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1. Introduction

The goal of this short note is to present an informal proof of the Bourgain-Demeter `2-

decoupling theorem for the parabola in R2.

Let Q = [−1, 1]. Let P = {(ξ1, ξ2) : ξ2
1 = ξ2, ξ1 ∈ Q} be the truncated parabola. For each

g : Q −→ C , we define an extension operator E by

Eg(x) =

ˆ
Q

g(ξ)eix·(ξ,ξ
2)dξ , x ∈ R2

For R ≥ 1, let BR be a spatial square of side length R, and for p ≥ 2, we define the decoupling

constant Dp(R) to be the best constant such that

‖Eg‖Lpavg(BR) ≤ Dp(R)
∥∥∥‖Egκ‖Lpavg(BR)

∥∥∥
`2(κ∈P

R−1/2 (Q))
,

where PR−1/2(Q) means partition of Q into disjoint intervals of length R−1/2 and gκ = gχκ.

(Technically the Lpavg norm on the right hand side should come with a weight, but we will

gloss over these, in hope of focusing on the ideas behind the subject.) Using some heuristics

about wave packets, we will give an informal proof of the following theorem:

Theorem 1. If 2 ≤ p ≤ 6, then

Dp(R) .ε R
ε

for every ε > 0 and R ≥ 1.
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Our emphasis will be in the range where 4 < p ≤ 6, because when 2 ≤ p ≤ 4 the above

theorem follows readily from the stronger, and more classical, square function estimate. But

for completeness, we still present a unified treatment for the above two ranges of p. The

exposition below is based heavily on the study guide [3]. We would like to thank Ciprian

Demeter, Shaoming Guo, Larry Guth, Diogo Olivera e Silva, Lillian Pierce, Hong Wang and

Ruixiang Zhang for kindly sharing their insights on the subject.

2. Wave packet heuristics

In this section, we introduce wave packets, which help us understand how a function of

compact Fourier support behaves in physical space. Precisely, let f be a function in R2

whose Fourier transform is supported on [0, 1]2. We have the following lemma:

Lemma 2. f is locally constant in every squares B = B1 of side length 1 in the following

sense:

‖f‖L∞(B) . ‖f‖L1
avg(B)

In particular, for any 1 ≤ p, q ≤ ∞, we have the following:

‖f‖Lqavg(B) ∼ ‖f‖Lpavg(B)

(Again, technically, the norms used in the lemma should come with a weight which is of rapid

decay. However, we pretend that the norms are on B as heuristics.)

To prove the above lemma, we pick a Schwartz function ψ, whose Fourier transform equals

1 on [0, 1]2. Then f̂ = f̂ ψ̂ implies f = f ∗ ψ and hence for each x ∈ B,

|f(x)| = |
ˆ
R2

f(y)ψ(x− y)dy|

≤
ˆ
R2

|f(y)||ψ(x− y)|dy

.
ˆ
R2

|f(y)|
(1 + |x− y|)10

dy

≤
ˆ
R2

|f(y)|
(1 + dist(y,B))10

dy

where we have used the rapid decay property of Schwartz function in the second-to-last line.

Technically, we only have the above estimate. However, the power 10 can be replaced by

any sufficiently large constants so that we can forget about the rapid decay Schwartz tail

outside B. Hence, heuristically

‖f‖L∞(B) .
ˆ
B

|f(y)|
(1 + dist(y,B))10

dy = ‖f‖L1
avg(B) .

Now, since B is of compact support (or technically with weight that can selected to have

total measure 1), by Hölder’s inequality, for each 1 ≤ p ≤ ∞,

‖f‖L1
avg(B) ≤ ‖f‖Lpavg(B) ≤ ‖f‖L∞(B) .
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Combining with above, we have for each 1 ≤ p, q ≤ ∞,

‖f‖Lqavg(B) ∼ ‖f‖Lpavg(B) .

