The Kohn Laplacian on blow-ups of pseudohermitian CR manifolds of dimension 3

Po-Lam Yung

Rutgers University

July 10, 2012

A toy problem

- $\left(\mathbb{S}^{3}, \hat{\theta}\right)$: standard round sphere $\{|\zeta|=1\}$ in \mathbb{C}^{2},

$$
\hat{\theta}:=i(\bar{\partial}-\partial)|\zeta|^{2}
$$

compact strongly pseudoconvex pseudohermitian CR manifold.

- $\left(\mathbb{H}^{1}, \theta\right)$: Heisenberg group $\simeq \mathbb{C} \times \mathbb{R}$,

$$
\theta:=d t+i(z d \bar{z}-\bar{z} d z)
$$

non-compact.

- The two structures are 'conformally equivalent'
- Write $\hat{\square}_{b}$ for the Kohn Laplacian on functions on \mathbb{S}^{3}, and \square_{b} for the Kohn Laplacian on \mathbb{H}^{1}. We know very well how to solve $\hat{\square}_{b}$ since \mathbb{S}^{3} is compact.
- Question: Is there a way to solve \square_{b} on \mathbb{H}^{1}, using the conformal equivalence of \mathbb{H}^{1} with \mathbb{S}^{3} ?

Set-up

- \hat{M} : a compact strongly pseudoconvex CR manifold of dimension 3; e.g. $\hat{M}=\mathbb{S}^{3} \subset \mathbb{C}^{2}$.
- $\hat{\theta}$: a real contact 1-form on \hat{M} such that

$$
\operatorname{kernel}(\hat{\theta})=T^{1,0} \oplus T^{0,1}
$$

- $\hat{\theta}$ defines the Levi metric on \hat{M} :

$$
\langle Z, W\rangle_{\hat{\theta}}:=2 i d \hat{\theta}(Z, \bar{W})
$$

for all $Z, W \in T^{1,0}$;

- Hence one defines the Carnot-Caratheodory distance $\hat{\rho}(\cdot, \cdot)$, the Webster scalar curvature \hat{R}, etc. Also the dual metric on the space of $(0,1)$ forms.
- $(\hat{M}, \hat{\theta})$ is called a pseudohermitian CR manifold.
- Take $\hat{\theta} \wedge d \hat{\theta}$ as the standard volume form on \hat{M}.
- Define L^{p} spaces of functions:

$$
\|f\|_{L^{p}(\hat{M})}^{p}=\int_{\hat{M}}|f|^{p} \hat{\theta} \wedge d \hat{\theta}
$$

and L^{p} spaces of $(0,1)$ forms:

$$
\|\alpha\|_{L_{(0,1)}^{p}(\hat{M})}^{p}=\int_{\hat{M}}|\alpha|_{\hat{\theta}}^{p} \hat{\theta} \wedge d \hat{\theta}
$$

- Define a closed linear operator $\hat{\partial}_{b}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{2}(\hat{M})$:

We say $u \in \operatorname{Dom}\left(\hat{\bar{\partial}}_{b}\right)$, if and only if there exists $u_{n} \in C^{\infty}(\hat{M})$ such that $u_{n} \rightarrow u$ in $L^{2}(\hat{M})$, and $\hat{\bar{\partial}}_{b} u_{n}$ converges to some α in $L_{(0,1)}^{2}(\hat{M})$. In that case we define $\hat{\bar{\partial}}_{b} u=\alpha$.

- We assume that

$$
\hat{\bar{\partial}}_{b}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{2}(\hat{M}) \text { has closed range. }
$$

- Analysis on $(\hat{M}, \hat{\theta})$ is then well-understood; for example, one can solve

$$
\hat{\square}_{b} u=(I-\hat{S}) f
$$

where $\hat{\square}_{b}=\hat{\bar{\partial}}_{b}^{*} \hat{\bar{\partial}}_{b}$, and \hat{S} is Szego projection on $(\hat{M}, \hat{\theta})$.

- We now turn to a blow-up of \hat{M}.

