Introduction to Fourier decoupling

Po-Lam Yung

Australian National University

June 12, 2023

Motivations

- ► Fourier decoupling is a useful tool for many purposes.
- Helps count solutions to Diophantine systems such as

$$\begin{cases} x_1 + \dots + x_s = x_{s+1} + \dots + x_{2s} \\ x_1^2 + \dots + x_s^2 = x_{s+1}^2 + \dots + x_{2s}^2 \\ \vdots \\ x_1^k + \dots + x_s^k = x_{s+1}^k + \dots + x_{2s}^k \end{cases}$$

with all variables $x_i \in \{1, \ldots, N\}$.

More generally, estimates moments of exponential sums:

$$\int_{[0,1]^k} \left| \sum_{n=1}^N a_n e^{2\pi i \gamma(n) \cdot x} \right|^p dx, \quad \gamma(n) := (n, n^2, \dots, n^k).$$

Also estimates L^p norm of solutions to the periodic Schrödinger equation on the torus R^d/Z^d.

Motivations (continued)

Spacetime estimates for solutions to the wave equation in \mathbb{R}^d :

$$\partial_t^2 u = \Delta_x u, \quad u(x,0) = f(x), \quad \partial_t u(x,0) = 0.$$

What is the minimal regularity s so that

$$\left(\int_{\mathbb{R}^d} \int_1^2 |u(x,t)|^p dx dt\right)^{1/p} \lesssim \|f\|_{W^{s,p}}?$$

(Original motivation of Wolff who initiated decoupling.)

Other connections to geometric measure theory, e.g. the Falconer distance conjecture: If

$$\Delta(E) := \{ |x - y| \colon x, y \in E \} \subset [0, \infty)$$

for any set $E \subset \mathbb{R}^d$, what is the minimal value of s so that $\Delta(E)$ has positive Lebesgue measure for any $E \subset \mathbb{R}^d$ with Hausdorff dimension s?

Connections to other areas

- Fourier decoupling can be seen as an outgrowth of the study of the Fourier restriction conjecture.
- ► The restriction conjecture says if S is the paraboloid in \mathbb{R}^n , given by $\{(\xi, |\xi|^2): \xi \in [0, 1]^{n-1}\}$, then the restriction map

$$f \mapsto \widehat{f}|_S$$

initially defined for Schwartz f on \mathbb{R}^n , extends to a bounded linear map from $L^p(\mathbb{R}^n)$ to $L^1(S)$ for $1 \le p < \frac{2n}{n+1}$.

- Conjecture holds for n = 2, remains open in dimensions $n \ge 3$.
- Fourier decoupling uses tools from Fourier restriction theory, and can in turn be used to study Fourier restriction.
- But additional ideas / tools are seemingly necessary to resolve the restriction conjecture in full.
- ► e.g. The restriction conjecture implies the Kakeya conjecture, about incidence of thin tubes in ℝⁿ. Decoupling alone does not seem to capture that.
- Decoupling also benefited from advances in number theory.

What is decoupling?

• Recall: $L^2(\mathbb{R}^n)$ is a Hilbert space.

• Given N orthogonal functions f_1, \ldots, f_N on \mathbb{R}^n , we have

$$\left\|\sum_{n=1}^{N} f_n\right\|_{L^2} = \left(\sum_{n=1}^{N} \|f_n\|_{L^2}^2\right)^{1/2}.$$

▶ In general we can't replace L^2 with other L^p where $p \neq 2$.

Nevertheless, sometimes we can beat the trivial bound

$$\left\|\sum_{n=1}^{N} f_n\right\|_{L^p} \le N^{\frac{1}{2}} \left(\sum_{n=1}^{N} \|f_n\|_{L^p}^2\right)^{1/2}$$

obtained via Minkowski inequality + Hölder. Note the f_n 's are no longer coupled together on the right hand side above.

- Underlying mechanism: f₁,..., f_N will be (sums of) wave packets with different orientations.
- Decoupling captures the interference between such waves.

Superposition of waves

• Define Fourier transform on \mathbb{R}^n by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi}.$$

Fourier inversion (for Schwartz f) says

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi,$$

i.e. f = superpositions of waves e^{2πix·ξ}, with ξ ∈ supp f.
Think of e^{2πix·ξ} = cos(2πx · ξ) + i sin(2πx · ξ) as waves travelling in direction ξ (draw their crests and troughs).