We remark that only constant functions have the same Lpavg norms for all p. Hence, roughly

speaking, f is locally constant in every square of side length 1.

By rotating the axes, dilating each side of the square, the fact that Fourier transform of

f(r1x1, r2x2) is r1r2f̂(r−1
1 ξ1, r

−1
2 ξ2), and that modulating a function translates the Fourier

support without changing the norm of f in physical space, we have the following generaliza-

tion of the above lemma about wave packets.

Proposition 3. Suppose that f has Fourier support on a rectangle T ∗ ⊂ R2. Then f is

locally constant in every dual rectangle T to T ∗. (Here if T ∗ has sides parallel to directions

~v1 and ~v2, and if ri is the length of the sides parallel to ~vi, for i = 1, 2, then a dual rectangle

T to T ∗ is a rectangle with sides parallel to ~v1 and ~v2, with r−1
i being the length of the sides

parallel to ~vi for i = 1, 2.)

Let α be an interval in Q = [−1, 1]. We decompose gα = gχα =
∑

κ∈Pδ(α) gκ , where Pδ(α)

means the partition of α into disjoint intervals of length δ and gκ = gχκ as before. We will

use these notations throughout the note.

For each κ of length δ, we cover the part of parabola {ξ : ξ2
1 = ξ2, ξ1 ∈ κ} by a rectangle of

size δ × δ2, which is the smallest possible rectangle to cover this part of parabola on which

Êgκ is supported. By Proposition 3, Egκ is locally constant on the dual rectangles T of

sizes δ−1 × δ−2, of which the long sides are parallel to the normal direction of parabola at

(c(κ), c(κ)2). (We denote the center of κ by c(κ).) We tile Bδ−2 by such rectangles T and

denote the set of rectangles in the tiling by T(κ). Hence morally speaking, we have

Egκ =
∑

T∈T(κ)

cTχT

for some constants cT ∼ ‖Egκ‖Lpavg(T ).

Now, we explain the local L2 orthogonality of different wave packets.

Proposition 4. Let κ1, κ2 be two different intervals in α which are of distance at least

2δ. Then Egκ1 and Egκ2 are orthogonal on every square B of side length at least δ−1.

(Technically, the L2 norm on each square should be replaced by a rapid decay weight.)

Let ϕ be a positive Schwartz function which equals to 1 on B of side length at least B and

whose Fourier transform is supported on Bδ centred at 0. For the same reason as before,

we forget about the Schwartz tail of ϕ and assume the integral over B contains some weight

outside the ball. Then we have the following:
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ˆ
B

Egκ1Egκ2 ≈
ˆ
R2

(Egκ1ϕ)(Egκ2ϕ)

=

ˆ
R2

F(Egκ1ϕ)F(Egκ2ϕ)

=

ˆ
R2

(Êgκ1 ∗ ϕ̂)(̂Egκ2 ∗ ϕ̂)

where we have used Plancherel theorem in the second-to-last line. Since Êgκ1 and Êgκ2 are

supported on two different arcs on the parabola of distance at least 2δ and ϕ̂ is supported

on Bδ, (̂Egκ2 ∗ ϕ̂) and (̂Egκ2 ∗ ϕ̂) have disjoint support. Hence,
´
B
Egκ1Egκ2 ≈ 0 and they

are orthogonal on B.

3. L2 decoupling

In this section, we give a proof of Theorem 1 for p = 2 based on the above wave packet

heuristics.

