Introduction to Fourier decoupling

Po-Lam Yung

Australian National University

$$
\text { June 13, } 2023
$$

From last time

- Main heuristics:

$$
\mathcal{F}^{-1} 1_{[-1 / 2,1 / 2]}=\frac{\sin \pi x}{\pi x}
$$

is ~ 1 on $[-1 / 2,1 / 2]$ and ~ 0 away from it, so we pretend

$$
\mathcal{F}^{-1} 1_{[-1 / 2,1 / 2]}=1_{[-1 / 2,1] / 2}
$$

- If θ is a rectangular box and $\omega_{\theta} \in \theta$, then

$$
\mathcal{F}^{-1}\left(|\theta|^{-1} 1_{\theta}\right)=e^{2 \pi i \omega_{\theta} \cdot x} 1_{\theta^{*}}(x)
$$

where θ^{*} is a dual rectangular box through 0 , with dimensions reciprocal to those of θ. (Draw it!)

- If θ is a rectangular box and $\operatorname{supp} \widehat{f}_{\theta} \subset \theta$, then $\left|f_{\theta}\right|$ is constant on each translate of θ^{*}. (Draw the tiling.)
- Decoupling captures cancellations inside $\sum_{\theta} f_{\theta}$, when we have many boxes θ in many different orientations.

Decoupling for the parabola

- Tile a δ-neighborhood of the unit parabola in \mathbb{R}^{2} by $N:=\delta^{-\frac{1}{2}}$ many rectangles $\{\theta\}$ of dimensions $\delta^{1 / 2} \times \delta$.

Theorem (Bourgain-Demeter 2014)
Suppose $f_{\theta} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ with supp $\widehat{f_{\theta}} \subset \theta$ for all θ. Then for $p \geq 6$,

$$
\left\|\sum_{\theta} f_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \lesssim N^{\frac{1}{2}-\frac{3}{p}}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

- Here \lesssim means $\lesssim \varepsilon N^{\varepsilon}$.
- Estimate beats the trivial bound $N^{\frac{1}{2}}$, and the semi-trivial bound $N^{\frac{1}{2}-\frac{1}{p}}$ obtained by interpolating between L^{2} and L^{∞}.
- Estimate sharp up to N^{ε} loss by considering $f_{\theta}=|\theta|^{-1} 1_{\theta}$, i.e.

$$
\sum_{\theta} f_{\theta}(x)=\sum_{\theta} e^{2 \pi i \omega_{\theta} \cdot x} 1_{\theta^{*}}(x)
$$

(Draw it - it looks like a bush.)

Connection to Strichartz

- $p=6$ is the Tomas-Stein / Strichartz exponent in \mathbb{R}^{2}.
- Strichartz inequality says if u solves the Schrödinger equation $i \partial_{t} u=\partial_{x}^{2} u$ on \mathbb{R}^{1+1} and $u(x, 0)=g(x)$ then

$$
\|u(x, t)\|_{L^{6}\left(\mathbb{R}^{2}\right)} \lesssim\|g(x)\|_{L^{2}(\mathbb{R})}
$$

- Base line: $u(x, t)=e^{i t \partial_{x}^{2}} g(x)$ is in $L^{2}(d x)$ for every time t.
- Strichartz says for most time $t, u(x, t)$ is in $L^{6}(d x)$ as well solution spreads out.
- Curvature of this paraboloid makes the Schrödinger equation dispersive, which makes Strichartz inequality possible.
- $p=6$ is the correct exponent for Strichartz on \mathbb{R}^{1+1}.
- Not a coincidence that the Strichartz exponent shows up in decoupling: decoupling implies some forms of Strichartz.
- Decoupling for the paraboloid implies discrete Strichartz.
- If $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ and $g \in L^{2}(\mathbb{T})$, then the solution $u(x, t)$ to the Schrödinger equation $i \partial_{t} u=\partial_{x}^{2} u$ with initial data g obeys

$$
\|u(x, t)\|_{L^{6}\left([0,1]^{2}\right)} \lesssim\|g(x)\|_{L^{2}([0,1])}
$$

whenever supp $\widehat{g} \subset[-N, N]$.

