A survey on ℓ^2 decoupling

Po-Lam Yung ¹

The Chinese University of Hong Kong

January 31, 2018

¹Research partially supported by HKRGC grant 14313716, and by CUHK direct grants 4053220, 4441563

Introduction

- Today we will discuss decoupling inequalities.
- They capture certain "interference patterns" that occur when we add up functions whose Fourier transforms are supported in different regions of a curved submanifold of Rⁿ. (Think of a paraboloid, or a curve, in Rⁿ.)
- Decoupling first appeared in the work of Wolff, and has been further developed by Łaba, Pramanik, Seeger and Garrigós.
- ► Recent breakthrough came from the work of Bourgain and Demeter, who established l² decoupling for the paraboloid for the optimal range of exponents (up to *e* losses).
- This has applications to PDE, additive combinatorics, and number theory.
- Shortly afterwards, Bourgain, Demeter and Guth proved Vinogradov's main conjecture in number theory, via ℓ² decoupling for a monomial curve in ℝⁿ.
- ► We will survey some of these developments below.

Outline of the talk

- Part I: The case of the paraboloid
- Part II: The case of the moment curve
- Part III: The case of the truncated cone
- Part IV: Other applications of decoupling

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Part V: A few words about proofs

Part I: The case of the paraboloid

► Let $n \ge 2$, $Q = [-1, 1]^{n-1}$ and $\Phi: Q \to \mathbb{R}^n$ be a parametrization of the paraboloid given by

$$\Phi(\xi)=(\xi,|\xi|^2), \quad \xi\in Q.$$

► If f is a (say C[∞]) function defined on Q, define the Fourier extension operator

$$Ef(x) = \int_Q f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi$$
 for $x \in \mathbb{R}^n$.

- If f = ĝ for some function g on ℝⁿ⁻¹ and the support of ĝ is in Q, then by writing x = (x', x_n) where x' ∈ ℝⁿ⁻¹ and x_n ∈ ℝ, and thinking of x' as the space variable, x_n as the time variable, one can interpret Ef(x) as a solution to the Schrödinger equation on ℝⁿ⁻¹ × ℝ with initial data g.
- On the other hand, one can interpret f(ξ)dξ as a measure on the paraboloid, and Ef(x) is simply the inverse Fourier transform of this measure. Hence E is also called the Fourier extension operator associated to the paraboloid.

$$Ef(x) = \int_Q f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi$$
 for $x \in \mathbb{R}^n$.

- Clearly *E* maps L^{∞} to L^{∞} regardless of what Φ is.
- When Φ(ξ) = (ξ, |ξ|²), E.M. Stein (1967) observed that E maps L[∞] to L^p for some p < ∞.</p>
- This is only possible because the image of Φ (i.e. the paraboloid) has non-vanishing Gaussian curvature.
- It is this fundamental observation that started a fruitful investigation about the (Fourier) restriction problem for the past 50 years.

The restriction problem

► The question is what is the smallest value of p, for which E maps L[∞] to L^p; when say n = 3, this is known to hold when

$p \ge 4$	Tomas, Stein 1976
p > 4 - 2/15	Bourgain 1991
p>4-2/11	Wolff 1995; Moyua, Vargas, Vega 1996
p > 4 - 2/9	Tao, Vargas, Vega 1998
p > 4 - 2/7	Tao, Vargas 2000
p > 4 - 2/3 = 10/3	Tao 2003
<i>p</i> > 3.3	Bourgain, Guth 2011
<i>p</i> > 3.25	Guth 2016

and is conjectured to hold when p > 3.

We remark in passing that the restriction problem is named as such, because the adjoint of *E* is given by the restriction of the Fourier transform of a function to the paraboloid.

The decoupling problem

$$Ef(x) = \int_Q f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi$$
 for $x \in \mathbb{R}^n$.

- ► The restriction problem seeks to bound $||Ef||_{L^{p}(\mathbb{R}^{n})}$ by $||f||_{L^{\infty}}$.
- On the other hand, let's partition Q into N^{n-1} disjoint cubes $Q_1, \ldots, Q_{N^{n-1}}$ of equal sizes. For $j = 1, \ldots, N^{n-1}$, let

$$E_j f(x) = \int_{Q_j} f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi$$
 for $x \in \mathbb{R}^n$.