Let g =
∑

κ∈P
R−1/2 (Q) gκ as before. Take δ = R−1/2 in Proposition 4 and B = BR. We

arrange κ according to the the value of its center and name it by κi, 1 ≤ i . R1/2. Then

Egκi and Egκi+j are (morally) orthogonal to each other on BR when j ≥ 3 and therefore by

almost orthogonality principle, we have

‖Eg‖2
L2
avg(BR) =

∥∥∥∥∥∑
κ

Egκ

∥∥∥∥∥
2

L2
avg(BR)

=
∑
κ1

∑
κ2

〈Egκ1 , Egκ2〉

≈
∑
κ1

3∑
j=−3

〈Egκ1 , Egκ1+j〉

≤
3∑

j=−3

(∑
κ

‖Egκ‖2
L2
avg(BR)

) 1
2
(∑

κ

‖Egκ+j‖2
L2
avg(BR)

) 1
2

= 7
∥∥∥‖Egκ‖L2

avg(BR)

∥∥∥2

`2(κ∈P
R−1/2 (Q))

which is Theorem 1 without any ε loss.
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4. A bootstrap argument

We now give an outline to an informal proof of Theorem 1 when 2 < p ≤ 6. Cauchy-

Schwarz gives Dp(R) ≤ R1/4 for all R ≥ 1. Theorem 1 then follows easily from the following

proposition:

Proposition 5. Suppose η > 0 is such that Dp(R) ≤ CηR
η for all R ≥ 1.

(a) If 2 < p ≤ 4, then Dp(R) .η R
η/2 for all R ≥ 1.

(b) If 4 < p < 6, then there exist a (small but positive) constant a, and a (large positive)

constant A, both depending only on p, such that Dp(R) .η R
η−aη−A for all R ≥ 1.

(c) If p = 6, then there exist a (small but positive) constant a, and a (large positive) con-

stant A, such that Dp(R) .η R
η−ae−A/η for all R ≥ 1.

5. A bilinear reduction

In light of the discussion from the previous section, from now on, we fix 2 < p ≤ 6, and

fix some η > 0 that satisfies the hypothesis of Proposition 5. Let K be a large constant to

be determined (that depends only on ε). We denote by geomj=1,2 xj :=
√
x1x2 the geometric

average of non-negative real numbers x1 and x2.

Lemma 6.

‖Eg‖Lpavg(BR) ≤ C max
α∈PK−1 (Q)

‖Egα‖Lpavg(BR) +K2 max
α1,α2∈PK−1 (Q)

transverse

∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

where α1, α2 are called transverse if they are of distance at least 100
K

. In other words, there

are at least 100 α between α1, α2.

By a standard partition of BR into smaller squares and the Minkowski inequality, it suffices

to prove Lemma 6 where we replace the spatial square BR with any smaller squares. Also,

as in Proposition 3, Egα is locally constant in every dual rectangle T ∗ of size K × K2. In

particular, it is locally constant in every square of side length K. This leads us to prove

Lemma 6 with BR replaced by BK , any spatial square of side length K.

We denote cα to be ‖Egα‖Lpavg(BK), which is (morally) absolute value of Egα on BK , in

the view of the locally constant property. We then separate our situation into two cases

according to the contributions cα.

If there are at most 100 α0 ∈ PK−1(Q) such that cα0 > K−1 maxα∈PK−1 (Q) cα, then

‖Eg‖Lpavg(BK) ≤
∑

α∈PK−1 (Q)

cα

≤ (K − 100)K−1 max
α∈PK−1 (Q)

cα + 100 max
α∈PK−1 (Q)

cα

= 101 max
α∈PK−1 (Q)

‖Egα‖Lpavg(BR)
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If there exist α1, α2 ∈ PK−1(Q) such that cα1 , cα2 > K−1 maxα∈PK−1 (Q) cα and there is at

least 100 α between α1, α2, then

‖Eg‖Lpavg(BK) ≤
∑

α∈PK−1 (Q)

cα ≤ K max
α∈PK−1 (Q)

cα ≤ K2 geom
j=1,2

cαj = K2

∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BK)

.

Lemma 6 follows immediately after taking maximum over all possible transverse pairs of

α1, α2.

