A survey on ℓ^{2} decoupling

Po-Lam Yung ${ }^{1}$

The Chinese University of Hong Kong
January 31, 2018
${ }^{1}$ Research partially supported by HKRGC grant 14313716, and by CUHK direct grants 4053220, 4441563

Introduction

- Today we will discuss decoupling inequalities.
- They capture certain "interference patterns" that occur when we add up functions whose Fourier transforms are supported in different regions of a curved submanifold of \mathbb{R}^{n}.
(Think of a paraboloid, or a curve, in \mathbb{R}^{n}.)
- Decoupling first appeared in the work of Wolff, and has been further developed by Łaba, Pramanik, Seeger and Garrigós.
- Recent breakthrough came from the work of Bourgain and Demeter, who established ℓ^{2} decoupling for the paraboloid for the optimal range of exponents (up to ϵ losses).
- This has applications to PDE, additive combinatorics, and number theory.
- Shortly afterwards, Bourgain, Demeter and Guth proved Vinogradov's main conjecture in number theory, via ℓ^{2} decoupling for a monomial curve in \mathbb{R}^{n}.
- We will survey some of these developments below.

Outline of the talk

- Part I: The case of the paraboloid
- Part II: The case of the moment curve
- Part III: The case of the truncated cone
- Part IV: Other applications of decoupling
- Part V: A few words about proofs

Part I: The case of the paraboloid

- Let $n \geq 2, Q=[-1,1]^{n-1}$ and $\Phi: Q \rightarrow \mathbb{R}^{n}$ be a parametrization of the paraboloid given by

$$
\Phi(\xi)=\left(\xi,|\xi|^{2}\right), \quad \xi \in Q
$$

- If f is a (say C^{∞}) function defined on Q, define the Fourier extension operator

$$
E f(x)=\int_{Q} f(\xi) e^{2 \pi i x \cdot \Phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n}
$$

- If $f=\widehat{g}$ for some function g on \mathbb{R}^{n-1} and the support of \widehat{g} is in Q, then by writing $x=\left(x^{\prime}, x_{n}\right)$ where $x^{\prime} \in \mathbb{R}^{n-1}$ and $x_{n} \in \mathbb{R}$, and thinking of x^{\prime} as the space variable, x_{n} as the time variable, one can interpret $E f(x)$ as a solution to the Schrödinger equation on $\mathbb{R}^{n-1} \times \mathbb{R}$ with initial data g.
- On the other hand, one can interpret $f(\xi) d \xi$ as a measure on the paraboloid, and $E f(x)$ is simply the inverse Fourier transform of this measure. Hence E is also called the Fourier extension operator associated to the paraboloid.

$$
E f(x)=\int_{Q} f(\xi) e^{2 \pi i x \cdot \phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n} .
$$

- Clearly E maps L^{∞} to L^{∞} regardless of what Φ is.
- When $\Phi(\xi)=\left(\xi,|\xi|^{2}\right)$, E.M. Stein (1967) observed that E maps L^{∞} to L^{p} for some $p<\infty$.
- This is only possible because the image of Φ (i.e. the paraboloid) has non-vanishing Gaussian curvature.
- It is this fundamental observation that started a fruitful investigation about the (Fourier) restriction problem for the past 50 years.

The restriction problem

- The question is what is the smallest value of p, for which E maps L^{∞} to L^{p}; when say $n=3$, this is known to hold when

$p \geq 4$	Tomas, Stein 1976
$p>4-2 / 15$	Bourgain 1991
$p>4-2 / 11$	Wolff 1995; Moyua, Vargas, Vega 1996
$p>4-2 / 9$	Tao, Vargas, Vega 1998
$p>4-2 / 7$	Tao, Vargas 2000
$p>4-2 / 3=10 / 3$	Tao 2003
$p>3.3$	Bourgain, Guth 2011
$p>3.25$	Guth 2016

and is conjectured to hold when $p>3$.

- We remark in passing that the restriction problem is named as such, because the adjoint of E is given by the restriction of the Fourier transform of a function to the paraboloid.

