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Introduction

I Today we will discuss decoupling inequalities.

I They capture certain “interference patterns” that occur when
we add up functions whose Fourier transforms are supported
in different regions of a curved submanifold of Rn.
(Think of a paraboloid, or a curve, in Rn.)

I Decoupling first appeared in the work of Wolff, and has been
further developed by  Laba, Pramanik, Seeger and Garrigós.

I Recent breakthrough came from the work of Bourgain and
Demeter, who established `2 decoupling for the paraboloid for
the optimal range of exponents (up to ε losses).

I This has applications to PDE, additive combinatorics, and
number theory.

I Shortly afterwards, Bourgain, Demeter and Guth proved
Vinogradov’s main conjecture in number theory, via `2

decoupling for a monomial curve in Rn.

I We will survey some of these developments below.
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Part I: The case of the paraboloid
I Let n ≥ 2, Q = [−1, 1]n−1 and Φ: Q → Rn be a

parametrization of the paraboloid given by

Φ(ξ) = (ξ, |ξ|2), ξ ∈ Q.

I If f is a (say C∞) function defined on Q, define the Fourier
extension operator

Ef (x) =

∫
Q
f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn.

I If f = ĝ for some function g on Rn−1 and the support of ĝ is
in Q, then by writing x = (x ′, xn) where x ′ ∈ Rn−1 and
xn ∈ R, and thinking of x ′ as the space variable, xn as the
time variable, one can interpret Ef (x) as a solution to the
Schrödinger equation on Rn−1 × R with initial data g .

I On the other hand, one can interpret f (ξ)dξ as a measure on
the paraboloid, and Ef (x) is simply the inverse Fourier
transform of this measure. Hence E is also called the Fourier
extension operator associated to the paraboloid.



Ef (x) =

∫
Q
f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn.

I Clearly E maps L∞ to L∞ regardless of what Φ is.

I When Φ(ξ) = (ξ, |ξ|2), E.M. Stein (1967) observed that E
maps L∞ to Lp for some p <∞.

I This is only possible because the image of Φ (i.e. the
paraboloid) has non-vanishing Gaussian curvature.

I It is this fundamental observation that started a fruitful
investigation about the (Fourier) restriction problem for the
past 50 years.



The restriction problem

I The question is what is the smallest value of p, for which E
maps L∞ to Lp; when say n = 3, this is known to hold when

p ≥ 4 Tomas, Stein 1976

p > 4− 2/15 Bourgain 1991

p > 4− 2/11 Wolff 1995; Moyua, Vargas, Vega 1996

p > 4− 2/9 Tao, Vargas, Vega 1998

p > 4− 2/7 Tao, Vargas 2000

p > 4− 2/3 = 10/3 Tao 2003

p > 3.3 Bourgain, Guth 2011

p > 3.25 Guth 2016

and is conjectured to hold when p > 3.

I We remark in passing that the restriction problem is named as
such, because the adjoint of E is given by the restriction of
the Fourier transform of a function to the paraboloid.



The decoupling problem

Ef (x) =

∫
Q
f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn.

I The restriction problem seeks to bound ‖Ef ‖Lp(Rn) by ‖f ‖L∞ .
I On the other hand, let’s partition Q into Nn−1 disjoint cubes

Q1, . . . ,QNn−1 of equal sizes. For j = 1, . . . ,Nn−1, let

Ej f (x) =

∫
Qj

f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn.

I Clearly

Ef =
Nn−1∑
j=1

Ej f .

Hence by Cauchy-Schwarz, for any 1 ≤ p ≤ ∞, we have

‖Ef ‖Lp(Rn) ≤ N
n−1

2

Nn−1∑
j=1

‖Ej f ‖2
Lp(Rn)

1/2

.



‖Ef ‖Lp(Rn) ≤ N
n−1

2

∥∥‖Ej f ‖Lp(Rn)

∥∥
`2 .

I This is the best one can say if p =∞.

I On the other hand, if p <∞, then one may do better, and

the constant N
n−1

2 can be reduced.

