Introduction to Fourier decoupling

Po-Lam Yung

Australian National University

June 13, 2023

From last time

Main heuristics:

$$\mathcal{F}^{-1}\mathbf{1}_{[-1/2,1/2]} = \frac{\sin \pi x}{\pi x}$$

is ~ 1 on [-1/2,1/2] and ~ 0 away from it, so we pretend

$$\mathcal{F}^{-1}\mathbf{1}_{[-1/2,1/2]} = \mathbf{1}_{[-1/2,1]/2}.$$

• If θ is a rectangular box and $\omega_{\theta} \in \theta$, then

$$\mathcal{F}^{-1}\left(|\theta|^{-1}\mathbf{1}_{\theta}\right) = e^{2\pi i\omega_{\theta} \cdot x}\mathbf{1}_{\theta^*}(x)$$

where θ^* is a dual rectangular box through 0, with dimensions reciprocal to those of θ . (Draw it!)

- If θ is a rectangular box and supp f_θ ⊂ θ, then |f_θ| is constant on each translate of θ*. (Draw the tiling.)
- Decoupling captures cancellations inside Σ_θ f_θ, when we have many boxes θ in many different orientations.

Decoupling for the parabola

► Tile a δ -neighborhood of the unit parabola in \mathbb{R}^2 by $N := \delta^{-\frac{1}{2}}$ many rectangles $\{\theta\}$ of dimensions $\delta^{1/2} \times \delta$.

Theorem (Bourgain-Demeter 2014) Suppose $f_{\theta} \in S(\mathbb{R}^2)$ with supp $\hat{f}_{\theta} \subset \theta$ for all θ . Then for $p \geq 6$,

$$\|\sum_{\theta} f_{\theta}\|_{L^{p}(\mathbb{R}^{2})} \lesssim N^{\frac{1}{2}-\frac{3}{p}} \left(\sum_{\theta} \|f_{\theta}\|_{L^{p}(\mathbb{R}^{2})}^{2}\right)^{1/2}$$

- Here $\leq \leq means \leq_{\varepsilon} N^{\varepsilon}$.
- ► Estimate beats the trivial bound N^{1/2}, and the semi-trivial bound N^{1/2} ^{1/p} obtained by interpolating between L² and L[∞].
- Estimate sharp up to N^{ε} loss by considering $f_{\theta} = |\theta|^{-1} 1_{\theta}$, i.e.

$$\sum_{\theta} f_{\theta}(x) = \sum_{\theta} e^{2\pi i \omega_{\theta} \cdot x} \mathbf{1}_{\theta^*}(x).$$

(Draw it - it looks like a bush.)

Connection to Strichartz

- ▶ p = 6 is the Tomas-Stein / Strichartz exponent in \mathbb{R}^2 .
- Strichartz inequality says if u solves the Schrödinger equation $i\partial_t u = \partial_x^2 u$ on \mathbb{R}^{1+1} and u(x, 0) = g(x) then

$$||u(x,t)||_{L^6(\mathbb{R}^2)} \lesssim ||g(x)||_{L^2(\mathbb{R})}.$$

- ▶ Base line: $u(x,t) = e^{it\partial_x^2}g(x)$ is in $L^2(dx)$ for every time t.
- Strichartz says for most time t, u(x,t) is in L⁶(dx) as well solution spreads out.
- Curvature of this paraboloid makes the Schrödinger equation dispersive, which makes Strichartz inequality possible.
- p = 6 is the correct exponent for Strichartz on \mathbb{R}^{1+1} .
- Not a coincidence that the Strichartz exponent shows up in decoupling: decoupling implies some forms of Strichartz.

- Decoupling for the paraboloid implies discrete Strichartz.
- ▶ If $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ and $g \in L^2(\mathbb{T})$, then the solution u(x,t) to the Schrödinger equation $i\partial_t u = \partial_x^2 u$ with initial data g obeys

$$||u(x,t)||_{L^6([0,1]^2)} \lesssim ||g(x)||_{L^2([0,1])}$$

whenever supp $\widehat{g} \subset [-N, N].$

- Can be reformulated as an exponential sum estimate, since if

$$g(x) = \sum_{n=-N}^{N} b_n e(nx) \qquad \Longrightarrow \qquad u(x,t) = \sum_{n=-N}^{N} b_n e(nx+n^2t).$$

(Here $e(t) := e^{2\pi i t}$.)