The decoupling problem

$$
E f(x)=\int_{Q} f(\xi) e^{2 \pi i x \cdot \Phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n}
$$

- The restriction problem seeks to bound $\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ by $\|f\|_{L^{\infty}}$.
- On the other hand, let's partition Q into N^{n-1} disjoint cubes $Q_{1}, \ldots, Q_{N^{n-1}}$ of equal sizes. For $j=1, \ldots, N^{n-1}$, let

$$
E_{j} f(x)=\int_{Q_{j}} f(\xi) e^{2 \pi i x \cdot \phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n}
$$

- Clearly

$$
E f=\sum_{j=1}^{N^{n-1}} E_{j} f
$$

Hence by Cauchy-Schwarz, for any $1 \leq p \leq \infty$, we have

$$
\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq N^{\frac{n-1}{2}}\left(\sum_{j=1}^{N^{n-1}}\left\|E_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{2}\right)^{1 / 2}
$$

$$
\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq N^{\frac{n-1}{2}}\| \| E_{j} f\left\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right\|_{\ell^{2}} .
$$

- This is the best one can say if $p=\infty$.
- On the other hand, if $p<\infty$, then one may do better, and the constant $N^{\frac{n-1}{2}}$ can be reduced.
- This is because of the curvature present on the paraboloid; indeed the $E_{j} f$'s have frequency supports on caps on the paraboloid whose normal vectors are transverse to each other. (Think of $E_{j} f$ as waves travelling in the direction normal to its frequency support; since these directions are separated for different j 's, there is a lot of destructive interference.)
- The decoupling problem (for a given p) is the problem of determining the smallest constant for which the above inequality holds for all $N \in \mathbb{N}$.

$$
\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq(\text { best constant })\| \| E_{j} f\left\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right\|_{\ell^{2}}
$$

- Bourgain and Demeter (2014) showed that when $p \geq \frac{2(n+1)}{n-1}$, the best constant is $\lesssim \varepsilon N^{\alpha(n, p)+\varepsilon}$ for all $\varepsilon>0$, where

$$
\alpha(n, p):=\frac{n-1}{2}-\frac{n+1}{p}
$$

here the range of p is optimal. (Also the power of N is optimal up to the N^{ε} loss for the indicated range of p.)

- Indeed, Bourgain and Demeter proved a localized version, which (roughly) says that whenever $p \geq \frac{2(n+1)}{n-1}$ and $\varepsilon>0$,

$$
\|E f\|_{L^{p}\left(B_{N^{2}}\right)} \lesssim_{\varepsilon} N^{\alpha(n, p)+\varepsilon}\| \| E_{j} f\left\|_{L^{p}\left(B_{N^{2}}\right)}\right\|_{\ell^{2}}
$$

where $B_{N^{2}}$ is any ball of radius N^{2} in \mathbb{R}^{n}. (Fine print: actually the $L^{p}\left(B_{N^{2}}\right)$ norm on the right hand side should be replaced by a suitable weighted L^{p} norm.)

- This has applications to PDE, additive combinatorics and number theory; we give only one application to PDE below.

Strichartz inequalities on tori

- Bourgain and Demeter used their decoupling inequality to derive certain Strichartz estimates for the Schrödinger equation on tori.
- They proved that if $\Delta=\sum_{j=1}^{n-1} \partial_{x_{j}}^{2}$ is the Laplacian on $\mathbb{T}^{n-1}=(\mathbb{R} / \mathbb{Z})^{n-1}$, then for any f on \mathbb{T}^{n-1} whose Fourier transform is supported on $[-N, N]^{n-1}$, we have

$$
\left\|e^{-\frac{i t \Delta}{2 \pi}} f\right\|_{L^{p}\left(\mathbb{T}^{n}\right)} \lesssim \varepsilon N^{\alpha(n, p)+\varepsilon}\|f\|_{L^{2}\left(\mathbb{T}^{n-1}\right)}
$$

whenever $p \geq \frac{2(n+1)}{n-1}$ and $\varepsilon>0$ (range of p is optimal here).

- Earlier this was known only in dimensions $n=2$ and 3 . When $n \geq 4$, this was known only when $p \geq \frac{2(n+2)}{n-1}$, via the circle method in analytic number theory.
- Similarly, one can get a Strichartz estimate for all irrational tori $\left(\mathbb{R} / \alpha_{1} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{R} / \alpha_{n-1} \mathbb{Z}\right)$ (over a unit time interval), for which number theoretic arguments do not work as well. (See also Deng, Germain and Guth (2017) for the corresponding estimates over long time intervals.)

