The Kohn Laplacian on blow-ups of pseudohermitian CR manifolds of dimension 3

Po-Lam Yung

Rutgers University

July 10, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A toy problem

• $(\mathbb{S}^3, \hat{\theta})$: standard round sphere $\{|\zeta| = 1\}$ in \mathbb{C}^2 ,

 $\hat{\theta} := i(\bar{\partial} - \partial)|\zeta|^2$

compact strongly pseudoconvex pseudohermitian CR manifold. • (\mathbb{H}^1, θ) : Heisenberg group $\simeq \mathbb{C} \times \mathbb{R}$,

$$\theta := dt + i(zd\overline{z} - \overline{z}dz).$$

non-compact.

- The two structures are 'conformally equivalent'
- Write □_b for the Kohn Laplacian on functions on S³, and □_b for the Kohn Laplacian on ℍ¹. We know very well how to solve □_b since S³ is compact.
- ► Question: Is there a way to solve □_b on ℍ¹, using the conformal equivalence of ℍ¹ with S³?

Set-up

- *M̂*: a compact strongly pseudoconvex CR manifold of dimension 3; e.g. *M̂* = S³ ⊂ C².
- $\hat{\theta}$: a real contact 1-form on \hat{M} such that

$$\operatorname{kernel}(\hat{ heta}) = T^{1,0} \oplus T^{0,1}$$

• $\hat{\theta}$ defines the Levi metric on \hat{M} :

$$\langle Z,W
angle_{\hat{ heta}}:=2id\hat{ heta}(Z,ar{W})$$

for all $Z, W \in T^{1,0}$;

- Hence one defines the Carnot-Caratheodory distance ρ̂(·,·), the Webster scalar curvature R̂, etc. Also the dual metric on the space of (0, 1) forms.
- $(\hat{M}, \hat{\theta})$ is called a pseudohermitian CR manifold.

- Take $\hat{ heta} \wedge d\hat{ heta}$ as the standard volume form on $\hat{M}.$
- Define L^p spaces of functions:

$$\|f\|_{L^p(\hat{M})}^p = \int_{\hat{M}} |f|^p \hat{\theta} \wedge d\hat{\theta}$$

and L^p spaces of (0, 1) forms:

$$\|\alpha\|_{L^p_{(0,1)}(\hat{M})}^p = \int_{\hat{M}} |\alpha|_{\hat{\theta}}^p \,\hat{\theta} \wedge d\hat{\theta}.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

• Define a closed linear operator $\overline{\hat{\partial}}_b \colon L^2(\hat{M}) \to L^2_{(0,1)}(\hat{M})$:

We say $u \in \text{Dom}(\widehat{\partial}_b)$, if and only if there exists $u_n \in C^{\infty}(\hat{M})$ such that $u_n \to u$ in $L^2(\hat{M})$, and $\overline{\partial}_b u_n$ converges to some α in $L^2_{(0,1)}(\hat{M})$. In that case we define $\overline{\partial}_b u = \alpha$.

We assume that

$$\overline{\widehat{\partial}}_b \colon L^2(\hat{M}) \to L^2_{(0,1)}(\hat{M})$$
 has closed range.

Analysis on (M̂, θ̂) is then well-understood; for example, one can solve

$$\hat{\Box}_b u = (I - \hat{S})f,$$

where $\hat{\Box}_b = \hat{\overline{\partial}}_b^* \hat{\overline{\partial}}_b$, and \hat{S} is Szego projection on $(\hat{M}, \hat{\theta})$.

• We now turn to a blow-up of \hat{M} .