Clearly

$$Ef=\sum_{j=1}^{N^{n-1}}E_jf.$$

Hence by Cauchy-Schwarz, for any $1 \leq p \leq \infty$, we have

$$\|Ef\|_{L^{p}(\mathbb{R}^{n})} \leq N^{\frac{n-1}{2}} \left(\sum_{j=1}^{N^{n-1}} \|E_{j}f\|_{L^{p}(\mathbb{R}^{n})}^{2} \right)^{1/2}.$$

$$\|Ef\|_{L^{p}(\mathbb{R}^{n})} \leq N^{\frac{n-1}{2}} \|\|E_{j}f\|_{L^{p}(\mathbb{R}^{n})}\|_{\ell^{2}}.$$

- This is the best one can say if $p = \infty$.
- On the other hand, if $p < \infty$, then one may do better, and the constant $N^{\frac{n-1}{2}}$ can be reduced.
- This is because of the curvature present on the paraboloid; indeed the E_jf's have frequency supports on caps on the paraboloid whose normal vectors are transverse to each other. (Think of E_jf as waves travelling in the direction normal to its frequency support; since these directions are separated for different j's, there is a lot of destructive interference.)
- The decoupling problem (for a given *p*) is the problem of determining the smallest constant for which the above inequality holds for all *N* ∈ N.

$$\|Ef\|_{L^p(\mathbb{R}^n)} \leq (\text{best constant}) \left\| \|E_j f\|_{L^p(\mathbb{R}^n)} \right\|_{\ell^2}.$$

▶ Bourgain and Demeter (2014) showed that when $p \ge \frac{2(n+1)}{n-1}$, the best constant is $\lesssim_{\varepsilon} N^{\alpha(n,p)+\varepsilon}$ for all $\varepsilon > 0$, where

$$\alpha(n,p):=\frac{n-1}{2}-\frac{n+1}{p};$$

here the range of p is optimal. (Also the power of N is optimal up to the N^{ε} loss for the indicated range of p.)

▶ Indeed, Bourgain and Demeter proved a localized version, which (roughly) says that whenever $p \ge \frac{2(n+1)}{n-1}$ and $\varepsilon > 0$,

$$\|Ef\|_{L^{p}(\mathcal{B}_{N^{2}})} \lesssim_{\varepsilon} N^{\alpha(n,p)+\varepsilon} \left\| \|E_{j}f\|_{L^{p}(\mathcal{B}_{N^{2}})} \right\|_{\ell^{2}},$$

where B_{N^2} is any ball of radius N^2 in \mathbb{R}^n . (Fine print: actually the $L^p(B_{N^2})$ norm on the right hand side should be replaced by a suitable weighted L^p norm.)

 This has applications to PDE, additive combinatorics and number theory; we give only one application to PDE below.

Strichartz inequalities on tori

- Bourgain and Demeter used their decoupling inequality to derive certain Strichartz estimates for the Schrödinger equation on tori.
- They proved that if Δ = ∑_{j=1}ⁿ⁻¹ ∂²_{xj} is the Laplacian on Tⁿ⁻¹ = (ℝ/ℤ)ⁿ⁻¹, then for any f on Tⁿ⁻¹ whose Fourier transform is supported on [−N, N]ⁿ⁻¹, we have

$$\|e^{-rac{it\Delta}{2\pi}}f\|_{L^p(\mathbb{T}^n)}\lesssim_{arepsilon}N^{lpha(n,p)+arepsilon}\|f\|_{L^2(\mathbb{T}^{n-1})}$$

whenever $p \ge \frac{2(n+1)}{n-1}$ and $\varepsilon > 0$ (range of p is optimal here).

- ► Earlier this was known only in dimensions n = 2 and 3. When n ≥ 4, this was known only when p ≥ 2(n+2)/(n-1), via the circle method in analytic number theory.
- Similarly, one can get a Strichartz estimate for all irrational tori (ℝ/α₁ℤ) ×···× (ℝ/α_{n−1}ℤ) (over a unit time interval), for which number theoretic arguments do not work as well. (See also Deng, Germain and Guth (2017) for the corresponding estimates over long time intervals.)