Grouping neighbouring frequencies together

- ▶ To formulate decoupling, start with $f \in S(\mathbb{R}^n)$ so that \hat{f} is supported in a small neighborhood of a compact manifold S.
- ► Example S:
 - 1. unit paraboloid $\{(\xi, |\xi|^2) : \xi \in [0, 1]^{n-1}\}$
 - 2. unit light cone $\{(\xi, |\xi|) : 1 \le |\xi| \le 2\}$
 - 3. unit moment curve $\{(\xi, \xi^2, \dots, \xi^n) \colon \xi \in [0, 1]\}$.
- We will cover supp f̂ with finitely overlapping rectangular boxes {θ} and let¹

$$\widehat{f}_{\theta} := \widehat{f} 1_{\theta}$$

so that f_{θ} is a superposition of waves of similar frequencies (all contained in θ).

• Can we set it up so that
$$||f||_{L^p}$$
 is controlled by $\left(\sum_{\theta} ||f_{\theta}||_{L^p}^2\right)^{\frac{1}{2}}$?

¹Fine print: Usually we take a partition of unity $\{\eta_{\theta}\}$ subordinate to the cover $\{\theta\}$ and let $\hat{f}_{\theta} := \hat{f}\eta_{\theta}$ instead, so that f_{θ} is Schwartz and $f = \sum_{\theta} f_{\theta}$.

Some heuristics

- Let θ be a rectangular box in \mathbb{R}^n .
- Let's gain some intuition about f_{θ} if supp $\widehat{f}_{\theta} \subset \theta$.
- First, in dimension n = 1, one can compute the inverse Fourier transform

$$\mathcal{F}^{-1}\mathbf{1}_{[0,1]}(x) = \int_0^1 e^{2\pi i x\xi} d\xi = \frac{e^{2\pi i x} - 1}{2\pi i x} = e^{i\pi x} \frac{\sin \pi x}{2\pi x}.$$

We would like to think of this inverse Fourier transform as $\mathbf{1}_{[0,1]}(x)$, even though it is not exactly true.

- Accepting this heuristic, the inverse Fourier transform of 1_{[0,1]ⁿ}(ξ) is 1_{[0,1]ⁿ}(x).
- Similarly, for every rectangular box $\theta \subset \mathbb{R}^n$ containing a point ω_{θ} , we think of the inverse Fourier transform of $1_{\theta}(\xi)$ as

$$|\theta^*|^{-1}e^{2\pi i\omega_\theta \cdot x}\mathbf{1}_{\theta^*}(x)$$

where θ^* is the dual box to θ , which passes through 0, has the same orientation of θ and dimensions reciprocal to those of θ .

The uncertainty principle

• If \hat{f}_{θ} is supported in a rectangular box θ containing 0, then $\hat{f}_{\theta} = \hat{f}_{\theta} \mathbf{1}_{\theta}$, so with our heuristic,

$$f_{\theta}(x) = f_{\theta} * |\theta^*|^{-1} \mathbf{1}_{\theta^*}(x).$$

- This suggests us to tile Rⁿ by translates of θ* and think of f_θ(x) as a constant (namely, its average) on each translate.
- If θ does not contain 0, then by modulating f_θ we can show instead that |f_θ| is morally constant on translates of θ^{*}.
- f_θ restricted to each translate of θ* is called a wave packet; so f_θ is a sum of wave packets, all with the same orientation.
- In decoupling we usually have a family of boxes {θ} and a Schwartz family {f_θ}_θ with supp f_θ ⊂ θ. Decoupling captures the interference patterns arising from summing f_θ's where the θ's in the sum have different orientations.

Decoupling for the paraboloid

• Let $d \ge 1$, S = unit paraboloid in \mathbb{R}^{d+1} , and $0 < \delta \ll 1$.

- Cover δ neighborhood of S by rectangular boxes {θ} of dimensions δ^{1/2} × ... δ^{1/2} × δ, that are 'tangent to S'.
- Suppose for each θ in this collection, f_θ is a Schwartz function on ℝ^{d+1} with supp f_θ ⊂ θ. Let f = Σ_θ f_θ.
- What is the best constant D such that

$$||f||_{L^p(\mathbb{R}^{d+1})} \le D\Big(\sum_{\theta} ||f_{\theta}||^2_{L^p(\mathbb{R}^{d+1})}\Big)^{1/2}?$$

D depends on d, p and δ. Think d fixed, write D = D_p(δ).
 Since #θ = δ^{-d/2}, trivial bound is

$$D_p(\delta) \le (\delta^{-d/2})^{1/2},$$

and this is sharp at $p = \infty$.

