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A toy problem

◮ (S3, θ̂): standard round sphere {|ζ| = 1} in C
2,

θ̂ := i(∂̄ − ∂)|ζ|2

compact strongly pseudoconvex pseudohermitian CR manifold.

◮ (H1, θ): Heisenberg group ≃ C× R,

θ := dt + i(zdz − zdz).

non-compact.

◮ The two structures are ‘conformally equivalent’

◮ Write �̂b for the Kohn Laplacian on functions on S
3, and �b

for the Kohn Laplacian on H
1. We know very well how to

solve �̂b since S
3 is compact.

◮ Question: Is there a way to solve �b on H
1, using the

conformal equivalence of H1 with S
3?



Set-up

◮ M̂: a compact strongly pseudoconvex CR manifold of
dimension 3; e.g. M̂ = S

3 ⊂ C
2.

◮ θ̂: a real contact 1-form on M̂ such that

kernel(θ̂) = T 1,0 ⊕ T 0,1.

◮ θ̂ defines the Levi metric on M̂:

〈Z ,W 〉θ̂ := 2id θ̂(Z , W̄ )

for all Z ,W ∈ T 1,0;

◮ Hence one defines the Carnot-Caratheodory distance ρ̂(·, ·),
the Webster scalar curvature R̂ , etc. Also the dual metric on
the space of (0, 1) forms.

◮ (M̂, θ̂) is called a pseudohermitian CR manifold.



◮ Take θ̂ ∧ d θ̂ as the standard volume form on M̂.

◮ Define Lp spaces of functions:

‖f ‖p
Lp(M̂)

=

ˆ

M̂

|f |p θ̂ ∧ d θ̂

and Lp spaces of (0, 1) forms:

‖α‖p
L
p

(0,1)
(M̂)

=

ˆ

M̂

|α|p
θ̂
θ̂ ∧ d θ̂.



◮ Define a closed linear operator ∂̂b : L
2(M̂) → L2(0,1)(M̂):

We say u ∈ Dom(∂̂b), if and only if there exists un ∈ C∞(M̂)

such that un → u in L2(M̂), and ∂̂bun converges to some α in

L2(0,1)(M̂). In that case we define ∂̂bu = α.

◮ We assume that

∂̂b : L
2(M̂) → L2(0,1)(M̂) has closed range.

◮ Analysis on (M̂ , θ̂) is then well-understood; for example, one
can solve

�̂bu = (I − Ŝ)f ,

where �̂b = ∂̂b

∗

∂̂b, and Ŝ is Szego projection on (M̂, θ̂).

◮ We now turn to a blow-up of M̂.



The blow-up

◮ Fix p ∈ M̂, let M := M̂ \ {p}.

◮ Let ρ̂(·) = ρ̂(·, p), and ρ(·) =
1

ρ̂(·)
.

◮ Let G be a strictly positive smooth function on M such that

G (·) ≃ |ρ̂(·)|−2.

◮ We assume the existence of a CR function h on M such that
G ≃ |h| on M.

◮ Let θ = G 2θ̂. Then (M, θ) is a non-compact strongly
pseudoconvex pseudohermitian CR manifold, with its own Levi
metric 〈·, ·〉θ and volume form θ ∧ dθ.

◮ Motivated by considerations related to a positive mass
theorem in 3-dim CR geometry (Cheng-Malchiodi-Yang), we
want to understand analysis on (M, θ).



◮ e.g. M̂ = S
3 ⊂ C

2, θ̂ = i(∂ − ∂)|ζ|2, p = (0,−1), G =
Green’s function of conformal Laplacian on M̂ with pole p,
then G = |h| with

h(ζ1, ζ2) =
1

1 + ζ2
.

Then (M, θ) is isometric to the Heisenberg group (H1, θ0),
where θ0 = dt + i(zdz − zdz); in fact the map

ζ ∈ S
3 \ {p} 7→ (z , t) ∈ H

1

z =
ζ1

1 + ζ2
, t = −Re

1− ζ2
1 + ζ2

is an isometry between (M, θ) and (H1, θ0).

◮ Identifying M with H
1, we have ρ(z , t) ≃ (|z |4 + |t|2)1/4.

◮ We want to introduce and solve �b on (M, θ).



◮ Extend ∂b so that it becomes a closed linear operator

∂b : L
2(M) → L

4/3
(0,1)(M);

in other words, u ∈ Dom(∂b), if and only if there exists
un ∈ C∞

c (M) such that un → u in L2(M), and ∂bun converges

to some α in L
4/3
(0,1)(M). In that case we define ∂bu = α.

◮ The kernel of this operator is then a closed subspace of
L2(M). Let

S : L2(M) → L2(M)

be orthogonal projection onto this subspace.



◮ Similarly, extend the formal adjoint of ∂b with respect to the
metric θ so that it becomes a closed linear operator

∂
∗

b : L
2
(0,1)(M) → L4/3(M),

and define orthogonal projection

S1 : L
2
(0,1)(M) → L2(0,1)(M)

onto the kernel of this extended ∂
∗

b.