Part II: The case of the moment curve

- Next we move on to decoupling for the moment curve.
- Let n ≥ 2, and Φ: [0, 1] → ℝⁿ be a parametrization of the moment curve given by

$$\Phi(\xi) = (\xi, \xi^2, \dots, \xi^n), \quad \xi \in [0, 1].$$

▶ If *f* is a function defined on [0, 1], define

$$\mathit{Ef}(x) = \int_0^1 f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi \quad ext{for } x \in \mathbb{R}^n.$$

Let

$$f(\xi) = \sum_{k=1}^{N} \delta_{k/N}(\xi)$$

be the sum of N evenly spaced Dirac-delta functions on [0, 1].
► Then Ef(x) is the exponential sum

$$Ef(x) = \sum_{k=1}^{N} e^{2\pi i \left(k\frac{x_1}{N} + k^2 \frac{x_2}{N^2} + \dots + k^n \frac{x_n}{N^n}\right)}.$$

• So if $s \in \mathbb{N}$, then the averaged integral

$$N^{-n^2} \int_{[0,N^n]^n} |Ef(x)|^{2s} dx$$

is equal to the number of solutions

$$(k_1, \ldots, k_{2s}) \in \{1, \ldots, N\}^{2s}$$

to the translation-dilation invariant Diophantine system

$$\begin{cases} k_{1} + \dots + k_{s} = k_{s+1} + \dots + k_{2s} \\ k_{1}^{2} + \dots + k_{s}^{2} = k_{s+1}^{2} + \dots + k_{2s}^{2} \\ \vdots \\ k_{1}^{n} + \dots + k_{s}^{n} = k_{s+1}^{n} + \dots + k_{2s}^{n}, \end{cases}$$
(1)

(ロ)、(型)、(E)、(E)、 E) の(の)

which is the main object of study for the Vinogradov mean value theorem.

Vinogradov's mean value theorem

- ► Wooley (2014) succeeded in counting the number of solutions to (1) in {1,..., N}^{2s} when n = 3, using a method called efficient congruencing.
- Bourgain, Demeter and Guth (2016) approached this problem using decoupling, and this works for all n.
- ▶ Let's partition [0, 1] into N disjoint intervals I₁,..., I_N of equal lengths. For j = 1,..., N, let

$$E_j f(x) = \int_{\mathcal{I}_j} f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi \quad ext{for } x \in \mathbb{R}^n$$

so that $Ef = \sum_{j=1}^{N} E_j f$.

Bourgain, Demeter and Guth (2016) proved (morally) that

$$\|Ef\|_{L^{p}[0,N^{n}]^{n}} \leq C_{\varepsilon}N^{\frac{1}{2} - \frac{n(n+1)}{2p} + \varepsilon} \|\|E_{j}f\|_{L^{p}[0,N^{n}]^{n}}\|_{\ell^{2}}$$

whenever $p \ge n(n+1)$ and $\varepsilon > 0$ (range of p is optimal here; power of N is sharp up to N^{ε} loss). ▶ Thus they showed that the number of solution $(k_1, \ldots, k_{2s}) \in \{1, \ldots, N\}^{2s}$ to the Diophantine system

$$\begin{cases} k_1 + \dots + k_s = k_{s+1} + \dots + k_{2s} \\ k_1^2 + \dots + k_s^2 = k_{s+1}^2 + \dots + k_{2s}^2 \\ \vdots \\ k_1^n + \dots + k_s^n = k_{s+1}^n + \dots + k_{2s}^n \end{cases}$$

is at most $C_{\varepsilon}N^{2s-\frac{n(n+1)}{2}+\varepsilon}$ for all $\varepsilon > 0$, whenever $s \ge \frac{n(n+1)}{2}$. (This is sharp up to the N^{ε} loss.)

- ► This bound is reasonable because among the N^{2s} choices of (k₁,..., k_{2s}) ∈ {1,..., N}^{2s}, the probability that it solves the degree j equation above is heuristically N^{-j} (think of k₁^j + ··· + k_s^j and k_{s+1}^j + ··· + k_{2s}^j as random integers in [1, sN^j]; the probability that they are equal is ≃ 1/(sN^j)).
- So if these probabilities were independent, then the number of solutions to the system would be ≃ N^{2s}N^{-1-2-...-n}.