- Discrete Strichartz is harder to prove than the original one, because waves exhibit less dispersion on the compact manifold \mathbb{T}. In fact, examples show the N^{ε} factor cannot be removed.
- Can be reformulated as an exponential sum estimate, since if

$$
g(x)=\sum_{n=-N}^{N} b_{n} e(n x) \quad \Longrightarrow \quad u(x, t)=\sum_{n=-N}^{N} b_{n} e\left(n x+n^{2} t\right)
$$

(Here $e(t):=e^{2 \pi i t}$.)

- In other words, discrete Strichartz just says

$$
\left\|\sum_{n=-N}^{N} b_{n} e\left(n x+n^{2} t\right)\right\|_{L^{6}\left([0,1]^{2}\right)} \lesssim\left(\sum_{n=-N}^{N}\left|b_{n}\right|^{2}\right)^{1 / 2}
$$

for all finite sequences $\left\{b_{n}\right\} \subset \mathbb{C}$.

Why does decoupling implies discrete Strichartz?

- The point of decoupling is to replace L^{6} norm of a sum, by ℓ^{2} norm of the L^{6} norm of the pieces.
- By rescaling the frequencies $\left(n, n^{2}\right)$ back to $\left(\frac{n}{N}, \frac{n^{2}}{N^{2}}\right)$, one can actually apply decoupling for the parabola, and deduce

$$
\begin{aligned}
& \left\|\sum_{n=-N}^{N} b_{n} e\left(n x+n^{2} t\right)\right\|_{L^{6}\left([0,1]^{2}\right)} \\
\lesssim & \left(\sum_{n=-N}^{N}\left\|b_{n} e\left(n x+n^{2} t\right)\right\|_{L^{6}\left([0,1]^{2}\right)}^{2}\right)^{1 / 2} \\
= & \left(\sum_{n=-N}^{N}\left|b_{n}\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

The first inequality has to be justfied via a change of variables $(x, t) \mapsto\left(\frac{x}{N}, \frac{t}{N^{2}}\right)$, and using periodicity.

Why is decoupling easier than discrete Strichartz?

- The formulation of decoupling allows easy access to a useful tool called induction on scales.
- Fix $p=6$. Our goal is to bound $D(\delta):=D_{p}(\delta)$, which is the best constant for which

$$
\|f\|_{L^{p}} \leq D(\delta)\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}}^{2}\right)^{1 / 2}
$$

whenever $f=\sum_{\theta} f_{\theta}$, supp $\widehat{f_{\theta}} \subset \theta$, and θ cover a δ neighborhood of the parabola in \mathbb{R}^{2}.

- $D(1)$ is trivial: when $\delta=1$ there are only $O(1)$ many θ 's.
- Let's say by induction we already understand $D\left(\delta_{1}\right)$ for some $1 \geq \delta_{1}, \delta_{2} \gg \delta$ with $\delta=\delta_{1} \delta_{2}$.
- Then we can cover the δ_{1} neighborhood of the parabola by boxes $\{\tau\}$ of dimension $\delta_{1}^{1 / 2} \times \delta_{1}$, and let $f_{\tau}:=\sum_{\theta \subset \tau} f_{\theta}$. (Draw it.)
- Information about $D\left(\delta_{1}\right)$ tells us

$$
\|f\|_{L^{p}} \leq D\left(\delta_{1}\right)\left(\sum_{\tau}\left\|f_{\tau}\right\|_{L^{p}}^{2}\right)^{1 / 2}
$$

- With some work, information about $D\left(\delta_{2}\right)$ will tell us

$$
\left\|f_{\tau}\right\|_{L^{p}} \leq D\left(\delta_{2}\right)\left(\sum_{\theta \subset \tau}\left\|f_{\theta}\right\|_{L^{p}}^{2}\right)^{1 / 2} \quad \text { for all } \tau
$$

(Technically, we use the affine symmetry of the parabola here.)

- Together we get

$$
\|f\|_{L^{p}} \leq D\left(\delta_{1}\right) D\left(\delta_{2}\right)\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}}^{2}\right)^{1 / 2}
$$

i.e. $D(\delta) \leq D\left(\delta_{1}\right) D\left(\delta_{2}\right)$.