We note that the decoupling constant is rescaling invariance. Therefore, we can perform

a parabolic rescaling from each α to the original parabola, and apply decoupling inequality

to partition the rescaled α into KR−1/2 pieces. By rescaling back to the original α of length

K−1, each KR−1/2 pieces represent a κ of length R−1/2 in PR−1/2(α). Hence, we have the

following decoupling inequality:

‖Egα‖Lpavg(BR) ≤ Dp(R/K
2)
∥∥∥‖Egκ‖Lpavg(BR)

∥∥∥
`2(κ∈P

R−1/2 (α))
.

By estimating the maximum by an `2 norm, we obtain

max
α∈PK−1 (Q)

‖Egα‖Lpavg(BR) ≤ Dp(R/K
2)

∥∥∥∥∥∥∥‖Egκ‖Lpavg(BR)

∥∥∥
`2(κ∈P

R−1/2 (α))

∥∥∥∥
`2(α∈PK−1 (Q))

= Dp(R/K2)
∥∥∥‖Egκ‖Lpavg(BR)

∥∥∥
`2(κ∈P

R−1/2 (Q))
.

We define the bilinear decoupling constant Bp(R) to be the best constant so that∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

≤ Bp(R) geom
j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥
`2(κj∈PR−1/2 (αj))

for all α1, α2 ∈ PK−1(Q) that are transverse. By Young’s inequality, the right hand side is

bounded by

Bp(R)(
∑
j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥2

`2(κj∈PR−1/2 (αj))
)1/2.

We add the remaining terms to form an `2 norm over all α ∈ PK−1(Q), which gives

max
α1,α2∈PK−1 (Q)

transverse

∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

≤ Bp(R)

∥∥∥∥∥∥∥‖Egκ‖Lpavg(BR)

∥∥∥
`2(κ∈P

R−1/2 (α))

∥∥∥∥
`2(α∈PK−1 (Q))

= Bp(R)
∥∥∥‖Egκ‖Lpavg(BR)

∥∥∥
`2(κ∈P

R−1/2 (Q))

In summary, we have the following lemma.

Lemma 7.

Dp(R) ≤ C Dp(R/K2) + K2 Bp(R).

Hence the goal now is to prove the following bilinear variant of Proposition 5:

Proposition 8. Suppose η > 0 is such that Dp(R) ≤ CηR
η for all R ≥ 1.
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(a) If 2 < p ≤ 4, then Bp(R) .η R
η/2 for all R ≥ 1.

(b) If 4 < p < 6, then there exist a (small but positive) constant a, and a (large positive)

constant A, both depending only on p, such that Bp(R) .η R
η−aη−A for all R ≥ 1.

(c) If p = 6, then there exist a (small but positive) constant a, and a (large positive) con-

stant A, such that Bp(R) .η R
η−ae−A/η for all R ≥ 1.

We claim that Lemma 7 and Proposition 8 gives Proposition 5 by an iteration. We

first apply Lemma 7. If the second term dominates the first term, we can conclude from

Proposition 8 immediately. If the first term dominates, we can continue our iteration process:

Dp(R) ≤ CDp(R/K2) +K2Bp(R) ≤ 2CDp(R/K2) ≤ (2C)(CDp(R/K4) +K2Bp(R/K2)).

Similarly, the iteration terminates when the second term dominates. We may assume that

the first term always dominates. After m iterations, we get

Dp(R) ≤ (2C)mDp(R/K2m).

Pick the smallest m ∈ N such that R/K2m < 10000. Using Dp(10000) ≤ 10, we have

Dp(R) ≤ 10(2C)
logR
2 logK . R

logC
2 logK ≤ Rε

if we pick K large enough depending on ε.

We remark that in higher dimensions, typically this multilinear reduction is carried out

by induction on dimensions, as in the work of Bourgain and Guth [4].

