From cutting pancakes to Szemeredi-Trotter (and Ham Sandwiches too)

Po-Lam Yung

March 14, 2017

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

How would you cut the following pancake into two equal halves using a knife (a straight line)?

(Throughout the talk, 'two equal halves' mean 'two parts that have equal areas'.)

"Sierpinski Sieve," a pancake by Nathan Shields (www.10minutemath.com)

Photo credit: Nathan Shields (from AMS Mathematical Imagery)

How would you cut the following pancake into two equal halves using a knife (a straight line)?

Maybe like this:

"Sierpinski Sieve," a pancake by Nathan Shields (www.10minutemath.com)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Any other ways?

What if I insist that you cut it horizontally?

"Sierpinski Sieve," a pancake by Nathan Shields (www.10minutemath.com)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

- What if I insist that you cut it horizontally?
- > Yes, we use the intermediate value theorem!

"Sierpinski Sieve," a pancake by Nathan Shields (www.10minutemath.com)

The intermediate value theorem guarantees the following:

Theorem. If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, and if there exists $a, b \in \mathbb{R}$ such that

$$\begin{cases} f(x) = 0 & \text{for all } x \le a \\ f(x) = 1 & \text{for all } x \ge b, \end{cases}$$

then there exists $c \in (a, b)$ such that f(c) = 1/2.

- To use this theorem to cut the pancake horizontally, imagine a horizontal straight line moving from bottom up.
- ► Let f(x) be the percentage of the pancake below the straight line when the straight line is at 'height' x.

"Sierpinski Sieve," a pancake by Nathan Shields (www.10minutemath.com)

- To use this theorem to cut the pancake horizontally, imagine a horizontal straight line moving from bottom up.
- Let f(x) be the percentage of the pancake below the straight line when the straight line is at 'height' x.
- ▶ Then f is continuous, and there exists $a, b \in \mathbb{R}$ such that

$$\begin{cases} f(x) = 0 & \text{for all } x \le a \\ f(x) = 1 & \text{for all } x \ge b. \end{cases}$$

So the intermediate value theorem guarantees the existence of a 'height' c where the straight line divides the pancake into two equal halves.

Instead of holding the knife horizontally, we may also insist that we hold the knife at a fixed angle. One can cut the pancake into two equal halves no matter what the angle is.

"Sierpinski Sieve," a pancake by Nathan Shields (www.10minutemath.com)

- Instead of holding the knife horizontally, we may also insist that we hold the knife at a fixed angle. One can cut the pancake into two equal halves no matter what the angle is.
- For our pancake, at each fixed angle, there is actually a unique way of cutting the pancake into two equal halves. This follows from the following variant of the earlier result:

Theorem. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, and that there exists $a, b \in \mathbb{R}$ such that

$$\begin{cases} f(x) = 0 & \text{for all } x \le a \\ f(x) = 1 & \text{for all } x \ge b. \end{cases}$$

If f is strictly increasing on [a, b], then there exists a unique $c \in (a, b)$ such that f(c) = 1/2.

Theorem. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, and that there exists $a, b \in \mathbb{R}$ such that

$$\left\{ egin{array}{ll} f(x)=0 & ext{for all } x\leq a \ f(x)=1 & ext{for all } x\geq b. \end{array}
ight.$$

If f is strictly increasing on [a, b], then there exists a unique $c \in (a, b)$ such that f(c) = 1/2.

We may now cut any bounded open connect pancakes:

Theorem. For any bounded open connected set Ω in \mathbb{R}^2 , and any angle $\alpha \in [0, \pi]$, there exists a unique straight line that makes an angle α with the horizontal axis, and that cuts Ω into two subsets of equal areas.

"Mandelbrot Set," a pancake by Nathan Shields (www.10minutemath.com

- What if we have two pancakes (possibly of different shapes)?
- Can you *simultaneously* cut each of them into two equal halves using a knife (a straight line)?

- What if we have two pancakes (possibly of different shapes)?
- Can you *simultaneously* cut each of them into two equal halves using a knife (a straight line)?

◆□> ◆□> ◆三> ◆三> ・三 のへで

- What if we have two pancakes (possibly of different shapes)?
- Can you *simultaneously* cut each of them into two equal halves using a knife (a straight line)?

 Turns out that it is always possible to bisect two pancakes simultaneously using a straight line.

Theorem. For any bounded open connected sets Ω_1 and Ω_2 in \mathbb{R}^2 , there exists a straight line that cuts both Ω_1 and Ω_2 into two subsets of equal areas.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Theorem. For any bounded open connected sets Ω_1 and Ω_2 in \mathbb{R}^2 , there exists a straight line that cuts both Ω_1 and Ω_2 into two subsets of equal areas.