- $D_{p}(\delta) \leq D_{p}\left(\delta_{1}\right) D_{p}\left(\delta_{2}\right)$ if $\delta=\delta_{1} \delta_{2}$.
- This is not quite a proof for the desired bound for $D_{p}(\delta)$, since we have no base case (given $\varepsilon>0$, one needs some δ_{0} so that $D_{p}\left(\delta_{0}\right) \leq \delta_{0}^{-\varepsilon}$ first).
- But it explains why decoupling might be 'easy'; in fact, this observation is what motivated the formulation of decoupling.
- For contrast, such an induction proof does not work if:
a) we try to prove discrete Strichartz directly; or
b) we are interested in bounding $\|f\|_{L^{p}}$ by $\left\|\left(\sum_{\theta}\left|f_{\theta}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}$.
- More about the actual proof of decoupling next time.

Why is decoupling a good proof of discrete Strichartz?

- Discrete Strichartz for \mathbb{T} was known to Bourgain a long time ago using a trick from number theory.
- But the above proof via decoupling has 2 advantages.
- First it generalizes to give discrete Strichartz for all higher dimensional torus \mathbb{T}^{d} (even those with irrational periods).
- Second for \mathbb{T}, the N^{ε} loss from decoupling can actually be improved to $(\log N)^{c}$, and it would yield automatically an improved discrete Strichartz where the loss is only $(\log N)^{c}$ (Guth, Maldague and Wang; Guo, Li and myself).

Decoupling for the circle

- Similar decoupling holds with the unit paraboloids replaced by the unit spheres.
- 2-d: Tile a δ neighborhood of the unit circle by $N:=\delta^{-1 / 2}$ many rectangles $\{\theta\}$ of dimensions $\delta^{1 / 2} \times \delta$.
Theorem (Bourgain-Demeter 2014 + Pramanik-Seeger 2007)
Suppose $f_{\theta} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ with supp $\widehat{f_{\theta}} \subset \theta$ for all θ. Then for $p \geq 6$,

$$
\left\|\sum_{\theta} f_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \lesssim N^{\frac{1}{2}-\frac{3}{p}}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

- Difficulty: Circle not affine invariant (unlike parabola)
- 'Proof': Circle can be approximated by parabola locally.
- Theorem can be rescaled: for $R \gg 1$, tile a 1 neighborhood of a circle of radius R by $N:=R^{1 / 2}$ many rectangles $\{\theta\}$ of sizes $R^{1 / 2} \times 1$. Then the above theorem continues to hold.
- The rescaled theorem is equivalent to the original one. It is sharp thanks to the bush example again. (Draw it.)

A case with no non-trivial decoupling

- Tile a dyadic annulus of radius R on \mathbb{R}^{n} by $N:=R^{\frac{n-1}{2}}$ many sectors $\{\theta\}$ of dimensions $R^{1 / 2} \times \cdots \times R^{1 / 2} \times R$. (Draw it.)

Theorem
Suppose $F_{\theta} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with supp $\widehat{F_{\theta}} \subset \theta$ for all θ. Then for $p \geq 2$,

$$
\left\|\sum_{\theta} F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq N^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\theta}\left\|F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{2}\right)^{1 / 2}
$$

- 'Proof': Interpolation between L^{2} (orthogonality) and L^{∞} (Minkowski inequality).
- Theorem optimal by a bush example! Set $F_{\theta}=|\theta|^{-1} 1_{\theta}$. Then

$$
\left\|\sum_{\theta} F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \gtrsim N\left(R^{-n}\right)^{\frac{1}{p}}, \quad\left(\sum_{\theta}\left\|F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{2}\right)^{\frac{1}{2}} \sim N^{\frac{1}{2}} R^{-\frac{n+1}{2 p}}
$$

and their ratio is $\gtrsim N^{\frac{1}{2}} R^{-\frac{n-1}{2 p}}=N^{\frac{1}{2}-\frac{1}{p}}$.

Consequences for the wave equation

- Question: How much can the solution of the wave equation $\partial_{t}^{2} u=\Delta_{x} u$ concentrates in space given its initial data?
- One way is measure $\|u(x, 1)\|_{L^{p}\left(\mathbb{R}^{n}\right)}$. This gets large as $p \rightarrow \infty$ if solution concentrates in space.
- Our last theorem help us estimate $\|u(x, 1)\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.
- For simplicity, let $u(x, t)=e^{i t \sqrt{-\Delta}} f(x)$.

