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Motivations

▶ Fourier decoupling is a useful tool for many purposes.

▶ Helps count solutions to Diophantine systems such as
x1 + · · ·+ xs = xs+1 + · · ·+ x2s

x21 + · · ·+ x2s = x2s+1 + · · ·+ x22s
...

xk1 + · · ·+ xks = xks+1 + · · ·+ xk2s

with all variables xi ∈ {1, . . . , N}.
▶ More generally, estimates moments of exponential sums:∫

[0,1]k

∣∣∣ N∑
n=1

ane
2πiγ(n)·x

∣∣∣pdx, γ(n) := (n, n2, . . . , nk).

▶ Also estimates Lp norm of solutions to the periodic
Schrödinger equation on the torus Rd/Zd.



Motivations (continued)

▶ Spacetime estimates for solutions to the wave equation in Rd:

∂2
t u = ∆xu, u(x, 0) = f(x), ∂tu(x, 0) = 0.

What is the minimal regularity s so that(∫
Rd

∫ 2

1
|u(x, t)|pdxdt

)1/p
≲ ∥f∥W s,p?

(Original motivation of Wolff who initiated decoupling.)

▶ Other connections to geometric measure theory, e.g. the
Falconer distance conjecture: If

∆(E) := {|x− y| : x, y ∈ E} ⊂ [0,∞)

for any set E ⊂ Rd, what is the minimal value of s so that
∆(E) has positive Lebesgue measure for any E ⊂ Rd with
Hausdorff dimension s?



Connections to other areas
▶ Fourier decoupling can be seen as an outgrowth of the study

of the Fourier restriction conjecture.
▶ The restriction conjecture says if S is the paraboloid in Rn,

given by {(ξ, |ξ|2) : ξ ∈ [0, 1]n−1}, then the restriction map

f 7→ f̂ |S

initially defined for Schwartz f on Rn, extends to a bounded
linear map from Lp(Rn) to L1(S) for 1 ≤ p < 2n

n+1 .
▶ Conjecture holds for n = 2, remains open in dimensions n ≥ 3.
▶ Fourier decoupling uses tools from Fourier restriction theory,

and can in turn be used to study Fourier restriction.
▶ But additional ideas / tools are seemingly necessary to resolve

the restriction conjecture in full.
▶ e.g. The restriction conjecture implies the Kakeya conjecture,

about incidence of thin tubes in Rn. Decoupling alone does
not seem to capture that.

▶ Decoupling also benefited from advances in number theory.



What is decoupling?
▶ Recall: L2(Rn) is a Hilbert space.

▶ Given N orthogonal functions f1, . . . , fN on Rn, we have

∥∥∥ N∑
n=1

fn

∥∥∥
L2

=
( N∑

n=1

∥fn∥2L2

)1/2
.

▶ In general we can’t replace L2 with other Lp where p ̸= 2.

▶ Nevertheless, sometimes we can beat the trivial bound∥∥∥ N∑
n=1

fn

∥∥∥
Lp

≤ N
1
2

( N∑
n=1

∥fn∥2Lp

)1/2

obtained via Minkowski inequality + Hölder. Note the fn’s
are no longer coupled together on the right hand side above.

▶ Underlying mechanism: f1, . . . , fN will be (sums of) wave
packets with different orientations.

▶ Decoupling captures the interference between such waves.



Superposition of waves

▶ Define Fourier transform on Rn by

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ.

▶ Fourier inversion (for Schwartz f) says

f(x) =

∫
Rn

f̂(ξ)e2πix·ξdξ,

i.e. f = superpositions of waves e2πix·ξ, with ξ ∈ supp f̂ .

▶ Think of e2πix·ξ = cos(2πx · ξ) + i sin(2πx · ξ) as waves
travelling in direction ξ (draw their crests and troughs).



Grouping neighbouring frequencies together

▶ To formulate decoupling, start with f ∈ S(Rn) so that f̂ is
supported in a small neighborhood of a compact manifold S.

▶ Example S:
1. unit paraboloid {(ξ, |ξ|2) : ξ ∈ [0, 1]n−1}
2. unit light cone {(ξ, |ξ|) : 1 ≤ |ξ| ≤ 2}
3. unit moment curve {(ξ, ξ2, . . . , ξn) : ξ ∈ [0, 1]}.

▶ We will cover supp f̂ with finitely overlapping rectangular
boxes {θ} and let1

f̂θ := f̂1θ

so that fθ is a superposition of waves of similar frequencies
(all contained in θ).

▶ Can we set it up so that ∥f∥Lp is controlled by
(∑

θ

∥fθ∥2Lp

) 1
2

?

1Fine print: Usually we take a partition of unity {ηθ} subordinate to the

cover {θ} and let f̂θ := f̂ηθ instead, so that fθ is Schwartz and f =
∑

θ fθ.



Some heuristics
▶ Let θ be a rectangular box in Rn.

▶ Let’s gain some intuition about fθ if supp f̂θ ⊂ θ.

▶ First, in dimension n = 1, one can compute the inverse
Fourier transform

F−11[0,1](x) =

∫ 1

0
e2πixξdξ =

e2πix − 1

2πix
= eiπx

sinπx

2πx
.