Part II: The case of the moment curve

- Next we move on to decoupling for the moment curve.
- Let $n \geq 2$, and $\Phi:[0,1] \rightarrow \mathbb{R}^{n}$ be a parametrization of the moment curve given by

$$
\Phi(\xi)=\left(\xi, \xi^{2}, \ldots, \xi^{n}\right), \quad \xi \in[0,1]
$$

- If f is a function defined on $[0,1]$, define

$$
E f(x)=\int_{0}^{1} f(\xi) e^{2 \pi i x \cdot \Phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n}
$$

- Let

$$
f(\xi)=\sum_{k=1}^{N} \delta_{k / N}(\xi)
$$

be the sum of N evenly spaced Dirac-delta functions on $[0,1]$.

- Then $E f(x)$ is the exponential sum

$$
E f(x)=\sum_{k=1}^{N} e^{2 \pi i\left(k^{\frac{x_{1}}{N}}+k^{2} \frac{x_{2}}{N^{2}}+\cdots+k^{n} \frac{x_{n}}{N^{n}}\right)}
$$

- So if $s \in \mathbb{N}$, then the averaged integral

$$
N^{-n^{2}} \int_{\left[0, N^{n}\right]^{n}}|E f(x)|^{2 s} d x
$$

is equal to the number of solutions

$$
\left(k_{1}, \ldots, k_{2 s}\right) \in\{1, \ldots, N\}^{2 s}
$$

to the translation-dilation invariant Diophantine system

$$
\left\{\begin{array}{c}
k_{1}+\cdots+k_{s}=k_{s+1}+\cdots+k_{2 s} \tag{1}\\
k_{1}^{2}+\cdots+k_{s}^{2}=k_{s+1}^{2}+\cdots+k_{2 s}^{2} \\
\vdots \\
k_{1}^{n}+\cdots+k_{s}^{n}=k_{s+1}^{n}+\cdots+k_{2 s}^{n}
\end{array}\right.
$$

which is the main object of study for the Vinogradov mean value theorem.

Vinogradov's mean value theorem

- Wooley (2014) succeeded in counting the number of solutions to (1) in $\{1, \ldots, N\}^{2 s}$ when $n=3$, using a method called efficient congruencing.
- Bourgain, Demeter and Guth (2016) approached this problem using decoupling, and this works for all n.
- Let's partition $[0,1]$ into N disjoint intervals $\mathcal{I}_{1}, \ldots, \mathcal{I}_{N}$ of equal lengths. For $j=1, \ldots, N$, let

$$
E_{j} f(x)=\int_{\mathcal{I}_{j}} f(\xi) e^{2 \pi i x \cdot \Phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n}
$$

so that $E f=\sum_{j=1}^{N} E_{j} f$.

- Bourgain, Demeter and Guth (2016) proved (morally) that

$$
\|E f\|_{L^{p}\left[0, N^{n}\right]^{n}} \leq C_{\varepsilon} N^{\frac{1}{2}-\frac{n(n+1)}{2 p}+\varepsilon}\| \| E_{j} f\left\|_{L^{p}\left[0, N^{n}\right]^{n}}\right\|_{\ell^{2}}
$$

whenever $p \geq n(n+1)$ and $\varepsilon>0$ (range of p is optimal here; power of N is sharp up to N^{ε} loss).

- Thus they showed that the number of solution $\left(k_{1}, \ldots, k_{2 s}\right) \in\{1, \ldots, N\}^{2 s}$ to the Diophantine system

$$
\left\{\begin{array}{c}
k_{1}+\cdots+k_{s}=k_{s+1}+\cdots+k_{2 s} \\
k_{1}^{2}+\cdots+k_{s}^{2}=k_{s+1}^{2}+\cdots+k_{2 s}^{2} \\
\vdots \\
k_{1}^{n}+\cdots+k_{s}^{n}=k_{s+1}^{n}+\cdots+k_{2 s}^{n}
\end{array}\right.
$$

is at most $C_{\varepsilon} N^{2 s-\frac{n(n+1)}{2}+\varepsilon}$ for all $\varepsilon>0$, whenever $s \geq \frac{n(n+1)}{2}$. (This is sharp up to the N^{ε} loss.)

- This bound is reasonable because among the $N^{2 s}$ choices of $\left(k_{1}, \ldots, k_{2 s}\right) \in\{1, \ldots, N\}^{2 s}$, the probability that it solves the degree j equation above is heuristically N^{-j} (think of $k_{1}^{j}+\cdots+k_{s}^{j}$ and $k_{s+1}^{j}+\cdots+k_{2 s}^{j}$ as random integers in [$\left.1, s N^{j}\right]$; the probability that they are equal is $\left.\simeq 1 /\left(s N^{j}\right)\right)$.
- So if these probabilities were independent, then the number of solutions to the system would be $\simeq N^{2 s} N^{-1-2-\cdots-n}$.

