From cutting pancakes to Szemeredi-Trotter (and Ham Sandwiches too)

Po-Lam Yung

March 14, 2017

- How would you cut the following pancake into two equal halves using a knife (a straight line)?
(Throughout the talk, 'two equal halves' mean 'two parts that have equal areas'.)

Photo credit: Nathan Shields (from AMS Mathematical Imagery)

- How would you cut the following pancake into two equal halves using a knife (a straight line)?
- Maybe like this:

Any other ways?

- What if I insist that you cut it horizontally?

- What if I insist that you cut it horizontally?
- Yes, we use the intermediate value theorem!

- The intermediate value theorem guarantees the following:

Theorem. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and if there exists $a, b \in \mathbb{R}$ such that

$$
\begin{cases}f(x)=0 & \text { for all } x \leq a \\ f(x)=1 & \text { for all } x \geq b\end{cases}
$$

then there exists $c \in(a, b)$ such that $f(c)=1 / 2$.

- To use this theorem to cut the pancake horizontally, imagine a horizontal straight line moving from bottom up.
- Let $f(x)$ be the percentage of the pancake below the straight line when the straight line is at 'height' x.

- To use this theorem to cut the pancake horizontally, imagine a horizontal straight line moving from bottom up.
- Let $f(x)$ be the percentage of the pancake below the straight line when the straight line is at 'height' x.
- Then f is continuous, and there exists $a, b \in \mathbb{R}$ such that

$$
\begin{cases}f(x)=0 & \text { for all } x \leq a \\ f(x)=1 & \text { for all } x \geq b\end{cases}
$$

- So the intermediate value theorem guarantees the existence of a 'height' c where the straight line divides the pancake into two equal halves.
- Instead of holding the knife horizontally, we may also insist that we hold the knife at a fixed angle. One can cut the pancake into two equal halves no matter what the angle is.

- Instead of holding the knife horizontally, we may also insist that we hold the knife at a fixed angle. One can cut the pancake into two equal halves no matter what the angle is.
- For our pancake, at each fixed angle, there is actually a unique way of cutting the pancake into two equal halves. This follows from the following variant of the earlier result:

Theorem. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and that there exists $a, b \in \mathbb{R}$ such that

$$
\begin{cases}f(x)=0 & \text { for all } x \leq a \\ f(x)=1 & \text { for all } x \geq b\end{cases}
$$

If f is strictly increasing on $[a, b]$, then there exists a unique $c \in(a, b)$ such that $f(c)=1 / 2$.

Theorem. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and that there exists $a, b \in \mathbb{R}$ such that

$$
\begin{cases}f(x)=0 & \text { for all } x \leq a \\ f(x)=1 & \text { for all } x \geq b\end{cases}
$$

If f is strictly increasing on $[a, b]$, then there exists a unique $c \in(a, b)$ such that $f(c)=1 / 2$.

We may now cut any bounded open connect pancakes:
Theorem. For any bounded open connected set Ω in \mathbb{R}^{2}, and any angle $\alpha \in[0, \pi]$, there exists a unique straight line that makes an angle α with the horizontal axis, and that cuts Ω into two subsets of equal areas.

- What if we have two pancakes (possibly of different shapes)?
- Can you simultaneously cut each of them into two equal halves using a knife (a straight line)?

- What if we have two pancakes (possibly of different shapes)?
- Can you simultaneously cut each of them into two equal halves using a knife (a straight line)?

- What if we have two pancakes (possibly of different shapes)?
- Can you simultaneously cut each of them into two equal halves using a knife (a straight line)?

- Turns out that it is always possible to bisect two pancakes simultaneously using a straight line.

Theorem. For any bounded open connected sets Ω_{1} and Ω_{2} in \mathbb{R}^{2}, there exists a straight line that cuts both Ω_{1} and Ω_{2} into two subsets of equal areas.

Theorem. For any bounded open connected sets Ω_{1} and Ω_{2} in \mathbb{R}^{2}, there exists a straight line that cuts both Ω_{1} and Ω_{2} into two subsets of equal areas.

Proof. For each angle $\alpha \in[0, \pi]$, find the unique straight line L_{α} that makes an angle α with the horizontal axis, and that bisects the first set Ω_{1}.

Consistently choose the positive and negative sides of the line L_{α}, and let $g(\alpha)$ be the percentage of Ω_{2} on the positive side of L_{α}, minus the percentage of Ω_{2} on the negative side of L_{α}.