6. Reduction to ball inflation

We now fix 2 < p ≤ 6, and fix K as in the previous section. We also fix α1, α2 ∈ PK−1(Q)

that are transverse, and fix some η > 0 that satisfies the hypothesis of Proposition 8. Let m

be a large constant to be determined (that depends only on p and η, but not on R). Then∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

≤ R
1

2m

∥∥∥∥geom
j=1,2

∥∥Egκj∥∥`2(κj∈P
R
− 1

2m
(αj))

∥∥∥∥
Lpavg(BR)

which by wave packet heuristics is approximately

' R
1

2m

∥∥∥∥∥geom
j=1,2

∥∥∥∥∥Egκj∥∥Lqavg(∆)

∥∥∥
`2(κj∈P

R
− 1

2m
(αj))

∥∥∥∥∥
`pavg(∆∈P

R
1

2m
(BR))

for any exponent q. The loss here is only R
1

2m , which is small since m will be chosen to be

large. We need to estimate what remains of the right hand side, and to this end it will be

convenient to introduce some notations.

For δ ∈ (0, 1], r ≥ 1, let

Mp,q(δ, r) =

∥∥∥∥geom
j=1,2

∥∥∥∥∥Egκj∥∥Lqavg(∆)

∥∥∥
`2(κj∈Pδ(αj))

∥∥∥∥
`pavg(∆∈Pr(BR))

.
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Then the above shows that∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

≤ R
1

2mMp,q(R−
1

2m , R
1

2m ) (1)

for any exponent q. The key now is the following ball inflation lemma:

Lemma 9. Suppose 4 ≤ p ≤ 6, and q = p/2. If δ ≥ R−1/2, then

Mp,q(δ, δ−1) .ε R
εMp,q(δ, δ−2).

Indeed, as we will see later, when p = 4 we can obtain the conclusion of the lemma without

the Rε loss.

Assuming the lemma for the moment, it is easy to conclude the proof of the Proposition 8

about bilinear decoupling. Indeed, suppose first 2 ≤ p ≤ 4. Then by Hölder’s inequality and

Lemma 9 with p = 4, we have

Mp,2(δ, δ−1) ≤M4,2(δ, δ−1) .M4,2(δ, δ−2).

If δ = R−1/2, then

M4,2(δ, δ−2) = M2,2(δ, δ−2) .M2,2(δ2, δ−2) = Mp,2(δ2, δ−2)

where we used L2 decoupling in the above inequality. If δ ≥ R−1/2, i.e. if R ≥ δ−2, then by

partitioning BR into a disjoint union of squares ∆ of side lengths δ−2, applying the above

inequality to each ∆, and summing the resulting estimates, one still obtains that

Mp,2(δ, δ−1) ≤ CMp,2(δ2, δ−2).

This is now good for iteration: continuing from (1), we have∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

≤ R
1

2mMp,2(R−
1

2m , R
1

2m )

≤ CR
1

2mMp,2(R−
1

2m−1 , R
1

2m−1 )

...

≤ CmR
1

2mMp,2(R−
1
2 , R

1
2 )

= CmR
1

2m geom
j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥
`2(κj∈PR−1/2 (αj))

the last line following from Hölder and Minkowski. This shows

Bp(R) ≤ CmR
1

2m ,

which can be made .η R
η/2 if m = m(p, η) is chosen sufficiently large.

Next, suppose 4 < p ≤ 6. As in Lemma 9, let’s write q = p/2. We define an exponent

λ = λ(p), such that
1

q
=

1− λ
2

+
λ

p
.
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If δ ≥ R−1/2, we claim that

Mp,2(δ, δ−1) .ε R
εMp,2(δ2, δ−2)1−λMp,p(δ, δ−2)λ. (2)

Indeed, Mp,2(δ, δ−1) ≤Mp,q(δ, δ−1) .ε R
εMp,q(δ, δ−2) by Hölder and Lemma 9. Also,

Mp,q(δ, δ−2) ≤Mp,2(δ, δ−2)1−λMp,p(δ, δ−2)λ

by Hölder’s inequality, and

Mp,2(δ, δ−2) .Mp,2(δ2, δ2)

by L2 decoupling. Together we have our claim (2).

