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From last time
» Main heuristics:

sinmx

F M 1yo1/9 =

T

is ~1on[—1/2,1/2] and ~ 0 away from it, so we pretend

F 2072 = 1/20)2-

» If 6 is a rectangular box and wy € 0, then
FH(101710) = @710 (0)

where 6* is a dual rectangular box through 0, with dimensions
reciprocal to those of #. (Draw it!)

> If 0 is a rectangular box and supp f» C 0, then |fo| is constant
on each translate of 8*. (Draw the tiling.)

» Decoupling captures cancellations inside ), fp, when we have
many boxes 6 in many different orientations.



Decoupling for the parabola

> Tile a d-neighborhood of the unit parabola in R? by
N :=§"2 many rectangles {6} of dimensions §/2 x §.

Theorem (Bourgain-Demeter 2014)
Suppose fy € S(R?) with supp fg C 0 for all 8. Then forp > 6,
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» Here < means S, N©.

» Estimate beats the trivial bound N%, and the semi-trivial
bound N%_% obtained by interpolating between L? and L.

» Estimate sharp up to N¢ loss by considering fy = [0] 1y, i.e.

D folx) =) &m0 1y ().
0 7

(Draw it - it looks like a bush.)



Connection to Strichartz

>
>

p = 6 is the Tomas-Stein / Strichartz exponent in R?.

Strichartz inequality says if u solves the Schrodinger equation
i0u = 0%u on R and u(z,0) = g(z) then

u(z, )l zo@ey S llg(2) |2 (m)-

Base line: u(z,t) = ¢ g(z) is in L%(dz) for every time t.
Strichartz says for most time ¢, u(x,t) is in L%(dx) as well -
solution spreads out.

Curvature of this paraboloid makes the Schrodinger equation
dispersive, which makes Strichartz inequality possible.

p = 6 is the correct exponent for Strichartz on R!*1.

Not a coincidence that the Strichartz exponent shows up in
decoupling: decoupling implies some forms of Strichartz.



Decoupling for the paraboloid implies discrete Strichartz.
If T =R/Z and g € L*(T), then the solution u(x,t) to the
Schrédinger equation i0;u = 0%u with initial data g obeys

lu(z, )l zso,12) = N9(@)l£2(0,1y)
whenever supp g C [-N, N].
Discrete Strichartz is harder to prove than the original one,
because waves exhibit less dispersion on the compact manifold
T. In fact, examples show the N¢ factor cannot be removed.
Can be reformulated as an exponential sum estimate, since if

N N
g(x) = Z bpe(nz) — u(x,t) = Z bpe(nz+n’t).
n=—N n=—N
(Here e(t) := ™))
In other words, discrete Strichartz just says
N
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for all finite sequences {b,} C C.



Why does decoupling implies discrete Strichartz?
» The point of decoupling is to replace L5 norm of a sum, by ¢?
norm of the L5 norm of the pieces.
» By rescaling the frequencies (n,n?) back to (2 n ), one can

N> N2
actually apply decoupling for the parabola, and deduce

N
H Z bne(nx+n2t)‘
n=—N
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The first inequality has to be justfied via a change of variables
(z,t) = (%, 72). and using periodicity.

L5([0,1]%)

2 1/2
LG([O,lP))

bpe(nz + th)‘




Why is decoupling easier than discrete Strichartz?

| 2

>

The formulation of decoupling allows easy access to a useful
tool called induction on scales.

Fix p = 6. Our goal is to bound D(d) := D,(d), which is the
best constant for which

/
17 < DO (50l
0

whenever f =", fo, suppfg C 0, and 6 cover a ¢
neighborhood of the parabola in R?.

D(1) is trivial: when § =1 there are only O(1) many 0's.
Let's say by induction we already understand D(d;) for some
1> 01,09 > 0 with § = §19.

Then we can cover the §; neighborhood of the parabola by
boxes {7} of dimension (5}/2 x 01, and let fr =%, fo.
(Draw it.)



» Information about D(6;) tells us
1/2
11z < DO (X 151 )
» With some work, information about D(d2) will tell us

/2
| frlle < D(52)(Z Hf@”%p)l for all 7.
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(Technically, we use the affine symmetry of the parabola here.)

> Together we get

|l < D)D) (lefeHLp) ,

ie. D(6) < D(51)D(52).



Dy(8) < Dp(61)Dy(02) if 6 = §16.

This is not quite a proof for the desired bound for D,(d),
since we have no base case (given € > 0, one needs some g
so that Dy (dg) < 6, ° first).

But it explains why decoupling might be ‘easy’; in fact, this
observation is what motivated the formulation of decoupling.
For contrast, such an induction proof does not work if:

a) we try to prove discrete Strichartz directly; or

b) we are interested in bounding || f||z» by H(Z ]f9|2)1/2‘
0

e

More about the actual proof of decoupling next time.