The blow-up

Let G be a strictly positive smooth function on M such that

$$G(\cdot)\simeq |\hat
ho(\cdot)|^{-2}.$$

- We assume the existence of a CR function h on M such that G ≃ |h| on M.
- Let θ = G²θ̂. Then (M, θ) is a non-compact strongly pseudoconvex pseudohermitian CR manifold, with its own Levi metric (·, ·)_θ and volume form θ ∧ dθ.
- Motivated by considerations related to a positive mass theorem in 3-dim CR geometry (Cheng-Malchiodi-Yang), we want to understand analysis on (M, θ).

e.g. M̂ = S³ ⊂ C², θ̂ = i(∂̄ − ∂)|ζ|², p = (0, −1), G = Green's function of conformal Laplacian on M̂ with pole p, then G = |h| with

$$h(\zeta_1,\zeta_2)=\frac{1}{1+\zeta_2}$$

Then (M, θ) is isometric to the Heisenberg group (\mathbb{H}^1, θ_0) , where $\theta_0 = dt + i(zd\overline{z} - \overline{z}dz)$; in fact the map

$$egin{aligned} &\zeta\in\mathbb{S}^3\setminus\{p\}\mapsto(z,t)\in\mathbb{H}^1\ &z=rac{\zeta_1}{1+\zeta_2}, \qquad t=-\mathrm{Re}rac{1-\zeta_2}{1+\zeta_2} \end{aligned}$$

is an isometry between (M, θ) and (\mathbb{H}^1, θ_0) .

- Identifying M with \mathbb{H}^1 , we have $ho(z,t) \simeq (|z|^4 + |t|^2)^{1/4}$.
- We want to introduce and solve \Box_b on (M, θ) .

• Extend $\overline{\partial}_b$ so that it becomes a closed linear operator

$$\overline{\partial}_b \colon L^2(M) \to L^{4/3}_{(0,1)}(M);$$

in other words, $u \in \text{Dom}(\overline{\partial}_b)$, if and only if there exists $u_n \in C_c^{\infty}(M)$ such that $u_n \to u$ in $L^2(M)$, and $\overline{\partial}_b u_n$ converges to some α in $L_{(0,1)}^{4/3}(M)$. In that case we define $\overline{\partial}_b u = \alpha$.

The kernel of this operator is then a closed subspace of L²(M). Let

$$S: L^2(M) \to L^2(M)$$

be orthogonal projection onto this subspace.

Similarly, extend the formal adjoint of ∂_b with respect to the metric θ so that it becomes a closed linear operator

$$\overline{\partial}_b^* \colon L^2_{(0,1)}(M) \to L^{4/3}(M),$$

and define orthogonal projection

$$S_1: L^2_{(0,1)}(M) \to L^2_{(0,1)}(M)$$

onto the kernel of this extended $\overline{\partial}_b^*$.

• Define, for $u \in C^{\infty}(M)$, that

$$\Box_{b}u := \overline{\partial}_{b}^{*}\overline{\partial}_{b}u.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Theorem

Assume in addition that G = |h| for some CR function h on M. If f is a smooth function on M that satisfies

$$|f(x)|\lesssim
ho(x)^{-3}$$
 and $Sf=0,$

then there exists a smooth function u on M such that

$$\Box_b u = f$$
 and $|u(x)| \lesssim \rho(x)^{-1}$.

▶ Remark: In joint work with Hsiao, we hope to prove a version of this theorem where this extra condition G = |h| is removed (i.e. where one only assumes G ≃ |h|.)

Two approaches

- Direct one: Reduce the solution of \Box_b to the solution of $\hat{\Box}_b$;
- More robust approach: solve $\Box_b u = f$ by first solving

$$\overline{\partial}_b^* v = f,$$

then solving

$$\overline{\partial}_b u = v.$$

The solution of the latter two are in turn reduced to the solutions of $\overline{\partial}_{b}^{*}$ and $\overline{\partial}_{b}$; only the solution of the second equation needs G = |h|.

If one could extend S₁ so that it becomes a bounded operator on L^p_(0,1)(M) for some p ∈ (1,2), show that

 $|S_1 v(x)|_{ heta} \lesssim
ho(x)^{-2}$ whenever $|v(x)|_{ heta} \lesssim
ho(x)^{-2},$

and show that S_1 is pseudolocal, then one can get rid of the extra assumption G = |h| using the more robust approach.