Part III: The case of the truncated cone

- Next we consider decoupling for the cone in \mathbb{R}^{n}, which is the setting where decoupling inequalities were first formulated.
- Let $n \geq 3, A \subset \mathbb{R}^{n-1}$ be the unit annulus $\{1 \leq|\xi| \leq 2\}$, and $\Phi: A \rightarrow \mathbb{R}^{n}$ be a parametrization of the truncated cone:

$$
\Phi(\xi)=(\xi,|\xi|), \quad \xi \in A
$$

- If f is a function defined on A, define

$$
E f(x)=\int_{A} f(\xi) e^{2 \pi i x \cdot \Phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n}
$$

- Let's partition A into N^{n-2} sectors $A_{1}, \ldots, A_{N^{n-2}}$ of equal sizes. For $j=1, \ldots, N^{n-2}$, let

$$
E_{j} f(x)=\int_{A_{j}} f(\xi) e^{2 \pi i x \cdot \Phi(\xi)} d \xi \quad \text { for } x \in \mathbb{R}^{n}
$$

so that $E f=\sum_{j=1}^{N^{n-2}} E_{j} f$.

- Wolff (1999) showed that

$$
\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C_{\varepsilon} N^{n-2-\frac{2(n-1)}{p}+\varepsilon}\| \| E_{j} f\left\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right\|_{\ell^{p}}
$$

whenever $n=3$ and $p>74$; Wolff and $Ł$ aba (2000) showed that the same holds if $n \geq 4$ and $p>2+\min \left\{\frac{8}{n-4}, \frac{32}{3 n-10}\right\}$.

- Note that this is ℓ^{p} decoupling instead of ℓ^{2}.
- The exponent of N is sharp up to N^{ε} loss; the range of exponents was not sharp.
- Bourgain and Demeter (2014) proved ℓ^{2} decoupling for the optimal range of p in this context: they showed

$$
\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C_{\varepsilon} N^{\frac{n-2}{2}-\frac{n}{p}+\varepsilon}\| \| E_{j} f\left\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right\|_{\ell^{2}}
$$

whenever $n \geq 3$ and $p \geq \frac{2 n}{n-2}$.
(This readily implies the results of Wolff and Łaba; one just passes from ℓ^{2} to ℓ^{p} using Hölder.)

ℓ^{2} decoupling vs ℓ^{p} decoupling

- So now we have ℓ^{2} decoupling for the cone:

$$
\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C_{\varepsilon} N^{\frac{n-2}{2}-\frac{n}{p}+\varepsilon}\| \| E_{j} f\left\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right\|_{\ell^{2}}, \quad p \geq \frac{2 n}{n-2}
$$

which implies ℓ^{P} decoupling for the cone:

$$
\|E f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C_{\varepsilon} N^{n-2-\frac{2(n-1)}{p}+\varepsilon}\| \| E_{j} f\left\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right\|_{\ell^{p}}, \quad p \geq \frac{2 n}{n-2}
$$

- Wolff (1999) and Łaba and Wolff (2000) already noticed that decoupling inequalities for the cone can be used to establish the local smoothing estimates for the wave equation.
- In particular, they observed that if the ℓ^{P} decoupling inequality for the cone holds for a certain exponent p, then

$$
\left\|e^{i t \sqrt{-\Delta}} f\right\|_{L^{p}\left(\mathbb{R}^{n-1} \times[1,2]\right)} \lesssim\|f\|_{L_{\alpha}^{p}\left(\mathbb{R}^{n-1}\right)}, \quad \alpha>(n-2)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p} .
$$

(Here L_{α}^{p} is the Sobolev space of functions that has α derivatives in L^{P}.)

Local smoothing estimates

- Local smoothing estimate for the wave equation again:

$$
\left\|e^{i t \sqrt{-\Delta}} f\right\|_{L^{p}\left(\mathbb{R}^{n-1} \times[1,2]\right)} \lesssim\|f\|_{L_{\alpha}^{p}\left(\mathbb{R}^{n-1}\right)}, \quad \alpha>(n-2)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}
$$

- This is an improvement over the best fixed time estimate for the wave equation, which says

$$
\sup _{t \in[1,2]}\left\|e^{i t \sqrt{-\Delta}} f\right\|_{L^{p}\left(\mathbb{R}^{n-1}\right)} \lesssim\|f\|_{L_{\alpha}^{p}\left(\mathbb{R}^{n-1}\right)}, \quad \alpha \geq(n-2)\left(\frac{1}{2}-\frac{1}{p}\right) .
$$

(One gains $1 / p$ in the regularity α when one takes L^{p} norm in t in place of a sup norm in t.)