In other words, discrete Strichartz just says

$$\left\|\sum_{n=-N}^{N} b_n e(nx+n^2t)\right\|_{L^6([0,1]^2)} \lesssim \left(\sum_{n=-N}^{N} |b_n|^2\right)^{1/2}$$

for all finite sequences $\{b_n\} \subset \mathbb{C}$.

Why does decoupling implies discrete Strichartz?

- ▶ The point of decoupling is to replace L^6 norm of a sum, by ℓ^2 norm of the L^6 norm of the pieces.
- ▶ By rescaling the frequencies (n, n^2) back to $(\frac{n}{N}, \frac{n^2}{N^2})$, one can actually apply decoupling for the parabola, and deduce

$$\begin{split} & \left\|\sum_{n=-N}^{N} b_n e(nx+n^2t)\right\|_{L^6([0,1]^2)} \\ &\lesssim \Big(\sum_{n=-N}^{N} \left\|b_n e(nx+n^2t)\right\|_{L^6([0,1]^2)}^2\Big)^{1/2} \\ &= \Big(\sum_{n=-N}^{N} |b_n|^2\Big)^{1/2}. \end{split}$$

The first inequality has to be justfied via a change of variables $(x,t)\mapsto (\frac{x}{N},\frac{t}{N^2})$, and using periodicity.

Why is decoupling easier than discrete Strichartz?

- The formulation of decoupling allows easy access to a useful tool called *induction on scales*.
- Fix p = 6. Our goal is to bound D(δ) := D_p(δ), which is the best constant for which

$$||f||_{L^p} \le D(\delta) \Big(\sum_{\theta} ||f_{\theta}||_{L^p}^2\Big)^{1/2},$$

whenever $f = \sum_{\theta} f_{\theta}$, supp $\hat{f}_{\theta} \subset \theta$, and θ cover a δ neighborhood of the parabola in \mathbb{R}^2 .

- ▶ D(1) is trivial: when $\delta = 1$ there are only O(1) many θ 's.
- Let's say by induction we already understand $D(\delta_1)$ for some $1 \ge \delta_1, \delta_2 \gg \delta$ with $\delta = \delta_1 \delta_2$.
- Then we can cover the δ₁ neighborhood of the parabola by boxes {τ} of dimension δ₁^{1/2} × δ₁, and let f_τ := Σ_{θ⊂τ} f_θ. (Draw it.)

• Information about $D(\delta_1)$ tells us

$$||f||_{L^p} \le D(\delta_1) \Big(\sum_{\tau} ||f_{\tau}||_{L^p}^2\Big)^{1/2}.$$

• With some work, information about $D(\delta_2)$ will tell us

$$\|f_{\tau}\|_{L^p} \le D(\delta_2) \Big(\sum_{\theta \subset \tau} \|f_{\theta}\|_{L^p}^2\Big)^{1/2}$$
 for all τ .

(Technically, we use the affine symmetry of the parabola here.)Together we get

$$||f||_{L^p} \le D(\delta_1)D(\delta_2) \Big(\sum_{\theta} ||f_{\theta}||_{L^p}^2\Big)^{1/2},$$

i.e. $D(\delta) \leq D(\delta_1)D(\delta_2)$.

- $\blacktriangleright D_p(\delta) \le D_p(\delta_1) D_p(\delta_2) \text{ if } \delta = \delta_1 \delta_2.$
- This is not quite a proof for the desired bound for D_p(δ), since we have no base case (given ε > 0, one needs some δ₀ so that D_p(δ₀) ≤ δ₀^{-ε} first).
- But it explains why decoupling might be 'easy'; in fact, this observation is what motivated the formulation of decoupling.
- For contrast, such an induction proof does not work if:
 a) we try to prove discrete Strichartz directly; or
 - b) we are interested in bounding $||f||_{L^p}$ by $\left\|(\sum_{\theta} |f_{\theta}|^2)^{1/2}\right\|_{L^p}$.
- More about the actual proof of decoupling next time.

Why is decoupling a good proof of discrete Strichartz?

- Discrete Strichartz for T was known to Bourgain a long time ago using a trick from number theory.
- But the above proof via decoupling has 2 advantages.
- First it generalizes to give discrete Strichartz for all higher dimensional torus T^d (even those with irrational periods).
- Second for T, the N^ε loss from decoupling can actually be improved to (log N)^c, and it would yield automatically an improved discrete Strichartz where the loss is only (log N)^c (Guth, Maldague and Wang; Guo, Li and myself).