I This is because of the curvature present on the paraboloid;
indeed the Ej f ’s have frequency supports on caps on the
paraboloid whose normal vectors are transverse to each other.
(Think of Ej f as waves travelling in the direction normal to its
frequency support; since these directions are separated for
different j ’s, there is a lot of destructive interference.)

I The decoupling problem (for a given p) is the problem of
determining the smallest constant for which the above
inequality holds for all N ∈ N.



‖Ef ‖Lp(Rn) ≤ (best constant)
∥∥‖Ej f ‖Lp(Rn)

∥∥
`2 .

I Bourgain and Demeter (2014) showed that when p ≥ 2(n+1)
n−1 ,

the best constant is .ε N
α(n,p)+ε for all ε > 0, where

α(n, p) :=
n − 1

2
− n + 1

p
;

here the range of p is optimal. (Also the power of N is
optimal up to the Nε loss for the indicated range of p.)

I Indeed, Bourgain and Demeter proved a localized version,
which (roughly) says that whenever p ≥ 2(n+1)

n−1 and ε > 0,

‖Ef ‖Lp(BN2 ) .ε N
α(n,p)+ε

∥∥∥‖Ej f ‖Lp(BN2 )

∥∥∥
`2
,

where BN2 is any ball of radius N2 in Rn.
(Fine print: actually the Lp(BN2 ) norm on the right hand side

should be replaced by a suitable weighted Lp norm.)

I This has applications to PDE, additive combinatorics and
number theory; we give only one application to PDE below.



Strichartz inequalities on tori
I Bourgain and Demeter used their decoupling inequality to

derive certain Strichartz estimates for the Schrödinger
equation on tori.

I They proved that if ∆ =
∑n−1

j=1 ∂
2
xj

is the Laplacian on

Tn−1 = (R/Z)n−1, then for any f on Tn−1 whose Fourier
transform is supported on [−N,N]n−1, we have

‖e−
it∆
2π f ‖Lp(Tn) .ε N

α(n,p)+ε‖f ‖L2(Tn−1)

whenever p ≥ 2(n+1)
n−1 and ε > 0 (range of p is optimal here).

I Earlier this was known only in dimensions n = 2 and 3.
When n ≥ 4, this was known only when p ≥ 2(n+2)

n−1 , via the
circle method in analytic number theory.

I Similarly, one can get a Strichartz estimate for all irrational
tori (R/α1Z)× · · · × (R/αn−1Z) (over a unit time interval),
for which number theoretic arguments do not work as well.
(See also Deng, Germain and Guth (2017) for the
corresponding estimates over long time intervals.)



Part II: The case of the moment curve
I Next we move on to decoupling for the moment curve.
I Let n ≥ 2, and Φ: [0, 1]→ Rn be a parametrization of the

moment curve given by

Φ(ξ) = (ξ, ξ2, . . . , ξn), ξ ∈ [0, 1].

I If f is a function defined on [0, 1], define

Ef (x) =

∫ 1

0
f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn.

I Let

f (ξ) =
N∑

k=1

δk/N(ξ)

be the sum of N evenly spaced Dirac-delta functions on [0, 1].
I Then Ef (x) is the exponential sum

Ef (x) =
N∑

k=1

e
2πi

(
k

x1
N

+k2 x2
N2 +···+kn xn

Nn

)
.



I So if s ∈ N, then the averaged integral

N−n
2
∫

[0,Nn]n
|Ef (x)|2sdx

is equal to the number of solutions

(k1, . . . , k2s) ∈ {1, . . . ,N}2s

to the translation-dilation invariant Diophantine system
k1 + · · ·+ ks = ks+1 + · · ·+ k2s

k2
1 + · · ·+ k2

s = k2
s+1 + · · ·+ k2

2s
...

kn1 + · · ·+ kns = kns+1 + · · ·+ kn2s ,

(1)

which is the main object of study for the Vinogradov mean
value theorem.



Vinogradov’s mean value theorem

I Wooley (2014) succeeded in counting the number of solutions
to (1) in {1, . . . ,N}2s when n = 3, using a method called
efficient congruencing.

I Bourgain, Demeter and Guth (2016) approached this problem
using decoupling, and this works for all n.