◮ Define, for u ∈ C∞(M), that

�bu := ∂
∗

b∂bu.



Theorem

Assume in addition that G = |h| for some CR function h on M. If

f is a smooth function on M that satisfies

|f (x)| . ρ(x)−3 and Sf = 0,

then there exists a smooth function u on M such that

�bu = f and |u(x)| . ρ(x)−1.

◮ Remark: In joint work with Hsiao, we hope to prove a version
of this theorem where this extra condition G = |h| is removed
(i.e. where one only assumes G ≃ |h|.)



Two approaches

◮ Direct one: Reduce the solution of �b to the solution of �̂b;

◮ More robust approach: solve �bu = f by first solving

∂
∗

bv = f ,

then solving
∂bu = v .

The solution of the latter two are in turn reduced to the

solutions of ∂̂b

∗

and ∂̂b; only the solution of the second
equation needs G = |h|.

◮ If one could extend S1 so that it becomes a bounded operator
on L

p

(0,1)(M) for some p ∈ (1, 2), show that

|S1v(x)|θ . ρ(x)−2 whenever |v(x)|θ . ρ(x)−2,

and show that S1 is pseudolocal, then one can get rid of the
extra assumption G = |h| using the more robust approach.



Outline of the talk

◮ Some L2 theory on (M̂, θ̂)

◮ Some Lp theory on (M̂, θ̂)

◮ Some Lp theory on (M, θ)

◮ Advantages of G = |h|

◮ Conclusion of proof of theorem
◮ Will assume only G ≃ |h| until we need G = |h|, and we will

state carefully when we need G = |h|.



L
2 theory on (M̂ , θ̂)

◮ Consider the closed linear operators

∂̂b : L
2(M̂) → L2(0,1)(M̂), ∂̂b

∗

: L2(0,1)(M̂) → L2(M̂)

◮ There exists bounded linear operators

K̂0 : L
2(M̂) → L2(0,1)(M̂), K̂1 : L

2
(0,1)(M̂) → L2(M̂)

such that

∂̂bK̂1 = Id − Ŝ1, and ∂̂b

∗

K̂0 = Id − Ŝ

on L2(0,1)(M̂) and L2(M̂) respectively, where

Ŝ : L2(M̂) → L2(0,1)(M̂), Ŝ1 : L
2
(0,1)(M̂) → L2(0,1)(M̂)

are the Szego projections on functions and (0,1) forms
respectively.



L
p theory on (M̂, θ̂)

◮ For 1 < p < ∞, Ŝ extends boundedly to Lp(M̂), and Ŝ1
extends continuously to L

p

(0,1)(M̂).

◮ For 1 < p < 4, let p∗ be the Sobolev exponent

1

p∗
=

1

p
−

1

4
.

Then K̂0 extends continuously to an operator

K̂0 : L
p(M̂) → L

p∗

(0,1)(M̂),

and
K̂1 : L

p

(0,1)(M̂) → Lp
∗

(M̂).



◮ Now consider closed linear extensions

∂̂b : L
p∗(M̂) → L

p

(0,1)(M̂)

∂̂b

∗

: Lp
∗

(0,1)(M̂) → Lp(M̂)

Then the identities

∂̂bK̂1 = Id − Ŝ1,

∂̂b

∗

K̂0 = Id − Ŝ

continue to hold on L
p

(0,1)(M̂) and Lp(M̂) respectively,
1 < p < 4.



◮ It follows that if N̂ := K̂1K̂0, then

�̂bN̂ = Id − Ŝ on Lp(M̂), 1 < p < 4,

where the kernel of N̂ satisfies

|N̂(x , y)| . ρ̂(x , y)−2.

The bounds on N̂ allows one to solve �̂b with estimates.

◮ In other words, to solve �̂bu = f , one would need to make
sure first that f ∈ Lp for some 1 < p < 4, and that

Ŝf = 0.

◮ Remark: If f ∈ L2(M̂), then the last condition means that f is
orthogonal to CR functions. But if f ∈ Lp(M̂) for some
p < 2, then such an interpretation is not available, and one
must prove Ŝ f = 0 by other means.



Lemma

If F ∈ Lq
∗∗

(M̂) for some q ∈ (1, 4/3), and

ŜF = 0,

then h̄F ∈ Lp(M̂) for all p ∈ (1, q), and

Ŝ(h̄F ) = 0.

Proof.

ŜF = 0 ⇒ F = ∂̂b

∗

v for some v ∈ Lq
∗∗∗

⇒ h̄F = ∂̂b

∗

(h̄v)

⇒ Ŝ(h̄F ) = Ŝ ∂̂b

∗

(h̄v) = 0.



Similarly,

Lemma

If α ∈ L
q∗∗

(0,1)(M̂) for some q ∈ (1, 4/3), and

Ŝ1α = 0,

then hα ∈ L
p

(0,1)(M̂) for all p ∈ (1, q), and

Ŝ1(hα) = 0.