Part III: The case of the truncated cone

- Next we consider decoupling for the cone in ℝⁿ, which is the setting where decoupling inequalities were first formulated.
- Let n ≥ 3, A ⊂ ℝⁿ⁻¹ be the unit annulus {1 ≤ |ξ| ≤ 2}, and Φ: A → ℝⁿ be a parametrization of the truncated cone:

$$\Phi(\xi) = (\xi, |\xi|), \quad \xi \in A.$$

If f is a function defined on A, define

$$Ef(x) = \int_A f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi$$
 for $x \in \mathbb{R}^n$.

► Let's partition A into Nⁿ⁻² sectors A₁,..., A_{Nⁿ⁻²} of equal sizes. For j = 1,..., Nⁿ⁻², let

$$E_j f(x) = \int_{\mathcal{A}_j} f(\xi) e^{2\pi i x \cdot \Phi(\xi)} d\xi$$
 for $x \in \mathbb{R}^n$

so that $Ef = \sum_{j=1}^{N^{n-2}} E_j f$.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ へ ()</p>

Wolff (1999) showed that

$$\|Ef\|_{L^{p}(\mathbb{R}^{n})} \leq C_{\varepsilon} N^{n-2-\frac{2(n-1)}{p}+\varepsilon} \left\| \|E_{j}f\|_{L^{p}(\mathbb{R}^{n})} \right\|_{\ell^{p}}$$

whenever n = 3 and p > 74; Wolff and Laba (2000) showed that the same holds if $n \ge 4$ and $p > 2 + \min\{\frac{8}{n-4}, \frac{32}{3n-10}\}$.

• Note that this is ℓ^p decoupling instead of ℓ^2 .

- ► The exponent of N is sharp up to N^ε loss; the range of exponents was not sharp.
- ▶ Bourgain and Demeter (2014) proved ℓ² decoupling for the optimal range of p in this context: they showed

$$\|Ef\|_{L^{p}(\mathbb{R}^{n})} \leq C_{\varepsilon} N^{\frac{n-2}{2}-\frac{n}{p}+\varepsilon} \left\| \|E_{j}f\|_{L^{p}(\mathbb{R}^{n})} \right\|_{\ell^{2}}$$

whenever $n \ge 3$ and $p \ge \frac{2n}{n-2}$. (This readily implies the results of Wolff and Łaba; one just passes from ℓ^2 to ℓ^p using Hölder.)

ℓ^2 decoupling vs ℓ^p decoupling

So now we have ℓ^2 decoupling for the cone:

$$\|Ef\|_{L^p(\mathbb{R}^n)} \leq C_{\varepsilon} N^{\frac{n-2}{2}-\frac{n}{p}+\varepsilon} \left\| \|E_j f\|_{L^p(\mathbb{R}^n)} \right\|_{\ell^2}, \quad p \geq \frac{2n}{n-2},$$

which implies ℓ^p decoupling for the cone:

$$\|Ef\|_{L^p(\mathbb{R}^n)} \leq C_{\varepsilon} N^{n-2-\frac{2(n-1)}{p}+\varepsilon} \left\| \|E_j f\|_{L^p(\mathbb{R}^n)} \right\|_{\ell^p}, \quad p \geq \frac{2n}{n-2}.$$

- Wolff (1999) and Łaba and Wolff (2000) already noticed that decoupling inequalities for the cone can be used to establish the local smoothing estimates for the wave equation.
- In particular, they observed that if the l^p decoupling inequality for the cone holds for a certain exponent p, then

$$\left\|e^{it\sqrt{-\Delta}}f\right\|_{L^p(\mathbb{R}^{n-1}\times[1,2])} \lesssim \|f\|_{L^p_\alpha(\mathbb{R}^{n-1})}, \quad \alpha > (n-2)\left(\frac{1}{2}-\frac{1}{p}\right) - \frac{1}{p}$$

(Here L^{p}_{α} is the Sobolev space of functions that has α derivatives in L^{p} .)