We are now ready to iterate. By (1) and an (m− 1)-fold iteration of (2), we have∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

. R
1

2mMp,2(R−
1

2m , R
1

2m )

.ε′ R
ε′R

1
2mMp,2(R−

1
2m−1 , R

1
2m−1 )1−λMp,p(R−

1
2m , R

1
2m−1 )λ

.ε′ R
2ε′R

1
2mMp,2(R−

1
2m−2 , R

1
2m−2 )(1−λ)2Mp,p(R−

1
2m , R

1
2m−1 )λMp,p(R−

1
2m−1 , R

1
2m−2 )λ(1−λ)

.
...

.ε′ R
(m−1)ε′R

1
2mMp,2(R−

1
2 , R

1
2 )(1−λ)m−1

m−2∏
j=0

Mp,p(R−
1

2m−j , R
1

2m−j−1 )λ(1−λ)j . (3)

But by Hölder and Minkowski,

Mp,2(R−
1
2 , R

1
2 ) . geom

j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥
`2(κj∈PR−1/2 (αj))

,

and by parabolic rescaling,

Mp,p(δ, δ−2) . Dp(Rδ2) geom
j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥
`2(κj∈PR−1/2 (αj))

whenever δ ≥ R−1/2, which in particular implies

Mp,p(R−
1

2m−j , R
1

2m−j−1 ) . Dp(R1− 1

2m−j−1 ) geom
j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥
`2(κj∈PR−1/2 (αj))

.

for 0 ≤ j ≤ m− 2. It follows that∥∥∥∥geom
j=1,2

|Egαj |
∥∥∥∥
Lpavg(BR)

.ε′ geom
j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥
`2(κj∈PR−1/2 (αj))

R(m−1)ε′R
1

2m

m−2∏
j=0

Dp(R1− 1

2m−j−1 )λ(1−λ)j

.ε′,η geom
j=1,2

∥∥∥∥∥Egκj∥∥Lpavg(BR)

∥∥∥
`2(κj∈PR−1/2 (αj))

R(m−1)ε′R
1

2m

m−2∏
j=0

(R1− 1

2m−j−1 )ηλ(1−λ)j .

Hence

Bp(R) .ε′,η R
(m−1)ε′R

1
2m

m−2∏
j=0

(R1− 1

2m−j−1 )ηλ(1−λ)j .
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We now consider two cases, namely 4 < p < 6, and p = 6. If 4 < p < 6, then λ ∈ (0, 1/2),

and the above gives

Bp(R) .ε′,η R
(m−1)ε′R

1
2mR

η
(

1− (1−λ)m
1−2λ

+2−m 2λ
1−2λ

)
(4)

because
m−2∑
j=0

λ(1− λ)j = 1− (1− λ)m−1

and

m−2∑
j=0

λ

2m−1
[2(1− λ)]j =

λ

2m−1

[2(1− λ)]m−1 − 1

1− 2λ
=

λ

1− 2λ
[(1− λ)m−1 − 2−(m−1)].

We choose m = m(p, η) be the smallest positive integer so that

2−m + η2−m
2λ

1− 2λ
≤ 1

2
η

(1− λ)m

1− 2λ
.

Then m .p − log η, so

R2−mR
η
(

1− (1−λ)m
1−2λ

+2−m 2λ
1−2λ

)
≤ R

η
(

1− 1
2

(1−λ)m
1−2λ

)
≤ Rη−2aη−A

for some constants a > 0 and A > 0, both depending only on p. We also choose ε′ = ε′(p, η)

so small so that

(m− 1)ε′ < aη−A.

Hence

Bp(R) .η R
η−aη−A .