The blow-up

- Fix $p \in \hat{M}$, let $M:=\hat{M} \backslash\{p\}$.
- Let $\hat{\rho}(\cdot)=\hat{\rho}(\cdot, p)$, and $\rho(\cdot)=\frac{1}{\hat{\rho}(\cdot)}$.
- Let G be a strictly positive smooth function on M such that

$$
G(\cdot) \simeq|\hat{\rho}(\cdot)|^{-2} .
$$

- We assume the existence of a CR function h on M such that $G \simeq|h|$ on M.
- Let $\theta=G^{2} \hat{\theta}$. Then (M, θ) is a non-compact strongly pseudoconvex pseudohermitian CR manifold, with its own Levi metric $\langle\cdot, \cdot\rangle_{\theta}$ and volume form $\theta \wedge d \theta$.
- Motivated by considerations related to a positive mass theorem in 3-dim CR geometry (Cheng-Malchiodi-Yang), we want to understand analysis on (M, θ).
- e.g. $\hat{M}=\mathbb{S}^{3} \subset \mathbb{C}^{2}, \hat{\theta}=i(\bar{\partial}-\partial)|\zeta|^{2}, p=(0,-1), G=$ Green's function of conformal Laplacian on \hat{M} with pole p, then $G=|h|$ with

$$
h\left(\zeta_{1}, \zeta_{2}\right)=\frac{1}{1+\zeta_{2}}
$$

Then (M, θ) is isometric to the Heisenberg group ($\mathbb{H}^{1}, \theta_{0}$), where $\theta_{0}=d t+i(z d \bar{z}-\bar{z} d z)$; in fact the map

$$
\begin{gathered}
\zeta \in \mathbb{S}^{3} \backslash\{p\} \mapsto(z, t) \in \mathbb{H}^{1} \\
z=\frac{\zeta_{1}}{1+\zeta_{2}}, \quad t=-\operatorname{Re} \frac{1-\zeta_{2}}{1+\zeta_{2}}
\end{gathered}
$$

is an isometry between (M, θ) and $\left(\mathbb{H}^{1}, \theta_{0}\right)$.

- Identifying M with \mathbb{H}^{1}, we have $\rho(z, t) \simeq\left(|z|^{4}+|t|^{2}\right)^{1 / 4}$.
- We want to introduce and solve \square_{b} on (M, θ).
- Extend $\bar{\partial}_{b}$ so that it becomes a closed linear operator

$$
\bar{\partial}_{b}: L^{2}(M) \rightarrow L_{(0,1)}^{4 / 3}(M)
$$

in other words, $u \in \operatorname{Dom}\left(\bar{\partial}_{b}\right)$, if and only if there exists $u_{n} \in C_{c}^{\infty}(M)$ such that $u_{n} \rightarrow u$ in $L^{2}(M)$, and $\bar{\partial}_{b} u_{n}$ converges to some α in $L_{(0,1)}^{4 / 3}(M)$. In that case we define $\bar{\partial}_{b} u=\alpha$.

- The kernel of this operator is then a closed subspace of $L^{2}(M)$. Let

$$
S: L^{2}(M) \rightarrow L^{2}(M)
$$

be orthogonal projection onto this subspace.

- Similarly, extend the formal adjoint of $\bar{\partial}_{b}$ with respect to the metric θ so that it becomes a closed linear operator

$$
\bar{\partial}_{b}^{*}: L_{(0,1)}^{2}(M) \rightarrow L^{4 / 3}(M)
$$

and define orthogonal projection

$$
S_{1}: L_{(0,1)}^{2}(M) \rightarrow L_{(0,1)}^{2}(M)
$$

onto the kernel of this extended $\bar{\partial}_{b}^{*}$.

- Define, for $u \in C^{\infty}(M)$, that

$$
\square_{b} u:=\bar{\partial}_{b}^{*} \bar{\partial}_{b} u
$$

Theorem

Assume in addition that $G=|h|$ for some $C R$ function h on M. If f is a smooth function on M that satisfies

$$
|f(x)| \lesssim \rho(x)^{-3} \quad \text { and } \quad S f=0
$$

then there exists a smooth function u on M such that

$$
\square_{b} u=f \quad \text { and } \quad|u(x)| \lesssim \rho(x)^{-1} .
$$

- Remark: In joint work with Hsiao, we hope to prove a version of this theorem where this extra condition $G=|h|$ is removed (i.e. where one only assumes $G \simeq|h|$.)

Two approaches

- Direct one: Reduce the solution of \square_{b} to the solution of $\hat{\square}_{b}$;
- More robust approach: solve $\square_{b} u=f$ by first solving

$$
\bar{\partial}_{b}^{*} v=f
$$

then solving

$$
\bar{\partial}_{b} u=v .
$$

The solution of the latter two are in turn reduced to the solutions of $\hat{\bar{\partial}}_{b}^{*}$ and $\hat{\bar{\partial}}_{b}$; only the solution of the second equation needs $G=|h|$.