Then g is a continuous function on $[0, \pi]$, and $g(0)=-g(\pi)$, so the intermediate value theorem again guarantees the existence of some $\alpha_{0} \in[0, \pi]$, for which $g\left(\alpha_{0}\right)=0$.

Then $L_{\alpha_{0}}$ bisects both Ω_{1} and Ω_{2} !

- Theorem. For any bounded open connected sets Ω_{1} and Ω_{2} in \mathbb{R}^{2}, there exists a straight line that cuts both Ω_{1} and Ω_{2} into two subsets of equal areas.
- One can also drop the assumption that the sets are connected.
- But it certainly does not work for three pancakes in \mathbb{R}^{2} !

- There is a generalization to higher dimensions, using algebraic topology: it's called the ham sandwich theorem.

Theorem. For any bounded open sets $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{d}$ in \mathbb{R}^{d}, there exists a (flat) hyperplane that cuts all of them into two subsets of equal areas.
(And there is no guarantee that one can simultaneously bisect $d+1$ sets in \mathbb{R}^{d} using only a hyperplane!)

- Note that a ham sandwich typically consists of a ham and two slices of bread in \mathbb{R}^{3}. The theorem guarantees that one can always simultaneously bisect the ham and the two slices of bread by a flat knife in one cut!
- The proof of the theorem involves algebraic topology, which we will omit. But we can give some heuristics why this result is plausible, by counting dimensions.
- We know the system

$$
\left\{\begin{array}{l}
3 x+4 y=6 \\
7 x-2 y=8
\end{array}\right.
$$

has a unique solution, but the system

$$
\left\{\begin{array}{l}
3 x+4 y=6 \\
7 x-2 y=8 \\
x+y=9
\end{array}\right.
$$

has no solution.

- This is because the latter system has too many equations: it is 3 equations in 2 unknowns, and

$$
3>2
$$

- Generally speaking, we expect m equations in n unknowns to be solvable, only when $m \leq n$.
- Back to the ham sandwich theorem: we asserted that one can bisect any d bounded open sets in \mathbb{R}^{d} by a hyperplane.
- This is plausible, because a hyperplane in \mathbb{R}^{d} is of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d}=b
$$

and hence the set of all hyperplanes in \mathbb{R}^{d} is d-dimensional.

- In other words, to determine a hyperplane in \mathbb{R}^{d} is to determine d unknowns.
- To determine d unknowns, we can put at most d conditions on the unknowns. Requiring the hyperplane to bisect d different sets is exactly d conditions, so maybe this is doable. (It is indeed doable using the Borsuk-Ulam theorem in algebraic topology.)
- It also seems plausible now that one cannot bisect $d+1$ sets in \mathbb{R}^{d} using a single hyperplane: that would require solving for d unknowns under $d+1$ constraints!
- What if we really want to simultaneously bisect N sets in \mathbb{R}^{d}, where $N>d$?
- Now that we want to put N constraints on the unknowns, we had better have at least N variables. We can do so if we are not only looking at hyperplanes, but algebraic hypersurfaces of higher degree!
- For example in \mathbb{R}^{2} : a quadratic hypersurface in \mathbb{R}^{2} is just a quadratic curve, of the form

$$
a x^{2}+b x y+c y^{2}+d x+e y=f
$$

So the space of quadratic hypersurfaces in \mathbb{R}^{2} is 5-dimensional.

- It turns out that given any 5 bounded open sets in \mathbb{R}^{2}, there exists a quadratic hypersurface that cuts all of them into two subsets of equal areas.

- For example in \mathbb{R}^{2} : a quadratic hypersurface in \mathbb{R}^{2} is just a quadratic curve, of the form

$$
a x^{2}+b x y+c y^{2}+d x+e y=f
$$

So the space of quadratic hypersurfaces in \mathbb{R}^{2} is 5-dimensional.

- It turns out that given any 5 bounded open sets in \mathbb{R}^{2}, there exists a quadratic hypersurface that cuts all of them into two subsets of equal areas.

- More generally, we have the following polynomial ham sandwich theorem:

Theorem. Given any N bounded open sets in \mathbb{R}^{d}, there exists a polynomial $Q(x)$ of degree $\lesssim N^{1 / d}$ on \mathbb{R}^{d}, such that the zero set $Z(Q)$ of Q cuts all N bounded open sets into two subsets of equal areas.