On the other hand, if p = 6, then λ = 1/2, so

Bp(R) .ε′,η R
(m−1)ε′R

1
2mRη(1−m+1

2m )

We choose m = m(η) be the smallest positive integer so that (m+ 1)η > 2. Then m . 1/η,

so

R
1

2mRη(1−m+1
2m ) . Rη−2ae−A/η

for some absolute constants a > 0, A > 0. We also choose ε′ = ε′(η) so small so that

(m− 1)ε′ < ae−A/η. Hence

Bp(R) .η R
η−ae−A/η ,

as desired. This finishes the proof of Proposition 8.
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7. Proof of the ball inflation lemma

It remains to prove the ball inflation Lemma 9. Without loss of generality, assume δ =

R−1/2, i.e. R = δ−2. This is because if R is bigger, then we may partition BR into subcubes

of side length δ−2, apply the estimate we are about to prove, and then sum over all such

subcubes. Hence assume δ = R−1/2, in which case Mp,q(δ, δ−2) becomes simply

geom
j=1,2

∥∥∥∥∥Egκj∥∥Lqavg(Bδ−2 )

∥∥∥
`2(κj∈Pδ(αj))

.

By wave packet heuristics, Mp,q(δ, δ−1) is basically∥∥∥∥geom
j=1,2

‖Egκj‖`2(κj∈Pδ(αj))

∥∥∥∥
Lpavg(Bδ−2 )

.

Hence we are reduced to showing that∥∥∥∥geom
j=1,2

‖Egκj‖`2(κj∈Pδ(αj))

∥∥∥∥
Lpavg(Bδ−2 )

.ε δ
−ε geom

j=1,2

∥∥∥∥∥Egκj∥∥Lqavg(Bδ−2 )

∥∥∥
`2(κj∈Pδ(αj))

. (5)

Note that we are taking Lpavg norm on the left hand side, and Lqavg norm on the right hand

side. If p ≤ q, then the above would be simply a consequence of Hölder’s inequality and

Minkowski. But now q = p/2 < p, so we have to proceed differently.

Recall now 4 ≤ p ≤ 6. When p = 4, it is easy to prove (5), and one can even prove the

desired conclusion without the δ−ε loss. Indeed, for each κj ∈ Pδ(αj), j = 1, 2, we write

Egκj =
∑

Tj∈T(κj)

cTjχTj

on Bδ−2 using our wave packet heuristics; here T(κj) is the family of dual rectangles of size

δ−1 × δ−2 that tiles Bδ−2 . Hence writing Tj =
⋃
κj∈Pδ(αj) T(κj), we have, for any x ∈ Bδ−2 ,

that

geom
j=1,2

‖Egκj(x)‖`2(κj∈Pδ(αj)) . geom
j=1,2

∑
Tj∈Tj

|cTj |2χTj(x)

1/2

(6)

If p = 4, then

∥∥∥∥geom
j=1,2

‖Egκj‖`2(κj∈Pδ(αj))

∥∥∥∥
Lpavg(Bδ−2 )

.

 1

|Bδ−2|

ˆ
Bδ−2

∏
j=1,2

∑
Tj∈Tj

|cTj |2χTj(x)dx

1/4

≤

(∑
T1∈T1

∑
T2∈T2

|cT1|2|cT2|2
|T1 ∩ T2|
|Bδ−2|

)1/4

.
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But |T1 ∩ T2| . (δ−1)2 = |T1||T2|
|Bδ−2 | , since the tubes from T1 and T2 are transverse. Hence the

above display equation is bounded by

geom
j=1,2

∥∥∥∥∥∥∥
 ∑
Tj∈T(κj)

|cTj |2
|Tj|
|Bδ−2|

1/2
∥∥∥∥∥∥∥
`2(κj∈Pδ(αj))

= geom
j=1,2

∥∥∥∥∥Egκj∥∥L2
avg(Bδ−2 )

∥∥∥
`2(κj∈Pδ(αj))

,

which is (5) since q = 2 when p = 4.