Decoupling for the circle

- Similar decoupling holds with the unit paraboloids replaced by the unit spheres.
- 2-d: Tile a δ neighborhood of the unit circle by N := δ^{-1/2} many rectangles {θ} of dimensions δ^{1/2} × δ.

Theorem (Bourgain-Demeter 2014 + Pramanik-Seeger 2007) Suppose $f_{\theta} \in S(\mathbb{R}^2)$ with supp $\hat{f}_{\theta} \subset \theta$ for all θ . Then for $p \geq 6$,

$$\|\sum_{\theta} f_{\theta}\|_{L^{p}(\mathbb{R}^{2})} \lesssim N^{\frac{1}{2}-\frac{3}{p}} \left(\sum_{\theta} \|f_{\theta}\|_{L^{p}(\mathbb{R}^{2})}^{2}\right)^{1/2}.$$

- Difficulty: Circle not affine invariant (unlike parabola)
- 'Proof': Circle can be approximated by parabola locally.
- Theorem can be rescaled: for R ≫ 1, tile a 1 neighborhood of a circle of radius R by N := R^{1/2} many rectangles {θ} of sizes R^{1/2} × 1. Then the above theorem continues to hold.
- The rescaled theorem is equivalent to the original one. It is sharp thanks to the bush example again. (Draw it.)

A case with no non-trivial decoupling

► Tile a dyadic annulus of radius R on \mathbb{R}^n by $N := R^{\frac{n-1}{2}}$ many sectors $\{\theta\}$ of dimensions $R^{1/2} \times \cdots \times R^{1/2} \times R$. (Draw it.)

Theorem

Suppose $F_{\theta} \in \mathcal{S}(\mathbb{R}^n)$ with supp $\widehat{F_{\theta}} \subset \theta$ for all θ . Then for $p \geq 2$,

$$\|\sum_{\theta} F_{\theta}\|_{L^{p}(\mathbb{R}^{n})} \leq N^{\frac{1}{2} - \frac{1}{p}} \Big(\sum_{\theta} \|F_{\theta}\|_{L^{p}(\mathbb{R}^{n})}^{2} \Big)^{1/2}.$$

- 'Proof': Interpolation between L² (orthogonality) and L[∞] (Minkowski inequality).
- ▶ Theorem optimal by a bush example! Set $F_{\theta} = |\theta|^{-1}1_{\theta}$. Then

$$\|\sum_{\theta} F_{\theta}\|_{L^{p}(\mathbb{R}^{n})} \gtrsim N(R^{-n})^{\frac{1}{p}}, \quad \left(\sum_{\theta} \|F_{\theta}\|_{L^{p}(\mathbb{R}^{n})}^{2}\right)^{\frac{1}{2}} \sim N^{\frac{1}{2}}R^{-\frac{n+1}{2p}},$$

and their ratio is $\gtrsim N^{\frac{1}{2}}R^{-\frac{n-1}{2p}}=N^{\frac{1}{2}-\frac{1}{p}}.$

Consequences for the wave equation

- Question: How much can the solution of the wave equation $\partial_t^2 u = \Delta_x u$ concentrates in space given its initial data?
- One way is measure ||u(x, 1)||_{L^p(ℝⁿ)}. This gets large as p→∞ if solution concentrates in space.
- Our last theorem help us estimate $||u(x,1)||_{L^p(\mathbb{R}^n)}$.

For simplicity, let
$$u(x,t) = e^{it\sqrt{-\Delta}}f(x)$$
.

Proposition

If supp $\widehat{f} \subset \{ |\xi| \simeq R \}$, then for $p \ge 2$,

$$\|e^{i\sqrt{-\Delta}}f(x)\|_{L^{p}(\mathbb{R}^{n})} \leq R^{(n-1)(\frac{1}{2}-\frac{1}{p})}\|f\|_{L^{p}(\mathbb{R}^{n})}.$$

The proof relies on the trivial decoupling above, and on the heuristic that if θ is a sector as before and supp f_θ ⊂ θ, then e^{i√-Δ}f_θ is morally a translate of f_θ in a direction given by θ.