Proof. For each angle $\alpha \in [0, \pi]$, find the unique straight line L_{α} that makes an angle α with the horizontal axis, and that bisects the first set Ω_1 .

Consistently choose the positive and negative sides of the line L_{α} , and let $g(\alpha)$ be the percentage of Ω_2 on the positive side of L_{α} , minus the percentage of Ω_2 on the negative side of L_{α} .

Then g is a continuous function on $[0, \pi]$, and $g(0) = -g(\pi)$, so the intermediate value theorem again guarantees the existence of some $\alpha_0 \in [0, \pi]$, for which $g(\alpha_0) = 0$.

Then L_{α_0} bisects both Ω_1 and Ω_2 !

- Theorem. For any bounded open connected sets Ω₁ and Ω₂ in ℝ², there exists a straight line that cuts both Ω₁ and Ω₂ into two subsets of equal areas.
- One can also drop the assumption that the sets are connected.
- But it certainly does not work for three pancakes in \mathbb{R}^2 !

There is a generalization to higher dimensions, using algebraic topology: it's called the ham sandwich theorem.

Theorem. For any bounded open sets $\Omega_1, \Omega_2, \ldots, \Omega_d$ in \mathbb{R}^d , there exists a (flat) hyperplane that cuts all of them into two subsets of equal areas.

(And there is no guarantee that one can simultaneously bisect d + 1 sets in \mathbb{R}^d using only a hyperplane!)

- ► Note that a ham sandwich typically consists of a ham and two slices of bread in R³. The theorem guarantees that one can always simultaneously bisect the ham and the two slices of bread by a flat knife in one cut!
- The proof of the theorem involves algebraic topology, which we will omit. But we can give some heuristics why this result is plausible, by counting dimensions.

We know the system

$$\begin{cases} 3x + 4y = 6\\ 7x - 2y = 8 \end{cases}$$

has a unique solution, but the system

$$\begin{cases} 3x + 4y = 6\\ 7x - 2y = 8\\ x + y = 9 \end{cases}$$

has no solution.

This is because the latter system has too many equations: it is 3 equations in 2 unknowns, and

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

- Generally speaking, we expect *m* equations in *n* unknowns to be solvable, only when *m* ≤ *n*.
- ► Back to the ham sandwich theorem: we asserted that one can bisect any *d* bounded open sets in ℝ^d by a hyperplane.
- This is plausible, because a hyperplane in \mathbb{R}^d is of the form

$$a_1x_1+\cdots+a_dx_d=b,$$

and hence the set of all hyperplanes in \mathbb{R}^d is *d*-dimensional.

- ► In other words, to determine a hyperplane in ℝ^d is to determine d unknowns.
- To determine d unknowns, we can put at most d conditions on the unknowns. Requiring the hyperplane to bisect d different sets is exactly d conditions, so maybe this is doable. (It is indeed doable using the Borsuk-Ulam theorem in algebraic topology.)

- It also seems plausible now that one cannot bisect d + 1 sets in ℝ^d using a single hyperplane: that would require solving for d unknowns under d + 1 constraints!
- What if we really want to simultaneously bisect N sets in ℝ^d, where N > d?
- Now that we want to put N constraints on the unknowns, we had better have at least N variables. We can do so if we are not only looking at hyperplanes, but algebraic hypersurfaces of higher degree!

► For example in R²: a quadratic hypersurface in R² is just a quadratic curve, of the form

$$ax^2 + bxy + cy^2 + dx + ey = f.$$

So the space of quadratic hypersurfaces in \mathbb{R}^2 is 5-dimensional.

► It turns out that given any 5 bounded open sets in ℝ², there exists a quadratic hypersurface that cuts all of them into two subsets of equal areas.

► For example in R²: a quadratic hypersurface in R² is just a quadratic curve, of the form

$$ax^2 + bxy + cy^2 + dx + ey = f.$$

So the space of quadratic hypersurfaces in \mathbb{R}^2 is 5-dimensional.

► It turns out that given any 5 bounded open sets in ℝ², there exists a quadratic hypersurface that cuts all of them into two subsets of equal areas.

More generally, we have the following polynomial ham sandwich theorem:

Theorem. Given any N bounded open sets in \mathbb{R}^d , there exists a polynomial Q(x) of degree $\leq N^{1/d}$ on \mathbb{R}^d , such that the zero set Z(Q) of Q cuts all N bounded open sets into two subsets of equal areas.

