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Motivations

» Fourier decoupling is a useful tool for many purposes.

» Helps count solutions to Diophantine systems such as
1+ F+Ts =Ty + 0+ T
i+t a2 =22 4+ a3,
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with all variables z; € {1,...,N}.

» More generally, estimates moments of exponential sums:

/ Z a, 627m'y
0,1]%

» Also estimates LP norm of solutions to the periodic
Schrodinger equation on the torus R?/Z.

d y(n) := (n,n ,...,nk).




Motivations (continued)
> Spacetime estimates for solutions to the wave equation in R%:
O*u = Agu, u(z,0) = f(x), Owu(zx,0)=0.

What is the minimal regularity s so that

2 1/p
( / / u(a, )Pdadt) " < | llwer?
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(Original motivation of Wolff who initiated decoupling.)

» Other connections to geometric measure theory, e.g. the
Falconer distance conjecture: If

A(E) :={|z —y|: z,y € E} C [0,00)

for any set £ C R4, what is the minimal value of s so that
A(E) has positive Lebesgue measure for any £ C R? with
Hausdorff dimension s?



Connections to other areas
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Fourier decoupling can be seen as an outgrowth of the study
of the Fourier restriction conjecture.

The restriction conjecture says if S is the paraboloid in R",
given by {(&,[€]?): € € [0,1]" 1}, then the restriction map

[ fls
initially defined for Schwartz f on R", extends to a bounded
linear map from LP(R™) to L'(S) for 1 <p < f—fl
Conjecture holds for n = 2, remains open in dimensions n > 3.
Fourier decoupling uses tools from Fourier restriction theory,
and can in turn be used to study Fourier restriction.
But additional ideas / tools are seemingly necessary to resolve
the restriction conjecture in full.
e.g. The restriction conjecture implies the Kakeya conjecture,
about incidence of thin tubes in R™. Decoupling alone does
not seem to capture that.
Decoupling also benefited from advances in number theory.



What is decoupling?
» Recall: L?(R") is a Hilbert space.
» Given N orthogonal functions fi,..., fx on R", we have

|3 o= (Sez) ™

» In general we can't replace L? with other LP where p # 2.

» Nevertheless, sometimes we can beat the trivial bound

N R 1/2
| h], =53 (X sals)
n=1 n=1

obtained via Minkowski inequality + Holder. Note the f,'s
are no longer coupled together on the right hand side above.

» Underlying mechanism: fi,..., fx will be (sums of) wave
packets with different orientations.

» Decoupling captures the interference between such waves.



Superposition of waves

» Define Fourier transform on R™ by
&= [ fl@emes,
Rn
» Fourier inversion (for Schwartz f) says
fla)= | Jeemtde,
Rn
i.e. f = superpositions of waves e27i€ with £ € supp f.

» Think of e2™¢ = cos(27x - £) + isin(27z - £) as waves
travelling in direction £ (draw their crests and troughs).



Grouping neighbouring frequencies together

» To formulate decoupling, start with f € S(R™) so that fis
supported in a small neighborhood of a compact manifold S.
» Example S:
1. unit paraboloid {(¢, |€]?): € € [0,1]" 1}
2. unit light cone {(&, [¢]): 1 < |¢] <2}
3. unit moment curve {(&,£2,...,&"): £ € [0,1]}.
> We will cover supp fwith finitely overlapping rectangular
boxes {0} and let! L
fo = [1g
so that fy is a superposition of waves of similar frequencies
(all contained in 6).

1
» Can we set it up so that ||f||z» is controlled by (Z HngQLp) *7
0

!Fine print: Usually we take a partition of unity {ns} subordinate to the
cover {0} and let fp := fny instead, so that fy is Schwartz and f =", fo.



Some heuristics

>
>
>

Let 0 be a rectangular box in R™.

Let's gain some intuition about fy if supp fg c .
First, in dimension n = 1, one can compute the inverse
Fourier transform

2mix :
e 1 iy SIMTTT

1
]_-—11[071](@ = /0 e2mirlge = — " —¢

2mix omx

We would like to think of this inverse Fourier transform as
Ljo,1(), even though it is not exactly true.

Accepting this heuristic, the inverse Fourier transform of
Lio,1)2(&) is 1jo,1n ().

Similarly, for every rectangular box # C R™ containing a point
wy, we think of the inverse Fourier transform of 15(&) as

’0* ’71627riw9-:1: 10* (.Z')

where 6* is the dual box to 6, which passes through 0, has the
same orientation of 6 and dimensions reciprocal to those of 6.



The uncertainty principle

> If f(; is supported in a rectangular box 6 containing 0, then
fo = folg, so with our heuristic,

fo(@) = fo =107 1g- ().

» This suggests us to tile R™ by translates of §* and think of
fo(x) as a constant (namely, its average) on each translate.

> If 0 does not contain 0, then by modulating fy we can show
instead that |fg| is morally constant on translates of 6*.

» fy restricted to each translate of 6* is called a wave packet; so
fo is a sum of wave packets, all with the same orientation.

» In decoupling we usually have a family of boxes {6} and a
Schwartz family {fp}g with supp fy C 6. Decoupling captures
the interference patterns arising from summing fy's where the
f's in the sum have different orientations.



Decoupling for the paraboloid

> Let d > 1, S = unit paraboloid in R4 and 0 < § < 1.

» Cover § neighborhood of S by rectangular boxes {6} of
dimensions §1/2 x ...§%/2 x §, that are ‘tangent to S".

> Suppose for each 6 in this collection, fy is a Schwartz
function on R¥T! with supp fp C 0. Let f =Y, fo.

» What is the best constant D such that
1/2
1S l| Lo (ra+1y < D(Z ||f9\|%p(Rd+1)) ?
0

» D depends on d, p and §. Think d fixed, write D = D,(0).
> Since #60 = 6~%2, trivial bound is

Dy (8) < (674212,

and this is sharp at p = oo.



A sharp example
> Consider the example fy :=|0|~'F~114. Clearly supp fy C 6.
> 1) = | 5y fola)] is 2 52 for [o] < 1. 50 | flluw 2 6~/
» On the other hand,

(anenm) = (57U (D),

» Hence

o~ 4/2 h(d-2)
Dy 2 Geimyirgammy =0 T 7

» In other words, if % d‘;z >0, ie ifp> (d+2) , then the
best one can hope for is

| loqgeasny S 62 (Z folBgny)

The loss in power of 6~ cannot be removed unless

pg2u+2x




Theorem (Bourgain-Demeter 2014)
Suppose fg € S(R™1) with supp ﬁ) C 0 for all 8, and let
f=>9fo. Then for2 <p < (d+2) and any € > 0,

1£llzogasn) Se 6 (Zufgnmdﬂ)

(d+2)

Also for p > and any € > 0,

d

£z mery Se 62 (Z ol uqeanny)

l\’l

» In other words, one gets the best possible estimates, apart
from the 67¢ loss.

» The key is to prove the theorem for p = Q(djm (deferred).
The rest follows from interpolation.



Connection to Strichartz estimates

> p
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Q(dfjm is the Tomas-Stein / Strichartz exponent.

Strichartz inequality says if u solves the Schrodinger equation
i0yu = Agu on R and u(z,0) = g(z) then for this p
w(z, )l Le@arry S N9(2)|| 2 (ra)-

Note that the space-time Fourier transform of u(z,t) is
supported on a paraboloid in R%1: in fact

) = [ g mege

Curvature of this paraboloid makes the Schrodinger equation
dispersive, which makes Strichartz inequality possible.

Not a coincidence that the Strichartz exponent shows up in
decoupling: the latter implies some forms of Strichartz.