◮ We remark that we have already considered two different ∂̂b’s
on L2(M̂), namely

∂̂b : L
2(M̂) → L2(0,1)(M̂) and ∂̂b : L

2(M̂) → L
4/3
(0,1)(M̂).

Their kernels are the same closed subspace of L2(M̂), so there
is no ambiguity in defining the Szego projection Ŝ on L2(M̂).
Similarly for Ŝ1 on L2(0,1)(M̂).



L
p theory on (M , θ)

◮ Now we turn to the blown-up manifold, namely (M, θ). Recall
M = M̂ \ {p}, θ = G 2θ̂,

G (x) ≃ ρ̂(x , p)−2 ≃ |h(x)|

for some CR function h on M, and later we will assume
G = |h|.

◮ We have closed linear operators

∂b : L
2(M) → L

4/3
(0,1)(M), and ∂

∗

b : L
2
(0,1)(M) → L4/3(M).

We relate them to the corresponding operators on M̂:

formally we have ∂b = ∂̂b, and ∂
∗

b = G−4∂̂b

∗

(G 2·).



Proposition

The following are equivalent:

(a) u is in the domain of ∂b : L
2(M) → L

4/3
(0,1)(M), and ∂bu = α;

(b) h2u is in the domain of ∂̂b : L
2(M̂) → L

4/3
(0,1)(M̂), and

∂̂b(h
2u) = h2α.

Proposition

The following are equivalent:

(a) v is in the domain of ∂
∗

b : L
2
(0,1)(M) → L4/3(M), and ∂

∗

bv = f ;

(b) h̄−1G 2v is in the domain of ∂̂b

∗

: L2(0,1)(M̂) → L4/3(M̂), and

∂̂b

∗

(h̄−1G 2v) = h̄−1G 4f .



Corollary

The following are equivalent:

(a) u is in the kernel of ∂b : L
2(M) → L

4/3
(0,1)(M)

(b) h2u is in the kernel of ∂̂b : L
2(M̂) → L

4/3
(0,1)(M̂).

Corollary

The following are equivalent:

(a) v is in the kernel of ∂
∗

b : L
2
(0,1)(M) → L4/3(M);

(b) h̄−1G 2v is in the kernel of ∂̂b

∗

: L2(0,1)(M̂) → L4/3(M̂).



Corollary

The following are equivalent:

(a) ∂b : L
2(M) → L

4/3
(0,1)(M) has closed range;

(b) ∂̂b : L
2(M̂) → L

4/3
(0,1)(M̂) has closed range.

Corollary

The following are equivalent:

(a) ∂
∗

b : L
2
(0,1)(M) → L4/3(M) has closed range;

(b) ∂̂b

∗

: L2(0,1)(M̂) → L4/3(M̂) has closed range.



Advantages of G = |h|, Part I

Proposition

If G = |h|, then formally we have

�bu = h̄−1h−2�̂b(hu)

Proof.

In fact, ∂
∗

bv = h̄G−4∂̂b

∗

(h̄−1G 2v) = h̄−1h−2∂̂b

∗

(hv), so

�bu = ∂
∗

b∂bu = h̄−1h−2∂̂b

∗

(h∂bu)

= h̄−1h−2∂̂b

∗

∂̂b(hu) = h̄−1h−2�̂b(hu).



Conclusion of proof

◮ Remember we wanted to solve �bu = f , when
|f (x)| . ρ(x)−3 and Sf = 0. We saw it suffices to solve

�̂b(hu) = h̄h2f .

◮ Now |h̄h2f |(x) . ρ̂(x , p)−3, so in particular is not in L2(M̂).
But using previous lemma about Ŝ , we have (using Sf = 0
and modulo some details)

Ŝ(h̄h2f ) = 0.

◮ Hence there exists û such that �̂bû = h̄h2f ; in fact from the
size of h̄h2f , we can choose û such that |û(x)| . ρ̂(x , p)−1.
Let now u = h−1û. Then

�bu = f , and |u(x)| . |h(x)|−1ρ̂(x , p)−1 = ρ(x)−1.



Advantage of G = |h|, Part II

Lemma

When

G = |h|,

we have

Sf = h−2Ŝ(h2f ) for all f ∈ L2(M),

and

S1v = h−1Ŝ1(hv) for all v ∈ L2(0,1)(M).

◮ c.f. also Hirachi (1993)



The more robust approach, without G = |h|

◮ If one can show, without G = |h|, that
◮ S1 extends so that it becomes a bounded operator

S1 : L
p

(0,1)(M) → L
p

(0,1)(M) for some p ∈ (1, 2);

◮ S1 is pseudolocal; and
◮

|S1v(x)|θ . ρ(x)−2 whenever |v(x)|θ . ρ(x)−2,

then one can get rid of the extra assumption G = |h| in the
theorem by first solving

∂
∗

bv = f ,

then solving
∂bu = (Id − S1)v .