From this one can deduce a corollary:

Corollary. Given any N collection of points S_1, \ldots, S_N in \mathbb{R}^d , there exists a real polynomial Q(x) of degree $\leq N^{1/d}$ on \mathbb{R}^d , not identically zero, such that for all $1 \leq j \leq N$, the sets

$$\{x \in \mathbb{R}^d : Q(x) > 0\}$$
 and $\{x \in \mathbb{R}^d : Q(x) < 0\}$

each contains at most $|S_i|/2$ points from S_i .

$$\{x \in \mathbb{R}^d : Q(x) > 0\}$$
 and $\{x \in \mathbb{R}^d : Q(x) < 0\}$

each contains at most $|S_j|/2$ points from S_j .

• Note that some of the points in S_i may lie on Z(Q).

$$\{x \in \mathbb{R}^d : Q(x) > 0\}$$
 and $\{x \in \mathbb{R}^d : Q(x) < 0\}$

each contains at most $|S_j|/2$ points from S_j .

• Note that some of the points in S_i may lie on Z(Q).

$$\{x \in \mathbb{R}^d : Q(x) > 0\}$$
 and $\{x \in \mathbb{R}^d : Q(x) < 0\}$

each contains at most $|S_j|/2$ points from S_j .

• Note that some of the points in S_i may lie on Z(Q).

$$\{x \in \mathbb{R}^d : Q(x) > 0\}$$
 and $\{x \in \mathbb{R}^d : Q(x) < 0\}$

each contains at most $|S_j|/2$ points from S_j .

• Note that some of the points in S_i may lie on Z(Q).

 $\{x \in \mathbb{R}^d : Q(x) > 0\}$ and $\{x \in \mathbb{R}^d : Q(x) < 0\}$

each contains at most $|S_j|/2$ points from S_j .

► If we just have one collection of points in ℝ^d, but we want to divide it up evenly into 2ⁿ subcollections, then we use the above theorem repeatedly:

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^d , and any positive integer n, there exists a real polynomial Q(x)of degree $\leq 2^{n/d}$, not identically zero, such that $\mathbb{R}^d \setminus Z(Q)$ can be written as the union of 2^n open sets, each of which contains at most $N/2^n$ of the given points. Polynomial partitioning Theorem. Given any N points in \mathbb{R}^d , and any positive integer n, there exists a real polynomial Q(x) of degree $\leq 2^{n/d}$, not identically zero, such that $\mathbb{R}^d \setminus Z(Q)$ can be written as the union of 2^n open sets, each of which contains at most $N/2^n$ of the given points.

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^d , and any positive integer n, there exists a real polynomial Q(x) of degree $\leq 2^{n/d}$, not identically zero, such that $\mathbb{R}^d \setminus Z(Q)$ can be written as the union of 2^n open sets, each of which contains at most $N/2^n$ of the given points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^d , and any positive integer n, there exists a real polynomial Q(x) of degree $\leq 2^{n/d}$, not identically zero, such that $\mathbb{R}^d \setminus Z(Q)$ can be written as the union of 2^n open sets, each of which contains at most $N/2^n$ of the given points.

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^d , and any positive integer n, there exists a real polynomial Q(x) of degree $\leq 2^{n/d}$, not identically zero, such that $\mathbb{R}^d \setminus Z(Q)$ can be written as the union of 2^n open sets, each of which contains at most $N/2^n$ of the given points.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

We will use this to give a heuristic answer to the following question in combinatorial geometry:

Given a finite set of points P and a finite set of lines L in \mathbb{R}^2 , what is the maximum number of incidences between P and L?

An incidence is a pair (p, ℓ) from P × L such that p ∈ ℓ. We denote the set of all incidences between P and L by I(P, L).

Trivial bound 1:

$$|I(P, L)| \le |P|^2 + |L|.$$

Proof. Given P and L, let L_1 be those lines in L that pass through at most one point from P, and L_2 be the rest of lines in L.

Then $|I(P, L)| = |I(P, L_1)| + |I(P, L_2)|$.

But $|I(P, L_1)| \leq |L_1| \leq |L|$ by definition of L_1 .

Also we claim $|I(P, L_2)| \leq |P|^2$: indeed for each incidence $(p, \ell) \in I(P, L_2)$, there exists some $p' \in P$, not equal to p, such that p' also lies in ℓ .

One can thus construct a map $(p, \ell) \in I(P, L_2) \mapsto (p, p') \in P \times P$, which is injective (since if (p, ℓ) is mapped to (p, p'), then ℓ must be the unique straight line passing through p and p'.

Thus $|I(P, L_2)| \le |P|^2$. Together $|I(P, L)| \le |P|^2 + |L|$.

Trivial bound 2:

$$|I(P,L)| \le |L|^2 + |P|.$$

Proof. Given P and L, let P_1 be those points in P that lie on at most one line from L, and P_2 be the rest of points in P.