A sharp example

- Consider the example $f_{\theta} := |\theta|^{-1} \mathcal{F}^{-1} 1_{\theta}$. Clearly supp $\widehat{f}_{\theta} \subset \theta$.
- $\blacktriangleright ||f(x)| = |\sum_{\theta} f_{\theta}(x)| \text{ is } \gtrsim \delta^{-d/2} \text{ for } |x| \lesssim 1 \text{, so } ||f||_{L^p} \gtrsim \delta^{-d/2}.$
- On the other hand,

$$\left(\sum_{\theta} \|f_{\theta}\|_{L^p}^2\right)^{1/2} \simeq (\delta^{-d/2})^{1/2} (\delta^{-(d+2)/2})^{1/p}$$

Hence

$$D_p(\delta) \gtrsim \frac{\delta^{-d/2}}{(\delta^{-d/2})^{1/2} (\delta^{-(d+2)/2})^{1/p}} = \delta^{-\frac{1}{2}(\frac{d}{2} - \frac{d+2}{p})}.$$

▶ In other words, if $\frac{d}{2} - \frac{d+2}{p} \ge 0$, i.e. if $p \ge \frac{2(d+2)}{d}$, then the best one can hope for is

$$\|f\|_{L^{p}(\mathbb{R}^{d+1})} \lesssim \delta^{-\frac{1}{2}(\frac{d}{2} - \frac{d+2}{p})} \Big(\sum_{\theta} \|f_{\theta}\|_{L^{p}(\mathbb{R}^{d+1})}^{2}\Big)^{1/2}.$$

The loss in power of δ^{-1} cannot be removed unless

$$p \le \frac{2(d+2)}{d}.$$

Theorem (Bourgain-Demeter 2014)

Suppose $f_{\theta} \in S(\mathbb{R}^{d+1})$ with supp $\widehat{f}_{\theta} \subset \theta$ for all θ , and let $f = \sum_{\theta} f_{\theta}$. Then for $2 \leq p \leq \frac{2(d+2)}{d}$ and any $\varepsilon > 0$,

$$\|f\|_{L^p(\mathbb{R}^{d+1})} \lesssim_{\varepsilon} \delta^{-\varepsilon} \Big(\sum_{\theta} \|f_{\theta}\|_{L^p(\mathbb{R}^{d+1})}^2\Big)^{1/2}.$$

Also for
$$p \geq \frac{2(d+2)}{d}$$
 and any $\varepsilon > 0$,
 $\|f\|_{L^p(\mathbb{R}^{d+1})} \lesssim_{\varepsilon} \delta^{-\frac{1}{2}(\frac{d}{2} - \frac{d+2}{p}) - \varepsilon} \Big(\sum_{\theta} \|f_{\theta}\|_{L^p(\mathbb{R}^{d+1})}^2 \Big)^{1/2}$

- In other words, one gets the best possible estimates, apart from the δ^{-ε} loss.
- The key is to prove the theorem for p = ^{2(d+2)}/_d (deferred). The rest follows from interpolation.

Connection to Strichartz estimates

▶ $p = \frac{2(d+2)}{d}$ is the Tomas-Stein / Strichartz exponent.

Strichartz inequality says if u solves the Schrödinger equation $i\partial_t u = \Delta_x u$ on \mathbb{R}^{d+1} and u(x,0) = g(x) then for this p

$$||u(x,t)||_{L^p(\mathbb{R}^{d+1})} \lesssim ||g(x)||_{L^2(\mathbb{R}^d)}.$$

Note that the space-time Fourier transform of u(x, t) is supported on a paraboloid in ℝ^{d+1}: in fact

$$u(x,t) = \int_{\mathbb{R}^d} \widehat{g}(\xi) e^{2\pi i (x \cdot \xi + 2\pi t |\xi|^2)} d\xi.$$

- Curvature of this paraboloid makes the Schrödinger equation dispersive, which makes Strichartz inequality possible.
- Not a coincidence that the Strichartz exponent shows up in decoupling: the latter implies some forms of Strichartz.