Why is decoupling a good proof of discrete Strichartz?

» Discrete Strichartz for T was known to Bourgain a long time
ago using a trick from number theory.

» But the above proof via decoupling has 2 advantages.

> First it generalizes to give discrete Strichartz for all higher
dimensional torus T? (even those with irrational periods).

» Second for T, the N¢ loss from decoupling can actually be
improved to (log V)¢, and it would yield automatically an
improved discrete Strichartz where the loss is only (log N)¢
(Guth, Maldague and Wang; Guo, Li and myself).



Decoupling for the circle
» Similar decoupling holds with the unit paraboloids replaced by
the unit spheres.
» 2-d: Tile a § neighborhood of the unit circle by N := §=1/2
many rectangles {6} of dimensions §/2 x §.

Theorem (Bourgain-Demeter 2014 + Pramanik-Seeger 2007)
Suppose fy € S(R?) with supp fg C 0 for all 6. Then for p > 6,

1_3 1/2
I follzoey £ N5 (X Ioldaee))
0 0

» Difficulty: Circle not affine invariant (unlike parabola)

» ‘Proof’: Circle can be approximated by parabola locally.

» Theorem can be rescaled: for R > 1, tile a 1 neighborhood of
a circle of radius R by N := R'/? many rectangles {6} of
sizes R/2 x 1. Then the above theorem continues to hold.

P The rescaled theorem is equivalent to the original one. It is
sharp thanks to the bush example again. (Draw it.)



A case with no non-trivial decoupling

» Tile a dyadic annulus of radius R on R"™ by N := R many
sectors {0} of dimensions R'/? x .- x R'/? x R. (Draw it.)

Theorem .
Suppose Fy € S(R™) with supp Fy C 6 for all 6. Then for p > 2,

11 /
I3 Foll gy < N5 (S 1EolBogeny)
0 0

» ‘Proof’: Interpolation between L? (orthogonality) and L™
(Minkowski inequality).

» Theorem optimal by a bush example! Set Fy = |#|~11,. Then

n+1

1
T 2 1 _ntl
I Follon 2 NR, (3 IEol3gn ) ~ NER™ S
0 0

. .. 1. __n-l 1_1
and their ratiois 2 N2R 2 = N2 b,



Consequences for the wave equation

» Question: How much can the solution of the wave equation
0?u = A, u concentrates in space given its initial data?

> One way is measure |[u(z,1)||z»rn). This gets large as
p — oo if solution concentrates in space.

» Our last theorem help us estimate ||u(z,1)||zr(rn)-
» For simplicity, let u(x,t) = V=2 f(x).
Proposition

If supp f C {|¢| ~ R}, then forp > 2,

) n_1)(L_
eV "5 (@) | omy) < RV £l poqen-

» The proof relies on the trivial decoupling above, and on the
heuristic that if 8 is a sector as before and supp fy C 6, then
e’V =2 f, is morally a translate of fy in a direction given by 6.



More precisely, decompose f =), fy according to the
previous theorem. Let Fy := 'V 2 fy so that supp Fy C 6.

Since Fy = e'V~=2fy is morally just a translate of fy, we have
”FQHLP = ”faHLP for all 6.
For p > 2, ‘decoupling’ + above fact shows

- 11 1/2
16Vl = | ZFQHLP < N2 (Z IRl

% *(Zr\fenm)

Apply Holder to see

(S uslz) " < VIS (Sl )

The ¢PLP norm on the right is < || f||» by interpolation
between L% and L°°. Remembering N = RnT_l, this
completes the proof.



» One can prove similarly the following small extension:

Proposition
If supp f C {|¢| ~ R}, then forp > q > 2,

. n—1_mn_ 1
eV =2 f (@)l rny <R T 2| f]

P> The case p = q is just our earlier proposition.
» The proof goes as follows: as before

= 1.1 1/2
[ =2 flle < N2 70 (3 IfollEs)
0

But the uncertainty principle asserts that |fy| is constant on
boxes with measure R~ Thus using ¢4 C (P when p > ¢,
we see that || fo||Lr < R ( - )||f9HLq. Finally use

(Simiz) " <n li(ananLq) "< N e
0



The proposition is sharp if the Fy = e"‘/jfg is from the bush
example.

That means f =, fy is basically the characteristic function
of the annulus {1 < [¢| < 1+ £}. (Spacetime picture/movie)
The proposition can be rephrased by saying that

1€ 72 Fllzo@ny < | llwsagn)

fp>qg>2 s= ”T_l — , and suppfis contained in a

dyadic annulus.

n 1
p T a
The last assumption turns out to be unnecessary (Miyachi,
Peral).

It was also known that e?Y—2 can be replaced by any Fourier
integral operators of order 0 (Seeger, Sogge, Stein).

These results that involves all frequencies are best captured in
some function spaces that are introduced by Smith, & Hassell,
Portal and Rozendaal (+ later joint work with myself).