Then
$$|I(P, L)| = |I(P_1, L)| + |I(P_2, L)|.$$

But using a similar argument as before, $|I(P_1, L)| \le |P|$, and $|I(P_2, L)| \le |L|^2$. (The key is that two intersecting lines intersect at at most one point.)

Together $|I(P, L)| \le |L|^2 + |P|$.

Trivial bounds:

 $|I(P,L)| \le |P|^2 + |L|$ and $|I(P,L)| \le |L|^2 + |P|$.

▶ So when $|P| \simeq |L| \simeq N$ for some large number *N*, then

 $|I(P,L)| \lesssim N^2.$

But this is far from best possible: it turns out we have the following celebrated result:

Szemeredi-Trotter Theorem.

 $|I(P,L)| \lesssim |P|^{2/3}|L|^{2/3} + |P| + |L|.$

Szemeredi-Trotter Theorem.

$$|I(P,L)| \lesssim |P|^{2/3}|L|^{2/3} + |P| + |L|.$$

▶ So when $|P| \simeq |L| \simeq N$ for some large number *N*, then

$$|I(P,L)| \lesssim N^{4/3}.$$

- This is best possible, since if
 - *P* is the grid of all integer points in $[1, N] \times [1, 2N^2]$, and
 - L is the set of all lines of slopes 1, 2, ..., N passing through (1,j) for 1 ≤ j ≤ N²,

then there are $2N^3$ points, N^3 lines, and each of the N^3 lines in L passes through N points from P, so

$$|I(P,L)| \simeq N^4 \simeq |P|^{2/3} |L|^{2/3}.$$

- Instead of giving a full proof of the Szemeredi-Trotter theorem, we give some heuristics for its validity.
- In particular, we focus on why we could possibly have the exponent 2/3.
- Let *n* be a positive integer to be determined later.
- Let P be a set of points P in \mathbb{R}^2 .
- We apply our earlier polynomial partitioning theorem, to obtain a real polynomial Q(x) of degree ≤ 2^{n/2} on ℝ², not identically zero, such that ℝ² \ Z(Q) can be written as the union of 2ⁿ open sets {O_i}, each of which contains at most |P|/2ⁿ points from P.
- ► Here's a slight lie: let's assume, for simplicity, that none of the lines in L are contained entirely in Z(Q).

Then a point in P is either in Z(Q) or one of the open sets O_i's, so

$$|I(P,L)| = |I(P \cap Z(Q),L)| + \sum_{i} |I(P \cap O_i,L)|.$$

► Each line in L intersects Z(Q) at at most deg(Q) ≤ 2^{n/2} points, so

$$|I(P \cap Z(Q),L)| \lesssim 2^{n/2}|L|.$$

- For each i, let L_i be the set of all lines in L that passes through the open set O_i. Then |I(P ∩ O_i, L)| = |I(P ∩ O_i, L_i)|.
- The trivial bound gives

$$|I(P \cap O_i, L_i)| \leq |P \cap O_i|^2 + |L_i|,$$

so

$$|I(P,L)| \leq 2^{n/2}|L| + \sum_{i} (|P \cap O_i|^2 + |L_i|).$$

$$|I(P,L)| \lesssim 2^{n/2}|L| + \sum_{i} (|P \cap O_i|^2 + |L_i|).$$

▶ Now $|P \cap O_i| \le |P|/2^n$ by definition of O_i , so

$$\sum_{i} |P \cap O_{i}|^{2} \leq \frac{|P|}{2^{n}} \sum_{i} |P \cap O_{i}| \leq \frac{|P|^{2}}{2^{n}}.$$

Also a line in L can pass through at most deg(Q) + 1 ≤ 2^{n/2} open sets O_i's, so a double counting argument gives

$$\sum_{i} |L_i| = \sum_{i} \sum_{\substack{\ell \in L \\ \ell \cap O_i \neq \emptyset}} 1 = \sum_{\ell \in L} \sum_{i: \ \ell \cap O_i \neq \emptyset} 1 \lesssim \sum_{\ell \in L} 2^{n/2} = 2^{n/2} |L|.$$

Altogether

$$|I(P,L)| \lesssim 2^{n/2}|L| + \frac{|P|^2}{2^n}$$

So we have

$$|I(P,L)| \lesssim 2^{n/2}|L| + \frac{|P|^2}{2^n}$$

for any positive integer n.

If we could choose n so that

$$2^n \simeq \frac{|P|^{4/3}}{|L|^{2/3}},$$

we would have

$$|I(P,L)| \lesssim |P|^{2/3}|L|^{2/3}.$$

Thus the power 2/3 in the Szemeredi-Trotter theorem sounds reasonable.