- The decoupling inequality of Bourgain-Demeter establishes local smoothing for the wave equation for $p \geq \frac{2 n}{n-2}$.
- Conjecture: The local smoothing for the wave equation holds for all $p>\frac{2 n}{n-1}$.
- Local smoothing estimates of the kind on the previous slide were first discovered by Sogge (1991).
- Shortly after that, Mockenhaupt, Seeger and Sogge (1992) observed that such inequalities (with $n=3$) can be used to give a simple and conceptual proof of the circular maximal function theorem of Bourgain (1986) on \mathbb{R}^{2}, namely

$$
\left\|\sup _{t>0} \mid A_{t} f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)}, \quad p>2
$$

where $A_{t} f(x)$ is the average of f on a circle of radius t with center $x \in \mathbb{R}^{2}$.
(See also Pramanik and Seeger (2007), who used such ideas to establish the boundedness of the maximal operator along any smooth curves of finite type in \mathbb{R}^{3}. Also see Beltran, Hickman and Sogge (2018) for local smoothing on manifolds using a variable coefficient variant of decoupling.)

Part IV: Other applications of decoupling

- One can still consider decoupling for other submanifolds, and in the past few years we saw a number of important breakthroughs from such considerations.
- Among them there's Bourgain's new record (2017) on the Lindelöf hypothesis.
- Lindelöf (1908) showed that the Riemann zeta function satisfies the bound $\left|\zeta\left(\frac{1}{2}+i t\right)\right| \lesssim t^{1 / 4}$ as $t \rightarrow \infty$.
- He conjectured that $\left|\zeta\left(\frac{1}{2}+i t\right)\right| \leq C_{\varepsilon} t^{\varepsilon}$ for any $\varepsilon>0$.
- The power $1 / 4$ has been lowered by Hardy and Littlewood to $1 / 6$, and by Bombieri and Iwaniec (1986) to $9 / 56$; see also Huxley (1993, 2005), who improved the bound to $32 / 205$.
- Bourgain (2017) improved this exponent to $13 / 84$, doubling the saving over $1 / 6$ from the exponent $9 / 56$ of Bombieri and Iwaniec.
- The main new estimate (which Bourgain used to feed into the machinery of Huxley) is a bilinear decoupling inequality for certain curves in \mathbb{R}^{4}.
- Another application of decoupling is in the study of the maximal Schrödinger operator on \mathbb{R}^{2+1}.
- Du, Guth and Li (2017) showed that if $u(x, t)$ is the solution to the Schrödinger equation in ($2+1$) dimensions with initial data $f(x) \in H^{s}\left(\mathbb{R}^{2}\right)$, where $s>1 / 3$, then $u(x, t)$ converges to $f(x)$ for a.e. $x \in \mathbb{R}^{2}$ as $t \rightarrow 0^{+}$.
(Here H^{s} is the Sobolev space L_{s}^{2}.)
- In light of the recent example of Bourgain (2016), this is sharp up to the endpoint $1 / 3$.
- The result of Du, Guth and Li are obtained by estimating a maximal Schrödinger operator: they showed that if $s>1 / 3$, then

$$
\begin{equation*}
\left\|\sup _{0<t \leq 1}\left|e^{i t \Delta} f\right|\right\|_{L^{3}\left(B_{1}\right)} \lesssim\|f\|_{H^{s}\left(\mathbb{R}^{2}\right)} \tag{2}
\end{equation*}
$$

where B_{1} is the unit ball in \mathbb{R}^{2}.

- One step of the proof involves a refined Strichartz inequality, that they proved using the Bourgain-Demeter decoupling inequality for the parabola.