Proposition

If supp $\widehat{f} \subset\{|\xi| \simeq R\}$, then for $p \geq 2$,

$$
\left\|e^{i \sqrt{-\Delta}} f(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- The proof relies on the trivial decoupling above, and on the heuristic that if θ is a sector as before and supp $\widehat{f}_{\theta} \subset \theta$, then $e^{i \sqrt{-\Delta}} f_{\theta}$ is morally a translate of f_{θ} in a direction given by θ.
- More precisely, decompose $f=\sum_{\theta} f_{\theta}$ according to the previous theorem. Let $F_{\theta}:=e^{i \sqrt{-\Delta}} f_{\theta}$ so that supp $\widehat{F_{\theta}} \subset \theta$.
- Since $F_{\theta}=e^{i \sqrt{-\Delta}} f_{\theta}$ is morally just a translate of f_{θ}, we have $\left\|F_{\theta}\right\|_{L^{p}}=\left\|f_{\theta}\right\|_{L^{p}}$ for all θ.
- For $p \geq 2$, 'decoupling' + above fact shows

$$
\begin{aligned}
\left\|e^{i \sqrt{-\Delta}} f\right\|_{L^{p}} & =\left\|\sum_{\theta} F_{\theta}\right\|_{L^{p}} \leq N^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\theta}\left\|F_{\theta}\right\|_{L^{p}}^{2}\right)^{1 / 2} \\
& \leq N^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}}^{2}\right)^{1 / 2}
\end{aligned}
$$

- Apply Holder to see

$$
\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}}^{2}\right)^{1 / 2} \leq N^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}}^{p}\right)^{1 / p}
$$

- The $\ell^{p} L^{p}$ norm on the right is $\leq\|f\|_{L^{p}}$ by interpolation between L^{2} and L^{∞}. Remembering $N=R^{\frac{n-1}{2}}$, this completes the proof.
- One can prove similarly the following small extension:

Proposition
If supp $\widehat{f} \subset\{|\xi| \simeq R\}$, then for $p \geq q \geq 2$,

$$
\left\|e^{i \sqrt{-\Delta}} f(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq R^{\frac{n-1}{2}-\frac{n}{p}+\frac{1}{q}}\|f\|_{L^{q}\left(\mathbb{R}^{n}\right)}
$$

- The case $p=q$ is just our earlier proposition.
- The proof goes as follows: as before

$$
\left\|e^{i \sqrt{-\Delta}} f\right\|_{L^{p}} \leq N^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{p}}^{2}\right)^{1 / 2}
$$

But the uncertainty principle asserts that $\left|f_{\theta}\right|$ is constant on boxes with measure $R^{-\frac{n+1}{2}}$. Thus using $\ell^{q} \subset \ell^{p}$ when $p \geq q$, we see that $\left\|f_{\theta}\right\|_{L^{p}} \leq R^{\frac{n+1}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\left\|f_{\theta}\right\|_{L^{q}}$. Finally use

$$
\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{q}}^{2}\right)^{1 / 2} \leq N^{\frac{1}{2}-\frac{1}{q}}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{q}}^{q}\right)^{1 / q} \leq N^{\frac{1}{2}-\frac{1}{q}}\|f\|_{L^{q}}
$$

- The proposition is sharp if the $F_{\theta}=e^{i \sqrt{-\Delta}} f_{\theta}$ is from the bush example.
- That means $f=\sum_{\theta} f_{\theta}$ is basically the characteristic function of the annulus $\left\{1 \leq|\xi| \leq 1+\frac{1}{R}\right\}$. (Spacetime picture/movie)
- The proposition can be rephrased by saying that

$$
\left\|e^{i \sqrt{-\Delta}} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{W^{s, q}\left(\mathbb{R}^{n}\right)}
$$

if $p \geq q \geq 2, s=\frac{n-1}{2}-\frac{n}{p}+\frac{1}{q}$, and supp \widehat{f} is contained in a dyadic annulus.

- The last assumption turns out to be unnecessary (Miyachi, Peral).
- It was also known that $e^{i \sqrt{-\Delta}}$ can be replaced by any Fourier integral operators of order 0 (Seeger, Sogge, Stein).
- These results that involves all frequencies are best captured in some function spaces that are introduced by Smith, \& Hassell, Portal and Rozendaal (+ later joint work with myself).