- More precisely, decompose $f = \sum_{\theta} f_{\theta}$ according to the previous theorem. Let $F_{\theta} := e^{i\sqrt{-\Delta}} f_{\theta}$ so that supp $\widehat{F_{\theta}} \subset \theta$.
- Since $F_{\theta} = e^{i\sqrt{-\Delta}} f_{\theta}$ is morally just a translate of f_{θ} , we have $\|F_{\theta}\|_{L^{p}} = \|f_{\theta}\|_{L^{p}}$ for all θ .

• For $p \ge 2$, 'decoupling' + above fact shows

$$\begin{aligned} \|e^{i\sqrt{-\Delta}}f\|_{L^{p}} &= \|\sum_{\theta} F_{\theta}\|_{L^{p}} \le N^{\frac{1}{2}-\frac{1}{p}} \Big(\sum_{\theta} \|F_{\theta}\|_{L^{p}}^{2}\Big)^{1/2} \\ &\le N^{\frac{1}{2}-\frac{1}{p}} \Big(\sum_{\theta} \|f_{\theta}\|_{L^{p}}^{2}\Big)^{1/2}. \end{aligned}$$

Apply Holder to see

$$\left(\sum_{\theta} \|f_{\theta}\|_{L^{p}}^{2}\right)^{1/2} \leq N^{\frac{1}{2} - \frac{1}{p}} \left(\sum_{\theta} \|f_{\theta}\|_{L^{p}}^{p}\right)^{1/p}$$

▶ The $\ell^p L^p$ norm on the right is $\leq ||f||_{L^p}$ by interpolation between L^2 and L^∞ . Remembering $N = R^{\frac{n-1}{2}}$, this completes the proof.

One can prove similarly the following small extension:

Proposition If supp $\widehat{f} \subset \{|\xi| \simeq R\}$, then for $p \ge q \ge 2$, $\|e^{i\sqrt{-\Delta}}f(x)\|_{L^p(\mathbb{R}^n)} \le R^{\frac{n-1}{2}-\frac{n}{p}+\frac{1}{q}}\|f\|_{L^q(\mathbb{R}^n)}.$

- The case p = q is just our earlier proposition.
- The proof goes as follows: as before

$$\|e^{i\sqrt{-\Delta}}f\|_{L^p} \le N^{\frac{1}{2}-\frac{1}{p}} \Big(\sum_{\theta} \|f_{\theta}\|_{L^p}^2\Big)^{1/2}$$

But the uncertainty principle asserts that $|f_{\theta}|$ is constant on boxes with measure $R^{-\frac{n+1}{2}}$. Thus using $\ell^q \subset \ell^p$ when $p \ge q$, we see that $\|f_{\theta}\|_{L^p} \le R^{\frac{n+1}{2}(\frac{1}{q}-\frac{1}{p})} \|f_{\theta}\|_{L^q}$. Finally use

$$\left(\sum_{\theta} \|f_{\theta}\|_{L^{q}}^{2}\right)^{1/2} \leq N^{\frac{1}{2} - \frac{1}{q}} \left(\sum_{\theta} \|f_{\theta}\|_{L^{q}}^{q}\right)^{1/q} \leq N^{\frac{1}{2} - \frac{1}{q}} \|f\|_{L^{q}}.$$

- The proposition is sharp if the $F_{\theta} = e^{i\sqrt{-\Delta}}f_{\theta}$ is from the bush example.
- ► That means $f = \sum_{\theta} f_{\theta}$ is basically the characteristic function of the annulus $\{1 \le |\xi| \le 1 + \frac{1}{R}\}$. (Spacetime picture/movie)
- The proposition can be rephrased by saying that

$$\|e^{i\sqrt{-\Delta}}f\|_{L^p(\mathbb{R}^n)} \le \|f\|_{W^{s,q}(\mathbb{R}^n)}$$

if $p \ge q \ge 2$, $s = \frac{n-1}{2} - \frac{n}{p} + \frac{1}{q}$, and $\mathrm{supp}\,\widehat{f}$ is contained in a dyadic annulus.

- The last assumption turns out to be unnecessary (Miyachi, Peral).
- ► It was also known that e^{i√-∆} can be replaced by any Fourier integral operators of order 0 (Seeger, Sogge, Stein).
- These results that involves all frequencies are best captured in some function spaces that are introduced by Smith, & Hassell, Portal and Rozendaal (+ later joint work with myself).