Part V: A few words about proofs

- Let's take a brief look at how ℓ^{2} decoupling is proved for the parabola in \mathbb{R}^{2}.
- Below are a few ingredients that go into the proof:

1. Wave packet decompositions
2. Kakeya type estimates
3. Multilinear reduction
4. Bourgain-Guth induction on scales

- Recall the extension operator for the parabola:

$$
E f(x)=\int_{-1}^{1} f(\xi) e^{2 \pi i\left(x_{1} \xi+x_{2} \xi^{2}\right)} d \xi, \quad x \in \mathbb{R}^{2}
$$

- We decompose $[-1,1]$ into the disjoint union of N intervals $\mathcal{I}_{1}, \ldots, \mathcal{I}_{N}$ of equal lengths, and let

$$
E_{j} f(x)=\int_{\mathcal{I}_{j}} f(\xi) e^{2 \pi i\left(x_{1} \xi+x_{2} \xi^{2}\right)} d \xi, \quad x \in \mathbb{R}^{2}
$$

so that

$$
E f=\sum_{j=1}^{N} E_{j} f
$$

- Morally, the goal is to understand the best constant $D(N)$ in the inequality

$$
\|E f\|_{L^{p}\left(B_{N^{2}}\right)} \leq D(N)\| \| E_{j} f\left\|_{L^{p}\left(B_{N^{2}}\right)}\right\|_{\ell^{2}}
$$

for a given p.

Wave packet decompositions

- The Fourier transform of $E_{j} f$ is supported on a short arc C_{j} of length N^{-1} on the parabola, which is contained (because of the curvature of the parabola) in a rectangular slab R_{j} of dimensions $N^{-1} \times N^{-2}$ (think thin slabs since N is big).
- This rectangular slab R_{j} is oriented so that the short sides are morally parallel to the normal vector to the parabola at any point on C_{j}.
- Hence heuristically, we think of the modulus of $E_{j} f$ to be constant on boxes of dimensions $N \times N^{2}$ dual to R_{j} (think of these as long thin tubes).
- The localization of $E_{j} f$ to such a tube is called a wave packet.
- Each $E_{j} f$ is thus the sum of wave packets whose physical supports are parallel tubes, and as j varies, the directions of these tubes gradually varies.
- Ef is the sum of $E_{j} f$'s, so $E f$ is also a sum of wave packets, except that the wave packets can now be supported in tubes in different directions.

Connection to Kakeya and multilinear Kakeya

- Decoupling inequalities capture in some sense how these wave packets interfere with each other.
- Since wave packets are supported on long thin tubes, it will be helpful to know how much these thin tubes can overlap.
- Such overlaps have been studied in connection with the Kakeya conjecture (which states that every set in \mathbb{R}^{n} that contains a unit line segment in every possible direction has Hausdorff dimension n).
- While the Kakeya conjecture is still open in dimensions 3 or above, its multilinear counterpart has been understood, thanks to the breakthroughs by Bennett, Carbery, Tao (2006) and Guth (2010) (see also Carbery and Valdimarsson (2013)).

Bourgain-Guth induction on scales

- Recall that in proving decoupling inequalities, we wanted to estimate $E f$, and that E is a linear operator.
- To reduce the estimate of $E f$ to multilinear quantities, Bourgain and Demeter used an iteration scheme, first devised by Bourgain and Guth (2011) to study the (linear) restriction conjecture based on advances on its multilinear counterpart.
- It is at this step that the curvature of the parabola comes in: the arcs C_{j} on the parabola have normal vectors transverse to each other as j varies, and transversality allows one to apply multilinear Kakeya estimates.
- At the back of all this are multiple applications of induction on scales (which is somewhat reminiscient of the induction on energy in the study of dispersive PDEs); indeed multilinear Kakeya estimates are used to prove ball inflation lemmas, that allows one to pass from smaller spatial balls to larger ones.

$$
\|E f\|_{L^{p}\left(B_{N^{2}}\right)} \leq D(N)\| \| E_{j} f\left\|_{L^{p}\left(B_{N^{2}}\right)}\right\|_{\ell^{2}}
$$

- The simplest manifestation of such induction on scales in decoupling is the following observation: if $D(N)$ is the best constant to the decoupling inequality (for a certain fixed $p \geq 2$), then

$$
D\left(N_{1} N_{2}\right) \lesssim D\left(N_{1}\right) D\left(N_{2}\right)
$$

for all $N_{1}, N_{2} \geq 1$.

- If $D(N) \leq N^{\varepsilon}$ for all $1 \leq N \leq 2$ (with implicit constant 1), then by induction, clearly $D(N) \lesssim(\log N)^{C} N^{\varepsilon}$ for all $N>2$ (write $N=2^{2^{m}}$ and iterate the previous inequality m times).
- Of course this does not work because the implicit constant is not really 1 as $\varepsilon \rightarrow 0$.
- But this suggests that induction on scales is useful; indeed induction on scales came up useful many times in the actual proof of the decoupling inequality of the parabola.