We would like to think of this inverse Fourier transform as
1[0,1](x), even though it is not exactly true.

▶ Accepting this heuristic, the inverse Fourier transform of
1[0,1]n(ξ) is 1[0,1]n(x).

▶ Similarly, for every rectangular box θ ⊂ Rn containing a point
ωθ, we think of the inverse Fourier transform of 1θ(ξ) as

|θ∗|−1e2πiωθ·x1θ∗(x)

where θ∗ is the dual box to θ, which passes through 0, has the
same orientation of θ and dimensions reciprocal to those of θ.



The uncertainty principle

▶ If f̂θ is supported in a rectangular box θ containing 0, then
f̂θ = f̂θ1θ, so with our heuristic,

fθ(x) = fθ ∗ |θ∗|−11θ∗(x).

▶ This suggests us to tile Rn by translates of θ∗ and think of
fθ(x) as a constant (namely, its average) on each translate.

▶ If θ does not contain 0, then by modulating fθ we can show
instead that |fθ| is morally constant on translates of θ∗.

▶ fθ restricted to each translate of θ∗ is called a wave packet; so
fθ is a sum of wave packets, all with the same orientation.

▶ In decoupling we usually have a family of boxes {θ} and a
Schwartz family {fθ}θ with supp f̂θ ⊂ θ. Decoupling captures
the interference patterns arising from summing fθ’s where the
θ’s in the sum have different orientations.



Decoupling for the paraboloid

▶ Let d ≥ 1, S = unit paraboloid in Rd+1, and 0 < δ ≪ 1.

▶ Cover δ neighborhood of S by rectangular boxes {θ} of
dimensions δ1/2 × . . . δ1/2 × δ, that are ‘tangent to S’.

▶ Suppose for each θ in this collection, fθ is a Schwartz
function on Rd+1 with supp f̂θ ⊂ θ. Let f =

∑
θ fθ.

▶ What is the best constant D such that

∥f∥Lp(Rd+1) ≤ D
(∑

θ

∥fθ∥2Lp(Rd+1)

)1/2
?

▶ D depends on d, p and δ. Think d fixed, write D = Dp(δ).

▶ Since #θ = δ−d/2, trivial bound is

Dp(δ) ≤ (δ−d/2)1/2,

and this is sharp at p = ∞.



A sharp example
▶ Consider the example fθ := |θ|−1F−11θ. Clearly supp f̂θ ⊂ θ.
▶ |f(x)| = |

∑
θ fθ(x)| is ≳ δ−d/2 for |x| ≲ 1, so ∥f∥Lp ≳ δ−d/2.

▶ On the other hand,(∑
θ

∥fθ∥2Lp

)1/2
≃ (δ−d/2)1/2(δ−(d+2)/2)1/p.

▶ Hence

Dp(δ) ≳
δ−d/2

(δ−d/2)1/2(δ−(d+2)/2)1/p
= δ

− 1
2
( d
2
− d+2

p
)
.

▶ In other words, if d
2 − d+2

p ≥ 0, i.e. if p ≥ 2(d+2)
d , then the

best one can hope for is

∥f∥Lp(Rd+1) ≲ δ
− 1

2
( d
2
− d+2

p
)
(∑

θ

∥fθ∥2Lp(Rd+1)

)1/2
.

The loss in power of δ−1 cannot be removed unless

p ≤ 2(d+ 2)

d
.



Theorem (Bourgain-Demeter 2014)

Suppose fθ ∈ S(Rd+1) with supp f̂θ ⊂ θ for all θ, and let

f =
∑

θ fθ. Then for 2 ≤ p ≤ 2(d+2)
d and any ε > 0,

∥f∥Lp(Rd+1) ≲ε δ
−ε

(∑
θ

∥fθ∥2Lp(Rd+1)

)1/2
.

Also for p ≥ 2(d+2)
d and any ε > 0,

∥f∥Lp(Rd+1) ≲ε δ
− 1

2
( d
2
− d+2

p
)−ε

(∑
θ

∥fθ∥2Lp(Rd+1)

)1/2
.

▶ In other words, one gets the best possible estimates, apart
from the δ−ε loss.

▶ The key is to prove the theorem for p = 2(d+2)
d (deferred).

The rest follows from interpolation.



Connection to Strichartz estimates

▶ p = 2(d+2)
d is the Tomas-Stein / Strichartz exponent.

▶ Strichartz inequality says if u solves the Schrödinger equation
i∂tu = ∆xu on Rd+1 and u(x, 0) = g(x) then for this p

∥u(x, t)∥Lp(Rd+1) ≲ ∥g(x)∥L2(Rd).

▶ Note that the space-time Fourier transform of u(x, t) is
supported on a paraboloid in Rd+1: in fact

u(x, t) =

∫
Rd

ĝ(ξ)e2πi(x·ξ+2πt|ξ|2)dξ.

▶ Curvature of this paraboloid makes the Schrödinger equation
dispersive, which makes Strichartz inequality possible.

▶ Not a coincidence that the Strichartz exponent shows up in
decoupling: the latter implies some forms of Strichartz.