- If one could extend S_{1} so that it becomes a bounded operator on $L_{(0,1)}^{p}(M)$ for some $p \in(1,2)$, show that

$$
\left|S_{1} v(x)\right|_{\theta} \lesssim \rho(x)^{-2} \quad \text { whenever } \quad|v(x)|_{\theta} \lesssim \rho(x)^{-2}
$$

and show that S_{1} is pseudolocal, then one can get rid of the extra assumption $G=|h|$ using the more robust approach.

Outline of the talk

- Some L^{2} theory on $(\hat{M}, \hat{\theta})$
- Some L^{p} theory on $(\hat{M}, \hat{\theta})$
- Some L^{p} theory on (M, θ)
- Advantages of $G=|h|$
- Conclusion of proof of theorem
- Will assume only $G \simeq|h|$ until we need $G=|h|$, and we will state carefully when we need $G=|h|$.

L^{2} theory on $(\hat{M}, \hat{\theta})$

- Consider the closed linear operators

$$
\hat{\bar{\partial}}_{b}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{2}(\hat{M}), \quad \hat{\bar{\partial}}_{b}^{*}: L_{(0,1)}^{2}(\hat{M}) \rightarrow L^{2}(\hat{M})
$$

- There exists bounded linear operators

$$
\hat{K}_{0}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{2}(\hat{M}), \quad \hat{K}_{1}: L_{(0,1)}^{2}(\hat{M}) \rightarrow L^{2}(\hat{M})
$$

such that

$$
\hat{\bar{\partial}}_{b} \hat{K}_{1}=I d-\hat{S}_{1}, \quad \text { and } \quad \hat{\bar{\partial}}_{b}^{*} \hat{K}_{0}=I d-\hat{S}
$$

on $L_{(0,1)}^{2}(\hat{M})$ and $L^{2}(\hat{M})$ respectively, where

$$
\hat{S}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{2}(\hat{M}), \quad \hat{S}_{1}: L_{(0,1)}^{2}(\hat{M}) \rightarrow L_{(0,1)}^{2}(\hat{M})
$$

are the Szego projections on functions and $(0,1)$ forms respectively.

L^{p} theory on $(\hat{M}, \hat{\theta})$

- For $1<p<\infty, \hat{S}$ extends boundedly to $L^{p}(\hat{M})$, and \hat{S}_{1} extends continuously to $L_{(0,1)}^{p}(\hat{M})$.
- For $1<p<4$, let p^{*} be the Sobolev exponent

$$
\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{4}
$$

Then \hat{K}_{0} extends continuously to an operator

$$
\hat{K}_{0}: L^{p}(\hat{M}) \rightarrow L_{(0,1)}^{p^{*}}(\hat{M})
$$

and

$$
\hat{K}_{1}: L_{(0,1)}^{p}(\hat{M}) \rightarrow L^{p^{*}}(\hat{M})
$$

- Now consider closed linear extensions

$$
\begin{aligned}
& \hat{\bar{\partial}}_{b}: L^{p^{*}}(\hat{M}) \rightarrow L_{(0,1)}^{p}(\hat{M}) \\
& {\hat{\hat{\partial}_{b}}}^{*}: L_{(0,1)}^{p^{*}}(\hat{M}) \rightarrow L^{p}(\hat{M})
\end{aligned}
$$

Then the identities

$$
\begin{aligned}
& \hat{\bar{\partial}}_{b} \hat{K}_{1}=I d-\hat{S}_{1}, \\
& {\hat{\hat{\partial}_{b}}}_{b}^{*} \hat{K}_{0}=I d-\hat{S}
\end{aligned}
$$

continue to hold on $L_{(0,1)}^{p}(\hat{M})$ and $L^{p}(\hat{M})$ respectively, $1<p<4$.

- It follows that if $\hat{N}:=\hat{K}_{1} \hat{K}_{0}$, then

$$
\hat{\square}_{b} \hat{N}=I d-\hat{S} \quad \text { on } L^{p}(\hat{M}), \quad 1<p<4
$$

where the kernel of \hat{N} satisfies

$$
|\hat{N}(x, y)| \lesssim \hat{\rho}(x, y)^{-2}
$$

The bounds on \hat{N} allows one to solve $\hat{\square}_{b}$ with estimates.

- In other words, to solve $\hat{\square}_{b} u=f$, one would need to make sure first that $f \in L^{p}$ for some $1<p<4$, and that

$$
\hat{S} f=0
$$

- Remark: If $f \in L^{2}(\hat{M})$, then the last condition means that f is orthogonal to CR functions. But if $f \in L^{P}(\hat{M})$ for some $p<2$, then such an interpretation is not available, and one must prove $\hat{S} f=0$ by other means.