I Let’s partition [0, 1] into N disjoint intervals I1, . . . , IN of
equal lengths. For j = 1, . . . ,N, let

Ej f (x) =

∫
Ij
f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn

so that Ef =
∑N

j=1 Ej f .

I Bourgain, Demeter and Guth (2016) proved (morally) that

‖Ef ‖Lp [0,Nn]n ≤ CεN
1
2
− n(n+1)

2p
+ε ∥∥‖Ej f ‖Lp [0,Nn]n

∥∥
`2

whenever p ≥ n(n + 1) and ε > 0 (range of p is optimal here;
power of N is sharp up to Nε loss).



I Thus they showed that the number of solution
(k1, . . . , k2s) ∈ {1, . . . ,N}2s to the Diophantine system

k1 + · · ·+ ks = ks+1 + · · ·+ k2s

k2
1 + · · ·+ k2

s = k2
s+1 + · · ·+ k2

2s
...

kn1 + · · ·+ kns = kns+1 + · · ·+ kn2s ,

is at most CεN
2s− n(n+1)

2
+ε for all ε > 0, whenever s ≥ n(n+1)

2 .
(This is sharp up to the Nε loss.)

I This bound is reasonable because among the N2s choices of
(k1, . . . , k2s) ∈ {1, . . . ,N}2s , the probability that it solves the
degree j equation above is heuristically N−j (think of
k j1 + · · ·+ k js and k js+1 + · · ·+ k j2s as random integers in
[1, sN j ]; the probability that they are equal is ' 1/(sN j)).

I So if these probabilities were independent, then the number of
solutions to the system would be ' N2sN−1−2−···−n.



Part III: The case of the truncated cone

I Next we consider decoupling for the cone in Rn, which is the
setting where decoupling inequalities were first formulated.

I Let n ≥ 3, A ⊂ Rn−1 be the unit annulus {1 ≤ |ξ| ≤ 2}, and
Φ: A→ Rn be a parametrization of the truncated cone:

Φ(ξ) = (ξ, |ξ|), ξ ∈ A.

I If f is a function defined on A, define

Ef (x) =

∫
A
f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn.

I Let’s partition A into Nn−2 sectors A1, . . . ,ANn−2 of equal
sizes. For j = 1, . . . ,Nn−2, let

Ej f (x) =

∫
Aj

f (ξ)e2πix ·Φ(ξ)dξ for x ∈ Rn

so that Ef =
∑Nn−2

j=1 Ej f .



I Wolff (1999) showed that

‖Ef ‖Lp(Rn) ≤ CεN
n−2− 2(n−1)

p
+ε ∥∥‖Ej f ‖Lp(Rn)

∥∥
`p

whenever n = 3 and p > 74; Wolff and  Laba (2000) showed
that the same holds if n ≥ 4 and p > 2 + min{ 8

n−4 ,
32

3n−10}.
I Note that this is `p decoupling instead of `2.

I The exponent of N is sharp up to Nε loss; the range of
exponents was not sharp.

I Bourgain and Demeter (2014) proved `2 decoupling for the
optimal range of p in this context: they showed

‖Ef ‖Lp(Rn) ≤ CεN
n−2

2
− n

p
+ε ∥∥‖Ej f ‖Lp(Rn)

∥∥
`2

whenever n ≥ 3 and p ≥ 2n
n−2 .

(This readily implies the results of Wolff and  Laba; one just
passes from `2 to `p using Hölder.)



`2 decoupling vs `p decoupling
I So now we have `2 decoupling for the cone:

‖Ef ‖Lp(Rn) ≤ CεN
n−2

2
− n

p
+ε ∥∥‖Ej f ‖Lp(Rn)

∥∥
`2 , p ≥ 2n

n − 2
,

which implies `p decoupling for the cone:

‖Ef ‖Lp(Rn) ≤ CεN
n−2− 2(n−1)

p
+ε ∥∥‖Ej f ‖Lp(Rn)

∥∥
`p
, p ≥ 2n

n − 2
.

I Wolff (1999) and  Laba and Wolff (2000) already noticed that
decoupling inequalities for the cone can be used to establish
the local smoothing estimates for the wave equation.