- From this one can deduce a corollary:

Corollary. Given any N collection of points S_{1}, \ldots, S_{N} in \mathbb{R}^{d}, there exists a real polynomial $Q(x)$ of degree $\lesssim N^{1 / d}$ on \mathbb{R}^{d}, not identically zero, such that for all $1 \leq j \leq N$, the sets

$$
\left\{x \in \mathbb{R}^{d}: Q(x)>0\right\} \quad \text { and } \quad\left\{x \in \mathbb{R}^{d}: Q(x)<0\right\}
$$

each contains at most $\left|S_{j}\right| / 2$ points from S_{j}.

- Corollary. Given any N collection of points S_{1}, \ldots, S_{N} in \mathbb{R}^{d}, there exists a real polynomial $Q(x)$ of degree $\lesssim N^{1 / d}$ on \mathbb{R}^{d}, not identically zero, such that for all $1 \leq j \leq N$, the sets

$$
\left\{x \in \mathbb{R}^{d}: Q(x)>0\right\} \quad \text { and } \quad\left\{x \in \mathbb{R}^{d}: Q(x)<0\right\}
$$

each contains at most $\left|S_{j}\right| / 2$ points from S_{j}.

- Note that some of the points in S_{j} may lie on $Z(Q)$.

- Corollary. Given any N collection of points S_{1}, \ldots, S_{N} in \mathbb{R}^{d}, there exists a real polynomial $Q(x)$ of degree $\lesssim N^{1 / d}$ on \mathbb{R}^{d}, not identically zero, such that for all $1 \leq j \leq N$, the sets

$$
\left\{x \in \mathbb{R}^{d}: Q(x)>0\right\} \quad \text { and } \quad\left\{x \in \mathbb{R}^{d}: Q(x)<0\right\}
$$

each contains at most $\left|S_{j}\right| / 2$ points from S_{j}.

- Note that some of the points in S_{j} may lie on $Z(Q)$.

- Corollary. Given any N collection of points S_{1}, \ldots, S_{N} in \mathbb{R}^{d}, there exists a real polynomial $Q(x)$ of degree $\lesssim N^{1 / d}$ on \mathbb{R}^{d}, not identically zero, such that for all $1 \leq j \leq N$, the sets

$$
\left\{x \in \mathbb{R}^{d}: Q(x)>0\right\} \quad \text { and } \quad\left\{x \in \mathbb{R}^{d}: Q(x)<0\right\}
$$

each contains at most $\left|S_{j}\right| / 2$ points from S_{j}.

- Note that some of the points in S_{j} may lie on $Z(Q)$.
- Corollary. Given any N collection of points S_{1}, \ldots, S_{N} in \mathbb{R}^{d}, there exists a real polynomial $Q(x)$ of degree $\lesssim N^{1 / d}$ on \mathbb{R}^{d}, not identically zero, such that for all $1 \leq j \leq N$, the sets

$$
\left\{x \in \mathbb{R}^{d}: Q(x)>0\right\} \quad \text { and } \quad\left\{x \in \mathbb{R}^{d}: Q(x)<0\right\}
$$

each contains at most $\left|S_{j}\right| / 2$ points from S_{j}.

- Note that some of the points in S_{j} may lie on $Z(Q)$.

- Corollary. Given any N collection of points S_{1}, \ldots, S_{N} in \mathbb{R}^{d}, there exists a real polynomial $Q(x)$ of degree $\lesssim N^{1 / d}$ on \mathbb{R}^{d}, not identically zero, such that for all $1 \leq j \leq N$, the sets

$$
\left\{x \in \mathbb{R}^{d}: Q(x)>0\right\} \quad \text { and } \quad\left\{x \in \mathbb{R}^{d}: Q(x)<0\right\}
$$

each contains at most $\left|S_{j}\right| / 2$ points from S_{j}.

- If we just have one collection of points in \mathbb{R}^{d}, but we want to divide it up evenly into 2^{n} subcollections, then we use the above theorem repeatedly:

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^{d}, and any positive integer n, there exists a real polynomial $Q(x)$ of degree $\lesssim 2^{n / d}$, not identically zero, such that $\mathbb{R}^{d} \backslash Z(Q)$ can be written as the union of 2^{n} open sets, each of which contains at most $N / 2^{n}$ of the given points.