Lemma

If $F \in L^{q^{* *}}(\hat{M})$ for some $q \in(1,4 / 3)$, and

$$
\hat{S} F=0
$$

then $\bar{h} F \in L^{p}(\hat{M})$ for all $p \in(1, q)$, and

$$
\hat{S}(\bar{h} F)=0
$$

Proof.

$$
\begin{aligned}
\hat{S} F=0 & \Rightarrow F={\hat{\hat{\partial}_{b}}}^{*} v \quad \text { for some } v \in L^{q^{* * *}} \\
& \Rightarrow \bar{h} F={\hat{\bar{\partial}_{b}}}^{*}(\bar{h} v) \\
& \Rightarrow \hat{S}(\bar{h} F)=\hat{S} \hat{\bar{\partial}}_{b}^{*}(\bar{h} v)=0 .
\end{aligned}
$$

Similarly,
Lemma
If $\alpha \in L_{(0,1)}^{q^{* *}}(\hat{M})$ for some $q \in(1,4 / 3)$, and

$$
\hat{S}_{1} \alpha=0
$$

then $h \alpha \in L_{(0,1)}^{p}(\hat{M})$ for all $p \in(1, q)$, and

$$
\hat{S}_{1}(h \alpha)=0
$$

- We remark that we have already considered two different $\hat{\bar{\partial}}_{b}$'s on $L^{2}(\hat{M})$, namely

$$
\hat{\bar{\partial}_{b}}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{2}(\hat{M}) \quad \text { and } \quad \hat{\bar{\partial}}_{b}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{4 / 3}(\hat{M})
$$

Their kernels are the same closed subspace of $L^{2}(\hat{M})$, so there is no ambiguity in defining the Szego projection \hat{S} on $L^{2}(\hat{M})$. Similarly for \hat{S}_{1} on $L_{(0,1)}^{2}(\hat{M})$.

L^{p} theory on (M, θ)

- Now we turn to the blown-up manifold, namely (M, θ). Recall $M=\hat{M} \backslash\{p\}, \theta=G^{2} \hat{\theta}$,

$$
G(x) \simeq \hat{\rho}(x, p)^{-2} \simeq|h(x)|
$$

for some CR function h on M, and later we will assume $G=|h|$.

- We have closed linear operators

$$
\bar{\partial}_{b}: L^{2}(M) \rightarrow L_{(0,1)}^{4 / 3}(M), \quad \text { and } \quad \bar{\partial}_{b}^{*}: L_{(0,1)}^{2}(M) \rightarrow L^{4 / 3}(M)
$$

We relate them to the corresponding operators on \hat{M} : formally we have $\bar{\partial}_{b}=\hat{\bar{\partial}}_{b}$, and $\bar{\partial}_{b}^{*}=G^{-4} \hat{\bar{\partial}}_{b}^{*}\left(G^{2}.\right)$.

Proposition

The following are equivalent:
(a) u is in the domain of $\bar{\partial}_{b}: L^{2}(M) \rightarrow L_{(0,1)}^{4 / 3}(M)$, and $\bar{\partial}_{b} u=\alpha$;
(b) $h^{2} u$ is in the domain of $\hat{\bar{\partial}}_{b}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{4 / 3}(\hat{M})$, and $\hat{\bar{\partial}}_{b}\left(h^{2} u\right)=h^{2} \alpha$.

Proposition

The following are equivalent:
(a) v is in the domain of $\bar{\partial}_{b}^{*}: L_{(0,1)}^{2}(M) \rightarrow L^{4 / 3}(M)$, and $\bar{\partial}_{b}^{*} v=f$;
(b) $\bar{h}^{-1} G^{2} v$ is in the domain of $\hat{\bar{\partial}}_{b}^{*}: L_{(0,1)}^{2}(\hat{M}) \rightarrow L^{4 / 3}(\hat{M})$, and $\hat{\bar{\partial}}_{b}^{*}\left(\bar{h}^{-1} G^{2} v\right)=\bar{h}^{-1} G^{4} f$.

Corollary

The following are equivalent:
(a) u is in the kernel of $\bar{\partial}_{b}: L^{2}(M) \rightarrow L_{(0,1)}^{4 / 3}(M)$
(b) $h^{2} u$ is in the kernel of $\hat{\hat{\partial}_{b}}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{4 / 3}(\hat{M})$.