Local smoothing estimates

Local smoothing estimate for the wave equation again:

$$\left\|e^{it\sqrt{-\Delta}}f\right\|_{L^p(\mathbb{R}^{n-1}\times[1,2])} \lesssim \|f\|_{L^p_\alpha(\mathbb{R}^{n-1})}, \quad \alpha > (n-2)\left(\frac{1}{2}-\frac{1}{p}\right) - \frac{1}{p}$$

 This is an improvement over the best fixed time estimate for the wave equation, which says

$$\sup_{t\in[1,2]} \left\| e^{it\sqrt{-\Delta}} f \right\|_{L^p(\mathbb{R}^{n-1})} \lesssim \|f\|_{L^p_\alpha(\mathbb{R}^{n-1})}, \quad \alpha \ge (n-2)\left(\frac{1}{2} - \frac{1}{p}\right).$$

(One gains 1/p in the regularity α when one takes L^p norm in t in place of a sup norm in t.)

- ► The decoupling inequality of Bourgain-Demeter establishes local smoothing for the wave equation for p ≥ ²ⁿ/_{n-2}.
- Conjecture: The local smoothing for the wave equation holds for all $p > \frac{2n}{n-1}$.

- Local smoothing estimates of the kind on the previous slide were first discovered by Sogge (1991).
- Shortly after that, Mockenhaupt, Seeger and Sogge (1992) observed that such inequalities (with n = 3) can be used to give a simple and conceptual proof of the circular maximal function theorem of Bourgain (1986) on ℝ², namely

$$\left\|\sup_{t>0}|A_tf|\right\|_{L^p(\mathbb{R}^2)}\lesssim \|f\|_{L^p(\mathbb{R}^2)}, \quad p>2,$$

where $A_t f(x)$ is the average of f on a circle of radius t with center $x \in \mathbb{R}^2$.

(See also Pramanik and Seeger (2007), who used such ideas to establish the boundedness of the maximal operator along any smooth curves of finite type in \mathbb{R}^3 . Also see Beltran, Hickman and Sogge (2018) for local smoothing on manifolds using a variable coefficient variant of decoupling.)

Part IV: Other applications of decoupling

- One can still consider decoupling for other submanifolds, and in the past few years we saw a number of important breakthroughs from such considerations.
- Among them there's Bourgain's new record (2017) on the Lindelöf hypothesis.
- ► Lindelöf (1908) showed that the Riemann zeta function satisfies the bound $|\zeta(\frac{1}{2} + it)| \lesssim t^{1/4}$ as $t \to \infty$.
- He conjectured that $|\zeta(\frac{1}{2}+it)| \leq C_{\varepsilon}t^{\varepsilon}$ for any $\varepsilon > 0$.
- ► The power 1/4 has been lowered by Hardy and Littlewood to 1/6, and by Bombieri and Iwaniec (1986) to 9/56; see also Huxley (1993, 2005), who improved the bound to 32/205.
- Bourgain (2017) improved this exponent to 13/84, doubling the saving over 1/6 from the exponent 9/56 of Bombieri and Iwaniec.
- ► The main new estimate (which Bourgain used to feed into the machinery of Huxley) is a bilinear decoupling inequality for certain curves in ℝ⁴.

- ► Another application of decoupling is in the study of the maximal Schrödinger operator on ℝ²⁺¹.
- Du, Guth and Li (2017) showed that if u(x, t) is the solution to the Schrödinger equation in (2+1) dimensions with initial data f(x) ∈ H^s(ℝ²), where s > 1/3, then u(x, t) converges to f(x) for a.e. x ∈ ℝ² as t → 0⁺. (Here H^s is the Sobolev space L²_s.)
- In light of the recent example of Bourgain (2016), this is sharp up to the endpoint 1/3.
- ► The result of Du, Guth and Li are obtained by estimating a maximal Schrödinger operator: they showed that if s > 1/3, then

$$\left\|\sup_{0 < t \leq 1} |e^{it\Delta}f|\right\|_{L^{3}(B_{1})} \lesssim \|f\|_{H^{s}(\mathbb{R}^{2})}$$
(2)

where B_1 is the unit ball in \mathbb{R}^2 .

One step of the proof involves a refined Strichartz inequality, that they proved using the Bourgain-Demeter decoupling inequality for the parabola.

Part V: A few words about proofs

Let's take a brief look at how ℓ² decoupling is proved for the parabola in ℝ².