<ロ> <@> < E> < E> E のQ@

Outline of the talk

- Some L^2 theory on $(\hat{M}, \hat{\theta})$
- Some L^p theory on $(\hat{M}, \hat{\theta})$
- Some L^p theory on (M, θ)
- Advantages of G = |h|
- Conclusion of proof of theorem
 - ▶ Will assume only $G \simeq |h|$ until we need G = |h|, and we will state carefully when we need G = |h|.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

L^2 theory on $(\hat{M}, \hat{ heta})$

Consider the closed linear operators

$$\widehat{\bar{\partial}}_b \colon L^2(\hat{M}) \to L^2_{(0,1)}(\hat{M}), \quad \widehat{\bar{\partial}_b}^* \colon L^2_{(0,1)}(\hat{M}) \to L^2(\hat{M})$$

There exists bounded linear operators

$$\hat{K}_0 \colon L^2(\hat{M}) \to L^2_{(0,1)}(\hat{M}), \quad \hat{K}_1 \colon L^2_{(0,1)}(\hat{M}) \to L^2(\hat{M})$$

such that

$$\widehat{\partial}_b \hat{K}_1 = \mathit{Id} - \hat{S}_1, \quad \mathsf{and} \quad \widehat{\partial}_b^{\ *} \hat{K}_0 = \mathit{Id} - \hat{S}$$

on $L^{2}_{(0,1)}(\hat{M})$ and $L^{2}(\hat{M})$ respectively, where $\hat{S} \colon L^{2}(\hat{M}) \to L^{2}_{(0,1)}(\hat{M}), \quad \hat{S}_{1} \colon L^{2}_{(0,1)}(\hat{M}) \to L^{2}_{(0,1)}(\hat{M})$

are the Szego projections on functions and (0,1) forms respectively.

L^p theory on $(\hat{M}, \hat{\theta})$

For 1 p</sup>(M̂), and Ŝ₁ extends continuously to L^p_(0,1)(M̂).

• For $1 , let <math>p^*$ be the Sobolev exponent

$$\frac{1}{p^*} = \frac{1}{p} - \frac{1}{4}.$$

Then \hat{K}_0 extends continuously to an operator

$$\hat{K}_0 \colon L^p(\hat{M}) \to L^{p^*}_{(0,1)}(\hat{M}),$$

and

$$\hat{K}_1 \colon L^p_{(0,1)}(\hat{M}) \to L^{p^*}(\hat{M}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now consider closed linear extensions

$$\begin{split} & \widehat{\partial}_b \colon L^{p^*}(\hat{M}) \to L^p_{(0,1)}(\hat{M}) \\ & \widehat{\partial}_b^{*} \colon L^{p^*}_{(0,1)}(\hat{M}) \to L^p(\hat{M}) \end{split}$$

Then the identities

$$\overline{\partial}_{b}\hat{K}_{1} = Id - \hat{S}_{1},$$

$$\overline{\partial}_{b}^{*}\hat{K}_{0} = Id - \hat{S}$$

$$\frac{\partial}{\partial b}^{*}\hat{K}_{0} = Id - \hat{S}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

continue to hold on $L^{p}_{(0,1)}(\hat{M})$ and $L^{p}(\hat{M})$ respectively, 1 .

• It follows that if $\hat{N} := \hat{K}_1 \hat{K}_0$, then

$$\hat{\square_b}\hat{N} = \mathit{Id} - \hat{S}$$
 on $L^p(\hat{M}), \quad 1$

where the kernel of \hat{N} satisfies

$$|\hat{N}(x,y)| \lesssim \hat{\rho}(x,y)^{-2}.$$

The bounds on \hat{N} allows one to solve $\hat{\Box}_b$ with estimates.

