. (Varieties in higher dimensions are more complicated; in particular,

it is no longer possible to bound the number of lines in the zero set of a polynomial by its

degree any more. e.g. The (ruled) surface z = xy in R3 contains infinitely many lines; this

surface is also sometimes called the regulus.) It was an ingenious observation of Solomosi and

Tao, that by carrying out the polynomial partitioning with a polynomial of lower degree, one

can extend Szemeredi-Trotter theorem to higher dimensions, at the cost of a loss in power

of ε. More precisely, they proved, among other things, the following theorem:

Theorem 9 (Cheap Szemeredi-Trotter theorem in Rd). Suppose d ≥ 2. Let P be a finite

set of points in Rd, and L be finite number of lines in Rd. Let I(P,L) be the number of

incidences of P and L. Then for any ε > 0, there exists a constant Cd,ε, depending only on

d and ε, such that

(11) |I(P,L)| ≤ Cd,ε|P |2/3+ε|L|2/3 + |P |+ |L|.

Proof. Suppose d ≥ 2, and ε > 0 are fixed. We proceed by induction on the number of points

|P |. First, the inequality (1) also holds true in Rd with the same proof. So when |P | is small,

say |P | ≤ 1000, we have the desired estimate (11) as long as Cd,ε is larger than a fixed constant

(Cd,ε ≥ 10004/3 = 10000 will do, since in this case |P |2 ≤ 10004/3|P |2/3 ≤ 10004/3|P |2/3|L|2/3).
We thus assume from now on that Cd,ε ≥ 10000. Also, if |P |2 ≤ |L|, then |P |2 ≤ |P |2/3|L|2/3,
so (11) follows from (1); similarly, if |L|2 ≤ |P |, then |L|2 ≤ |P |2/3L2/3, so (11) follows from

(2). This shows that we may consider only the case

|P |1/2 ≤ |L| ≤ |P |2.

Note that in this case

(12) |P | ≤ |P |2/3|L|2/3 and |L| ≤ |P |2/3|L|2/3.

Let D > 1 to be determined. Apply Theorem 7 with this D, we obtain a polynomial Q of

degree ≤ CdD, such that each cell that makes up Rd \ Z(Q) contains ≤ |P |/Dd points in

P . (D will depend only on d and ε; hence we call this low degree polynomial partitioning.)

Similar to R2 case, we partition the lines L into a disjoint union of La and Lc, where

La := {` ∈ L : ` ⊂ Z(Q)}, and Lc := L \ La,

7



and partition the points P into a disjoint union

P = (P ∩ Z(Q)) ∪ (P \ Z(Q)).

This allows us to partition the incidences I(P,L) into 3 contributions:

I(P,L) = I(P,La) ∪ I(P ∩ Z(Q), Lc) ∪ I(P \ Z(Q), Lc).

We count them one by one.

In the current set-up, the incidences in I(P,La) are easier to count. Note that Q cannot

have more that D linear factors. Thus

|La| ≤ deg(Q) ≤ CdD

So we can bound |I(P,La)| trivially by

(13) |I(P,La)| ≤ CdD|P |.

Next we count I(P ∩Z(Q), Lc). Since each line ` ∈ Lc intersects Z(Q) at at most deg(Q)

points, we have

(14) |I(P ∩ Z(Q), Lc)| ≤ |Lc| deg(Q) ≤ |L| deg(Q) ≤ CdD|L|.

Finally we count I(P \ Z(Q), Lc). We use our induction hypothesis: assume we have

already the desired bound (11) for all families of points and lines that contain fewer points

than |P |. Let {Oi} be a listing of all the cells that make up Rd \ Z(Q). Let Lc,i = {` ∈
Lc : ` ∩Oi 6= ∅}. We have

|I(P \ Z(Q), Lc)| =
∑
i

|I(P ∩Oi, Lc)|

=
∑
i

|I(P ∩Oi, Lc,i)|

≤
∑
i

(Cd,ε|P ∩Oi|2/3+ε|Lc,i|2/3 + |P ∩Oi|+ |Lc,i|).(15)

using the induction hypothesis (since |P ∩ Oi| ≤ |P |/Dd, which is < |P | for all i). Now we

consider the last two sums in (15): we have∑
i

|P ∩Oi| ≤ |P |,

and

(16)
∑
i

|Lc,i| ≤ (deg(Q) + 1)|L| ≤ (CdD + 1)|L| ≤ 2CdD|L|.
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To consider the first sum in (15), note that by Theorem 7, the number of cells is |{Oi}| ≤ 2Dd.

Using this, and using again the estimate |P ∩Oi| ≤ |P |/Dd, we get∑
i

Cd,ε|P ∩Oi|2/3+ε|Lc,i|2/3 ≤
∑
i

Cd,ε

(
|P |
Dd

)2/3+ε

|Lc,i|2/3

≤ Cd,ε

(
|P |
Dd

)2/3+ε
(∑

i

|Lc,i|

)2/3

|{Oi}|1/3

≤ Cd,ε

(
|P |
Dd

)2/3+ε

(2CdD|L|)2/3(2Dd)1/3

≤ 2Cd,εC
2/3
d D−ε|P |2/3+ε|L|2/3

where we used (16) in the second-to-last line, and we used that d ≥ 2 in the last line.

Altogether, this shows that

(17) |I(P \ Z(Q), Lc)| ≤ 2Cd,εC
2/3
d D−ε|P |2/3+ε|L|2/3.

From (13), (14) and (17), we obtain

(18) |I(P,L)| ≤ 2Cd,εC
2/3
d D−ε|P |2/3+ε|L|2/3 + (CdD + 1)|P |+ 3CdD|L|.

We now choose D = Dd,ε so large, such that

2C
2/3
d D−ε ≤ 1

2
.

Then we choose Cd,ε so large, so that

3CdD ≤
Cd,ε

4
.

(18) together with our condition (12) then show that

|I(P,L)| ≤ Cd,ε
2
|P |2/3+ε|L|2/3 +

Cd,ε
2
|P |2/3|L|2/3 ≤ Cd,ε|P |2/3+ε|L|2/3,

which allows one to close the induction. �

We note that by losing this ε power of |P | on the right hand side, we restrict ourselves

to handling low-degree polynomials, for which the zero sets (and hence the treatment of

|I(P,La)|) are simpler. This is particularly convenient in higher dimensions, where the alge-

braic geometry of zero sets gets complicated. This technique is called low-degree polynomial

partitioning.
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