Corollary
The following are equivalent:
(a) v is in the kernel of $\bar{\partial}_{b}^{*}: L_{(0,1)}^{2}(M) \rightarrow L^{4 / 3}(M)$;
(b) $\bar{h}^{-1} G^{2} v$ is in the kernel of $\hat{\bar{\partial}}_{b}^{*}: L_{(0,1)}^{2}(\hat{M}) \rightarrow L^{4 / 3}(\hat{M})$.

Corollary

The following are equivalent:
(a) $\bar{\partial}_{b}: L^{2}(M) \rightarrow L_{(0,1)}^{4 / 3}(M)$ has closed range;
(b) $\hat{\bar{\partial}}_{b}: L^{2}(\hat{M}) \rightarrow L_{(0,1)}^{4 / 3}(\hat{M})$ has closed range.

Corollary
The following are equivalent:
(a) $\bar{\partial}_{b}^{*}: L_{(0,1)}^{2}(M) \rightarrow L^{4 / 3}(M)$ has closed range;
(b) ${\hat{\bar{\partial}_{b}}}^{*}: L_{(0,1)}^{2}(\hat{M}) \rightarrow L^{4 / 3}(\hat{M})$ has closed range.

Advantages of $G=|h|$, Part I

Proposition

If $G=|h|$, then formally we have

$$
\square_{b} u=\bar{h}^{-1} h^{-2} \square_{b}(h u)
$$

Proof.
In fact, $\bar{\partial}_{b}^{*} v=\bar{h} G^{-4} \hat{\bar{\partial}}_{b}^{*}\left(\bar{h}^{-1} G^{2} v\right)=\bar{h}^{-1} h^{-2} \hat{\bar{\partial}}_{b}^{*}(h v)$, so

$$
\begin{aligned}
\square_{b} u & =\bar{\partial}_{b}^{*} \bar{\partial}_{b} u=\bar{h}^{-1} h^{-2} \hat{\bar{\partial}}_{b}^{*}\left(h \bar{\partial}_{b} u\right) \\
& =\bar{h}^{-1} h^{-2} \hat{\bar{\partial}}_{b}^{*} \hat{\bar{\partial}}_{b}(h u)=\bar{h}^{-1} h^{-2} \square_{b}(h u) .
\end{aligned}
$$

Conclusion of proof

- Remember we wanted to solve $\square_{b} u=f$, when $|f(x)| \lesssim \rho(x)^{-3}$ and $S f=0$. We saw it suffices to solve

$$
\hat{\square}_{b}(h u)=\bar{h} h^{2} f .
$$

- Now $\left|\bar{h} h^{2} f\right|(x) \lesssim \hat{\rho}(x, p)^{-3}$, so in particular is not in $L^{2}(\hat{M})$. But using previous lemma about \hat{S}, we have (using $S f=0$ and modulo some details)

$$
\hat{S}\left(\bar{h} h^{2} f\right)=0
$$

- Hence there exists \hat{u} such that $\hat{\square}_{b} \hat{u}=\bar{h} h^{2} f$; in fact from the size of $\bar{h} h^{2} f$, we can choose \hat{u} such that $|\hat{u}(x)| \lesssim \hat{\rho}(x, p)^{-1}$. Let now $u=h^{-1} \hat{u}$. Then

$$
\square_{b} u=f, \quad \text { and } \quad|u(x)| \lesssim|h(x)|^{-1} \hat{\rho}(x, p)^{-1}=\rho(x)^{-1}
$$

Advantage of $G=|h|$, Part II

Lemma
When

$$
G=|h|,
$$

we have

$$
S f=h^{-2} \hat{S}\left(h^{2} f\right) \quad \text { for all } f \in L^{2}(M)
$$

and

$$
S_{1} v=h^{-1} \hat{S}_{1}(h v) \quad \text { for all } v \in L_{(0,1)}^{2}(M) .
$$

- c.f. also Hirachi (1993)

The more robust approach, without $G=|h|$

- If one can show, without $G=|h|$, that
- S_{1} extends so that it becomes a bounded operator

$$
S_{1}: L_{(0,1)}^{p}(M) \rightarrow L_{(0,1)}^{p}(M) \quad \text { for some } p \in(1,2) ;
$$

- S_{1} is pseudolocal; and

$$
\left|S_{1} v(x)\right|_{\theta} \lesssim \rho(x)^{-2} \quad \text { whenever } \quad|v(x)|_{\theta} \lesssim \rho(x)^{-2},
$$

then one can get rid of the extra assumption $G=|h|$ in the theorem by first solving

$$
\bar{\partial}_{b}^{*} v=f
$$

then solving

$$
\bar{\partial}_{b} u=\left(I d-S_{1}\right) v .
$$