In other words, to solve □^ˆ_bu = f, one would need to make sure first that f ∈ L^p for some 1

$$\hat{S}f = 0.$$

► Remark: If f ∈ L²(M̂), then the last condition means that f is orthogonal to CR functions. But if f ∈ L^p(M̂) for some p < 2, then such an interpretation is not available, and one must prove Ŝf = 0 by other means.</p>

Lemma

If
$$F \in L^{q^{**}}(\hat{M})$$
 for some $q \in (1, 4/3)$, and
 $\hat{S}F = 0$,
then $\bar{h}F \in L^p(\hat{M})$ for all $p \in (1, q)$, and
 $\hat{S}(\bar{h}F) = 0$.

$$\hat{S}F = 0 \Rightarrow F = \overline{\hat{\partial}}_{b}^{*} v \quad \text{for some } v \in L^{q^{***}}$$
$$\Rightarrow \overline{h}F = \overline{\hat{\partial}}_{b}^{*} (\overline{h}v)$$
$$\Rightarrow \hat{S}(\overline{h}F) = \hat{S}\overline{\hat{\partial}}_{b}^{*} (\overline{h}v) = 0.$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()

Similarly,

Lemma

If
$$\alpha \in L^{q^{**}}_{(0,1)}(\hat{M})$$
 for some $q \in (1, 4/3)$, and
 $\hat{S}_1 \alpha = 0$,
then $h \alpha \in L^p_{(0,1)}(\hat{M})$ for all $p \in (1, q)$, and
 $\hat{S}_1(h \alpha) = 0$.

◆□ → ◆□ → ▲目 → ▲目 → ● ● ● ● ●

We remark that we have already considered two different ∂
_b's on L²(M), namely

$$\widehat{\partial}_b \colon L^2(\hat{M}) \to L^2_{(0,1)}(\hat{M}) \quad \text{and} \quad \widehat{\partial}_b \colon L^2(\hat{M}) \to L^{4/3}_{(0,1)}(\hat{M}).$$

Their kernels are the same closed subspace of $L^2(\hat{M})$, so there is no ambiguity in defining the Szego projection \hat{S} on $L^2(\hat{M})$. Similarly for \hat{S}_1 on $L^2_{(0,1)}(\hat{M})$.

L^p theory on (M, θ)

Now we turn to the blown-up manifold, namely (M, θ) . Recall $M = \hat{M} \setminus \{p\}, \ \theta = G^2 \hat{\theta},$

$$G(x) \simeq \hat{\rho}(x,p)^{-2} \simeq |h(x)|$$

for some CR function h on M, and later we will assume G = |h|.

We have closed linear operators

$$\overline{\partial}_b \colon L^2(M) \to L^{4/3}_{(0,1)}(M), \quad \text{and} \quad \overline{\partial}^*_b \colon L^2_{(0,1)}(M) \to L^{4/3}(M).$$

We relate them to the corresponding operators on \hat{M} : formally we have $\overline{\partial}_b = \hat{\overline{\partial}}_b$, and $\overline{\partial}_b^* = G^{-4} \hat{\overline{\partial}}_b^* (G^2 \cdot)$.

Proposition

The following are equivalent:

(a) *u* is in the domain of $\overline{\partial}_b \colon L^2(M) \to L^{4/3}_{(0,1)}(M)$, and $\overline{\partial}_b u = \alpha$; (b) $h^2 u$ is in the domain of $\widehat{\partial}_b \colon L^2(\hat{M}) \to L^{4/3}_{(0,1)}(\hat{M})$, and $\widehat{\partial}_b(h^2 u) = h^2 \alpha$.

Proposition

The following are equivalent:

(a) v is in the domain of
$$\overline{\partial}_{b}^{*}$$
: $L^{2}_{(0,1)}(M) \to L^{4/3}(M)$, and $\overline{\partial}_{b}^{*}v = f$;
(b) $\bar{h}^{-1}G^{2}v$ is in the domain of $\overline{\partial}_{b}^{*}$: $L^{2}_{(0,1)}(\hat{M}) \to L^{4/3}(\hat{M})$, and
 $\overline{\partial}_{b}^{*}(\bar{h}^{-1}G^{2}v) = \bar{h}^{-1}G^{4}f$.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Corollary

The following are equivalent:

(a)
$$u$$
 is in the kernel of $\overline{\partial}_{b}$: $L^{2}(M) \to L^{4/3}_{(0,1)}(M)$
(b) $h^{2}u$ is in the kernel of $\overline{\widehat{\partial}}_{b}$: $L^{2}(\hat{M}) \to L^{4/3}_{(0,1)}(\hat{M})$.