I In particular, they observed that if the `p decoupling
inequality for the cone holds for a certain exponent p, then∥∥∥e it√−∆f

∥∥∥
Lp(Rn−1×[1,2])

. ‖f ‖Lpα(Rn−1), α > (n−2)

(
1

2
− 1

p

)
−1

p
.

(Here Lpα is the Sobolev space of functions that has α
derivatives in Lp.)



Local smoothing estimates

I Local smoothing estimate for the wave equation again:∥∥∥e it√−∆f
∥∥∥
Lp(Rn−1×[1,2])

. ‖f ‖Lpα(Rn−1), α > (n−2)

(
1

2
− 1

p

)
−1

p

I This is an improvement over the best fixed time estimate for
the wave equation, which says

sup
t∈[1,2]

∥∥∥e it√−∆f
∥∥∥
Lp(Rn−1)

. ‖f ‖Lpα(Rn−1), α ≥ (n−2)

(
1

2
− 1

p

)
.

(One gains 1/p in the regularity α when one takes Lp norm in
t in place of a sup norm in t.)

I The decoupling inequality of Bourgain-Demeter establishes
local smoothing for the wave equation for p ≥ 2n

n−2 .

I Conjecture: The local smoothing for the wave equation holds
for all p > 2n

n−1 .



I Local smoothing estimates of the kind on the previous slide
were first discovered by Sogge (1991).

I Shortly after that, Mockenhaupt, Seeger and Sogge (1992)
observed that such inequalities (with n = 3) can be used to
give a simple and conceptual proof of the circular maximal
function theorem of Bourgain (1986) on R2, namely∥∥∥∥sup

t>0
|At f |

∥∥∥∥
Lp(R2)

. ‖f ‖Lp(R2), p > 2,

where At f (x) is the average of f on a circle of radius t with
center x ∈ R2.
(See also Pramanik and Seeger (2007), who used such ideas
to establish the boundedness of the maximal operator along
any smooth curves of finite type in R3. Also see Beltran,
Hickman and Sogge (2018) for local smoothing on manifolds
using a variable coefficient variant of decoupling.)



Part IV: Other applications of decoupling
I One can still consider decoupling for other submanifolds, and

in the past few years we saw a number of important
breakthroughs from such considerations.

I Among them there’s Bourgain’s new record (2017) on the
Lindelöf hypothesis.

I Lindelöf (1908) showed that the Riemann zeta function
satisfies the bound

∣∣ζ (1
2 + it

)∣∣ . t1/4 as t →∞.
I He conjectured that

∣∣ζ (1
2 + it

)∣∣ ≤ Cεt
ε for any ε > 0.

I The power 1/4 has been lowered by Hardy and Littlewood to
1/6, and by Bombieri and Iwaniec (1986) to 9/56; see also
Huxley (1993, 2005), who improved the bound to 32/205.

I Bourgain (2017) improved this exponent to 13/84, doubling
the saving over 1/6 from the exponent 9/56 of Bombieri and
Iwaniec.

I The main new estimate (which Bourgain used to feed into the
machinery of Huxley) is a bilinear decoupling inequality for
certain curves in R4.



I Another application of decoupling is in the study of the
maximal Schrödinger operator on R2+1.

I Du, Guth and Li (2017) showed that if u(x , t) is the solution
to the Schrödinger equation in (2+1) dimensions with initial
data f (x) ∈ Hs(R2), where s > 1/3, then u(x , t) converges to
f (x) for a.e. x ∈ R2 as t → 0+.
(Here Hs is the Sobolev space L2

s .)

I In light of the recent example of Bourgain (2016), this is
sharp up to the endpoint 1/3.

I The result of Du, Guth and Li are obtained by estimating a
maximal Schrödinger operator: they showed that if s > 1/3,
then ∥∥∥∥ sup

0<t≤1
|e it∆f |

∥∥∥∥
L3(B1)

. ‖f ‖Hs(R2) (2)

where B1 is the unit ball in R2.

I One step of the proof involves a refined Strichartz inequality,
that they proved using the Bourgain-Demeter decoupling
inequality for the parabola.



Part V: A few words about proofs

I Let’s take a brief look at how `2 decoupling is proved for the
parabola in R2.