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^{d}, and any positive integer n, there exists a real polynomial $Q(x)$ of degree $\lesssim 2^{n / d}$, not identically zero, such that $\mathbb{R}^{d} \backslash Z(Q)$ can be written as the union of 2^{n} open sets, each of which contains at most $N / 2^{n}$ of the given points.

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^{d}, and any positive integer n, there exists a real polynomial $Q(x)$ of degree $\lesssim 2^{n / d}$, not identically zero, such that $\mathbb{R}^{d} \backslash Z(Q)$ can be written as the union of 2^{n} open sets, each of which contains at most $N / 2^{n}$ of the given points.

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^{d}, and any positive integer n, there exists a real polynomial $Q(x)$ of degree $\lesssim 2^{n / d}$, not identically zero, such that $\mathbb{R}^{d} \backslash Z(Q)$ can be written as the union of 2^{n} open sets, each of which contains at most $N / 2^{n}$ of the given points.

Polynomial partitioning Theorem. Given any N points in \mathbb{R}^{d}, and any positive integer n, there exists a real polynomial $Q(x)$ of degree $\lesssim 2^{n / d}$, not identically zero, such that $\mathbb{R}^{d} \backslash Z(Q)$ can be written as the union of 2^{n} open sets, each of which contains at most $N / 2^{n}$ of the given points.

- We will use this to give a heuristic answer to the following question in combinatorial geometry:

Given a finite set of points P and a finite set of lines L in \mathbb{R}^{2}, what is the maximum number of incidences between P and L ?

- An incidence is a pair (p, ℓ) from $P \times L$ such that $p \in \ell$. We denote the set of all incidences between P and L by $I(P, L)$.

Trivial bound 1:

$$
|I(P, L)| \leq|P|^{2}+|L| .
$$

Proof. Given P and L, let L_{1} be those lines in L that pass through at most one point from P, and L_{2} be the rest of lines in L.

Then $|I(P, L)|=\left|I\left(P, L_{1}\right)\right|+\left|I\left(P, L_{2}\right)\right|$.
But $\left|I\left(P, L_{1}\right)\right| \leq\left|L_{1}\right| \leq|L|$ by definition of L_{1}.
Also we claim $\left|I\left(P, L_{2}\right)\right| \leq|P|^{2}$: indeed for each incidence $(p, \ell) \in I\left(P, L_{2}\right)$, there exists some $p^{\prime} \in P$, not equal to p, such that p^{\prime} also lies in ℓ.

One can thus construct a map $(p, \ell) \in I\left(P, L_{2}\right) \mapsto\left(p, p^{\prime}\right) \in P \times P$, which is injective (since if (p, ℓ) is mapped to $\left(p, p^{\prime}\right)$, then ℓ must be the unique straight line passing through p and p^{\prime}.

Thus $\left|I\left(P, L_{2}\right)\right| \leq|P|^{2}$. Together $|I(P, L)| \leq|P|^{2}+|L|$.

Trivial bound 2:

$$
|I(P, L)| \leq|L|^{2}+|P|
$$

Proof. Given P and L, let P_{1} be those points in P that lie on at most one line from L, and P_{2} be the rest of points in P.

Then $|I(P, L)|=\left|I\left(P_{1}, L\right)\right|+\left|I\left(P_{2}, L\right)\right|$.
But using a similar argument as before, $\left|I\left(P_{1}, L\right)\right| \leq|P|$, and $\left|I\left(P_{2}, L\right)\right| \leq|L|^{2}$. (The key is that two intersecting lines intersect at at most one point.)

Together $|I(P, L)| \leq|L|^{2}+|P|$.

- Trivial bounds:

$$
|I(P, L)| \leq|P|^{2}+|L| \quad \text { and } \quad|I(P, L)| \leq|L|^{2}+|P| .
$$

- So when $|P| \simeq|L| \simeq N$ for some large number N, then

$$
|I(P, L)| \lesssim N^{2}
$$

- But this is far from best possible: it turns out we have the following celebrated result:

Szemeredi-Trotter Theorem.

$$
|I(P, L)| \lesssim|P|^{2 / 3}|L|^{2 / 3}+|P|+|L| .
$$

- Szemeredi-Trotter Theorem.