Corollary

The following are equivalent:

(a) v is in the kernel of
$$\overline{\partial}_{b}^{*}$$
: $L^{2}_{(0,1)}(M) \to L^{4/3}(M)$;
(b) $\overline{h}^{-1}G^{2}v$ is in the kernel of $\overline{\partial}_{b}^{*}^{*}$: $L^{2}_{(0,1)}(\hat{M}) \to L^{4/3}(\hat{M})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

The following are equivalent:

(a)
$$\overline{\partial}_b \colon L^2(M) \to L^{4/3}_{(0,1)}(M)$$
 has closed range;
(b) $\widehat{\partial}_b \colon L^2(\hat{M}) \to L^{4/3}_{(0,1)}(\hat{M})$ has closed range.

Corollary

The following are equivalent:

(a)
$$\overline{\partial}_b^* \colon L^2_{(0,1)}(M) \to L^{4/3}(M)$$
 has closed range;
(b) $\overline{\hat{\partial}_b}^* \colon L^2_{(0,1)}(\hat{M}) \to L^{4/3}(\hat{M})$ has closed range.

Advantages of G = |h|, Part I

Proposition

If G = |h|, then formally we have

$$\Box_b u = \bar{h}^{-1} h^{-2} \hat{\Box_b} (hu)$$

Proof.

In fact, $\overline{\partial}_b^* v = \overline{h} G^{-4} \widehat{\overline{\partial}}_b^{*} (\overline{h}^{-1} G^2 v) = \overline{h}^{-1} h^{-2} \widehat{\overline{\partial}}_b^{*} (hv)$, so

$$\Box_{b}u = \overline{\partial}_{b}^{*}\overline{\partial}_{b}u = \overline{h}^{-1}h^{-2}\overline{\partial}_{b}^{*}(h\overline{\partial}_{b}u)$$
$$= \overline{h}^{-1}h^{-2}\overline{\partial}_{b}^{*}\overline{\partial}_{b}(hu) = \overline{h}^{-1}h^{-2}\Box_{b}(hu).$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Conclusion of proof

• Remember we wanted to solve $\Box_b u = f$, when $|f(x)| \lesssim \rho(x)^{-3}$ and Sf = 0. We saw it suffices to solve

$$\widehat{\square}_b(hu)=\overline{h}h^2f.$$

Now |*hh*²*f*|(*x*) ≤ *p*(*x*, *p*)⁻³, so in particular is not in *L*²(*M*). But using previous lemma about *Ŝ*, we have (using *Sf* = 0 and modulo some details)

$$\hat{S}(\bar{h}h^2f)=0.$$

Hence there exists û such that □_bû = h
⁻h²f; in fact from the size of h
⁻h²f, we can choose û such that |û(x)| ≤ ρ(x, p)⁻¹. Let now u = h⁻¹û. Then

$$\Box_b u = f$$
, and $|u(x)| \lesssim |h(x)|^{-1} \hat{\rho}(x,p)^{-1} = \rho(x)^{-1}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Advantage of G = |h|, Part II

Lemma

When

G = |h|,

we have

$$Sf = h^{-2} \hat{S}(h^2 f)$$
 for all $f \in L^2(M),$

and

$$S_1v = h^{-1}\hat{S}_1(hv)$$
 for all $v \in L^2_{(0,1)}(M)$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

c.f. also Hirachi (1993)

The more robust approach, without G = |h|

• If one can show, without G = |h|, that

► S₁ extends so that it becomes a bounded operator

 $S_1 \colon L^p_{(0,1)}(M) \to L^p_{(0,1)}(M)$ for some $p \in (1,2)$;

► *S*₁ is pseudolocal; and

 $|\mathcal{S}_1 v(x)|_{ heta} \lesssim
ho(x)^{-2}$ whenever $|v(x)|_{ heta} \lesssim
ho(x)^{-2},$

then one can get rid of the extra assumption G = |h| in the theorem by first solving

$$\overline{\partial}_b^* v = f,$$

then solving

$$\overline{\partial}_b u = (Id - S_1)v.$$