We now consider the case 4 < p ≤ 6. First we observe a trivial bound∥∥∥∥geom
j=1,2

‖Egκj‖`2(κj∈Pδ(αj))

∥∥∥∥
Lpavg(Bδ−2 )

. δ−2/p geom
j=1,2

∥∥∥∥∥Egκj∥∥Lqavg(Bδ−2 )

∥∥∥
`2(κj∈Pδ(αj))

. (7)

This is because we can apply Minkowski inequality to interchange the Lpavg norm and the `2

norm on the left hand side, and observe that for κj ∈ Pδ(αj),∥∥Egκj∥∥Lpavg(Bδ−2 )
=
∥∥∥∥∥Egκj∥∥Lpavg(∆)

∥∥∥
`pavg(∆∈Pδ−1 (Bδ−2 ))

.
∥∥∥∥∥Egκj∥∥Lqavg(∆)

∥∥∥
`qavg(∆∈Pδ−1 (Bδ−2 ))

δ−2( 1
q
− 1
p);

in the latter we used the heuristic that Egκj is locally constant on any square ∆ of side

length δ−1, and Hölder’s inequality. Remembering that q = p/2 > 2 gives (7). For j = 1, 2,

let cj = maxκ∈Pδ(αj) ‖Egκ‖Lqavg(Bδ−2 ). Then on the left hand side of (5), those κj’s for which

‖Egκj‖Lqavg(Bδ−2 ) < δ2/p+1cj contributes not more than what is allowed on the right hand side

of (5). This shows that we only need to bound the left hand side of (5), where the `2 norms

are only over those κj for which ‖Egκj‖Lqavg(Bδ−2 ) is between δ2/p+1cj and cj. This is only

' log δ−1 many dyadic ranges of ‖Egκj‖Lqavg(Bδ−2 ), so in proving (5), by dyadic pigeonholing,

we may assume that for any j = 1, 2 and any κj ∈ Pδ(αj), either ‖Egκj‖Lqavg(Bδ−2 ) = 0, or

is comparable to a fixed non-zero constant Aj; let Nj be the number of κj that satisfy the

latter. For j = 1, 2, by Hölder’s inequality, we have

‖Egκj(x)‖`2(κj∈Pδ(αj)) ≤ N
1
2
− 1
q

j ‖Egκj(x)‖`q(κj∈Pδ(αj)) ≤ N
1
2
− 1
q

j

∑
Tj∈Tj

|cTj |qχTj(x)

1/q

,

so

geom
j=1,2

‖Egκj(x)‖`2(κj∈Pδ(αj)) . geom
j=1,2

N
1
2
− 1
q

j

∑
Tj∈Tj

|cTj |qχTj(x)

1/q

.

Since q = p/2, we have p
q

= 2, so we may take Lpavg(Bδ−2) norm of both sides, and obtain, as

before, that

∥∥∥∥geom
j=1,2

‖Egκj(x)‖`2(κj∈Pδ(αj))

∥∥∥∥
Lpavg(Bδ−2 )

. geom
j=1,2

N
1
2
− 1
q

j

∑
Tj∈Tj

|cTj |q
|Tj|
|Bδ−2|

1/q

.

12



The latter is in turn bounded by

geom
j=1,2

N
1
2
− 1
q

j

 ∑
κj∈Pδ(αj)

‖Egαj‖
q
Lqavg(Bδ−2 )

1/q

' geom
j=1,2

∥∥∥∥∥Egκj∥∥Lqavg(Bδ−2 )

∥∥∥
`2(κj∈Pδ(αj))

,

as desired.

We remark that in the above argument, the key is the control on the area of the intersection

of two δ−1 × δ−2 rectangles that are transverse to each other. In higher dimensions, such

intersections will be more complicated to control, and one useful tool is the multilinear

Kakeya inequality of Bennett, Carbery and Tao [1] (see also [5–7]), or more generally the

multilinear perturbed Brascamp-Lieb inequality of Zhang [8].
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