- Below are a few ingredients that go into the proof:
 - 1. Wave packet decompositions
 - 2. Kakeya type estimates
 - 3. Multilinear reduction
 - 4. Bourgain-Guth induction on scales

Recall the extension operator for the parabola:

$$Ef(x) = \int_{-1}^{1} f(\xi) e^{2\pi i (x_1 \xi + x_2 \xi^2)} d\xi, \quad x \in \mathbb{R}^2.$$

▶ We decompose [-1, 1] into the disjoint union of N intervals *I*₁,...,*I*_N of equal lengths, and let

$$E_j f(x) = \int_{\mathcal{I}_j} f(\xi) e^{2\pi i (x_1 \xi + x_2 \xi^2)} d\xi, \quad x \in \mathbb{R}^2,$$

so that

$$Ef = \sum_{j=1}^{N} E_j f.$$

 Morally, the goal is to understand the best constant D(N) in the inequality

$$\|Ef\|_{L^{p}(B_{N^{2}})} \leq D(N) \|\|E_{j}f\|_{L^{p}(B_{N^{2}})}\|_{\ell^{2}}$$

for a given p.

Wave packet decompositions

- The Fourier transform of $E_i f$ is supported on a short arc C_i of length N^{-1} on the parabola, which is contained (because of the curvature of the parabola) in a rectangular slab R_i of dimensions $N^{-1} \times N^{-2}$ (think thin slabs since N is big).
- This rectangular slab R_i is oriented so that the short sides are morally parallel to the normal vector to the parabola at any point on C_i .
- Hence heuristically, we think of the modulus of $E_i f$ to be constant on boxes of dimensions $N \times N^2$ dual to R_i (think of these as long thin tubes).
- The localization of $E_i f$ to such a tube is called a wave packet.
- Each $E_i f$ is thus the sum of wave packets whose physical supports are parallel tubes, and as *j* varies, the directions of these tubes gradually varies.
- Ef is the sum of $E_i f$'s, so Ef is also a sum of wave packets, except that the wave packets can now be supported in tubes in different directions.

Connection to Kakeya and multilinear Kakeya

- Decoupling inequalities capture in some sense how these wave packets interfere with each other.
- Since wave packets are supported on long thin tubes, it will be helpful to know how much these thin tubes can overlap.
- ► Such overlaps have been studied in connection with the Kakeya conjecture (which states that every set in ℝⁿ that contains a unit line segment in every possible direction has Hausdorff dimension n).
- While the Kakeya conjecture is still open in dimensions 3 or above, its multilinear counterpart has been understood, thanks to the breakthroughs by Bennett, Carbery, Tao (2006) and Guth (2010) (see also Carbery and Valdimarsson (2013)).

Bourgain-Guth induction on scales

- Recall that in proving decoupling inequalities, we wanted to estimate *Ef*, and that *E* is a linear operator.
- To reduce the estimate of *Ef* to multilinear quantities, Bourgain and Demeter used an iteration scheme, first devised by Bourgain and Guth (2011) to study the (linear) restriction conjecture based on advances on its multilinear counterpart.
- It is at this step that the curvature of the parabola comes in: the arcs C_j on the parabola have normal vectors transverse to each other as j varies, and transversality allows one to apply multilinear Kakeya estimates.
- At the back of all this are multiple applications of *induction* on scales (which is somewhat reminiscient of the *induction on* energy in the study of dispersive PDEs); indeed multilinear Kakeya estimates are used to prove ball inflation lemmas, that allows one to pass from smaller spatial balls to larger ones.

$$\|Ef\|_{L^{p}(B_{N^{2}})} \leq D(N) \|\|E_{j}f\|_{L^{p}(B_{N^{2}})}\|_{\ell^{2}}$$

► The simplest manifestation of such induction on scales in decoupling is the following observation: if D(N) is the best constant to the decoupling inequality (for a certain fixed p ≥ 2), then

$D(N_1N_2) \lesssim D(N_1)D(N_2)$

for all $N_1, N_2 \ge 1$.

- ▶ If $D(N) \le N^{\varepsilon}$ for all $1 \le N \le 2$ (with implicit constant 1), then by induction, clearly $D(N) \le (\log N)^{C} N^{\varepsilon}$ for all N > 2 (write $N = 2^{2^{m}}$ and iterate the previous inequality *m* times).
- Of course this does not work because the implicit constant is not really 1 as ε → 0.
- But this suggests that induction on scales is useful; indeed induction on scales came up useful many times in the actual proof of the decoupling inequality of the parabola.