I Below are a few ingredients that go into the proof:

1. Wave packet decompositions

2. Kakeya type estimates

3. Multilinear reduction

4. Bourgain-Guth induction on scales



I Recall the extension operator for the parabola:

Ef (x) =

∫ 1

−1
f (ξ)e2πi(x1ξ+x2ξ

2)dξ, x ∈ R2.

I We decompose [−1, 1] into the disjoint union of N intervals
I1, . . . , IN of equal lengths, and let

Ej f (x) =

∫
Ij
f (ξ)e2πi(x1ξ+x2ξ

2)dξ, x ∈ R2,

so that

Ef =
N∑
j=1

Ej f .

I Morally, the goal is to understand the best constant D(N) in
the inequality

‖Ef ‖Lp(BN2 ) ≤ D(N)
∥∥∥‖Ej f ‖Lp(BN2 )

∥∥∥
`2

for a given p.



Wave packet decompositions

I The Fourier transform of Ej f is supported on a short arc Cj of
length N−1 on the parabola, which is contained (because of
the curvature of the parabola) in a rectangular slab Rj of
dimensions N−1 × N−2 (think thin slabs since N is big).

I This rectangular slab Rj is oriented so that the short sides are
morally parallel to the normal vector to the parabola at any
point on Cj .

I Hence heuristically, we think of the modulus of Ej f to be
constant on boxes of dimensions N × N2 dual to Rj (think of
these as long thin tubes).

I The localization of Ej f to such a tube is called a wave packet.
I Each Ej f is thus the sum of wave packets whose physical

supports are parallel tubes, and as j varies, the directions of
these tubes gradually varies.

I Ef is the sum of Ej f ’s, so Ef is also a sum of wave packets,
except that the wave packets can now be supported in tubes
in different directions.



Connection to Kakeya and multilinear Kakeya

I Decoupling inequalities capture in some sense how these wave
packets interfere with each other.

I Since wave packets are supported on long thin tubes, it will be
helpful to know how much these thin tubes can overlap.

I Such overlaps have been studied in connection with the
Kakeya conjecture (which states that every set in Rn that
contains a unit line segment in every possible direction has
Hausdorff dimension n).

I While the Kakeya conjecture is still open in dimensions 3 or
above, its multilinear counterpart has been understood,
thanks to the breakthroughs by Bennett, Carbery, Tao (2006)
and Guth (2010) (see also Carbery and Valdimarsson (2013)).



Bourgain-Guth induction on scales

I Recall that in proving decoupling inequalities, we wanted to
estimate Ef , and that E is a linear operator.

I To reduce the estimate of Ef to multilinear quantities,
Bourgain and Demeter used an iteration scheme, first devised
by Bourgain and Guth (2011) to study the (linear) restriction
conjecture based on advances on its multilinear counterpart.

I It is at this step that the curvature of the parabola comes in:
the arcs Cj on the parabola have normal vectors transverse to
each other as j varies, and transversality allows one to apply
multilinear Kakeya estimates.

I At the back of all this are multiple applications of induction
on scales (which is somewhat reminiscient of the induction on
energy in the study of dispersive PDEs); indeed multilinear
Kakeya estimates are used to prove ball inflation lemmas, that
allows one to pass from smaller spatial balls to larger ones.



‖Ef ‖Lp(BN2 ) ≤ D(N)
∥∥∥‖Ej f ‖Lp(BN2 )

∥∥∥
`2

I The simplest manifestation of such induction on scales in
decoupling is the following observation: if D(N) is the best
constant to the decoupling inequality (for a certain fixed
p ≥ 2), then

D(N1N2) . D(N1)D(N2)

for all N1,N2 ≥ 1.

I If D(N) ≤ Nε for all 1 ≤ N ≤ 2 (with implicit constant 1),
then by induction, clearly D(N) . (logN)CNε for all N > 2
(write N = 22m and iterate the previous inequality m times).

I Of course this does not work because the implicit constant is
not really 1 as ε→ 0.

I But this suggests that induction on scales is useful; indeed
induction on scales came up useful many times in the actual
proof of the decoupling inequality of the parabola.