$$
|I(P, L)| \lesssim|P|^{2 / 3}|L|^{2 / 3}+|P|+|L| .
$$

- So when $|P| \simeq|L| \simeq N$ for some large number N, then

$$
|I(P, L)| \lesssim N^{4 / 3}
$$

- This is best possible, since if
- P is the grid of all integer points in $[1, N] \times\left[1,2 N^{2}\right]$, and
- L is the set of all lines of slopes $1,2, \ldots, N$ passing through $(1, j)$ for $1 \leq j \leq N^{2}$,
then there are $2 N^{3}$ points, N^{3} lines, and each of the N^{3} lines in L passes through N points from P, so

$$
|I(P, L)| \simeq N^{4} \simeq|P|^{2 / 3}|L|^{2 / 3}
$$

- Instead of giving a full proof of the Szemeredi-Trotter theorem, we give some heuristics for its validity.
- In particular, we focus on why we could possibly have the exponent 2/3.
- Let n be a positive integer to be determined later.
- Let P be a set of points P in \mathbb{R}^{2}.
- We apply our earlier polynomial partitioning theorem, to obtain a real polynomial $Q(x)$ of degree $\lesssim 2^{n / 2}$ on \mathbb{R}^{2}, not identically zero, such that $\mathbb{R}^{2} \backslash Z(Q)$ can be written as the union of 2^{n} open sets $\left\{O_{i}\right\}$, each of which contains at most $|P| / 2^{n}$ points from P.
- Here's a slight lie: let's assume, for simplicity, that none of the lines in L are contained entirely in $Z(Q)$.
- Then a point in P is either in $Z(Q)$ or one of the open sets O_{i} 's, so

$$
|I(P, L)|=|I(P \cap Z(Q), L)|+\sum_{i}\left|I\left(P \cap O_{i}, L\right)\right| .
$$

- Each line in L intersects $Z(Q)$ at at most $\operatorname{deg}(Q) \lesssim 2^{n / 2}$ points, so

$$
|I(P \cap Z(Q), L)| \lesssim 2^{n / 2}|L| .
$$

- For each i, let L_{i} be the set of all lines in L that passes through the open set O_{i}. Then $\left|I\left(P \cap O_{i}, L\right)\right|=\left|I\left(P \cap O_{i}, L_{i}\right)\right|$.
- The trivial bound gives

$$
\left|I\left(P \cap O_{i}, L_{i}\right)\right| \leq\left|P \cap O_{i}\right|^{2}+\left|L_{i}\right|
$$

SO

$$
|I(P, L)| \lesssim 2^{n / 2}|L|+\sum_{i}\left(\left|P \cap O_{i}\right|^{2}+\left|L_{i}\right|\right) .
$$

$$
|I(P, L)| \lesssim 2^{n / 2}|L|+\sum_{i}\left(\left|P \cap O_{i}\right|^{2}+\left|L_{i}\right|\right) .
$$

- Now $\left|P \cap O_{i}\right| \leq|P| / 2^{n}$ by definition of O_{i}, so

$$
\sum_{i}\left|P \cap O_{i}\right|^{2} \leq \frac{|P|}{2^{n}} \sum_{i}\left|P \cap O_{i}\right| \leq \frac{|P|^{2}}{2^{n}}
$$

- Also a line in L can pass through at most $\operatorname{deg}(Q)+1 \lesssim 2^{n / 2}$ open sets O_{i} 's, so a double counting argument gives

$$
\sum_{i}\left|L_{i}\right|=\sum_{i} \sum_{\substack{\ell \in L \\ \ell \cap O_{i} \neq \emptyset}} 1=\sum_{\ell \in L} \sum_{i: \ell \cap O_{i} \neq \emptyset} 1 \lesssim \sum_{\ell \in L} 2^{n / 2}=2^{n / 2}|L|
$$

- Altogether

$$
|I(P, L)| \lesssim 2^{n / 2}|L|+\frac{|P|^{2}}{2^{n}}
$$

- So we have

$$
|I(P, L)| \lesssim 2^{n / 2}|L|+\frac{|P|^{2}}{2^{n}}
$$

for any positive integer n.

- If we could choose n so that

$$
2^{n} \simeq \frac{|P|^{4 / 3}}{|L|^{2 / 3}}
$$

we would have

$$
|I(P, L)| \lesssim|P|^{2 / 3}|L|^{2 / 3}
$$

Thus the power $2 / 3$ in the Szemeredi-Trotter theorem sounds reasonable.

