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From last time
▶ Main heuristics:

F−11[−1/2,1/2] =
sinπx

πx

is ∼ 1 on [−1/2, 1/2] and ∼ 0 away from it, so we pretend

F−11[−1/2,1/2] = 1[−1/2,1]/2.

▶ If θ is a rectangular box and ωθ ∈ θ, then

F−1
(
|θ|−11θ

)
= e2πiωθ·x1θ∗(x)

where θ∗ is a dual rectangular box through 0, with dimensions
reciprocal to those of θ. (Draw it!)

▶ If θ is a rectangular box and supp f̂θ ⊂ θ, then |fθ| is constant
on each translate of θ∗. (Draw the tiling.)

▶ Decoupling captures cancellations inside
∑

θ fθ, when we have
many boxes θ in many different orientations.



Decoupling for the parabola
▶ Tile a δ-neighborhood of the unit parabola in R2 by

N := δ−
1
2 many rectangles {θ} of dimensions δ1/2 × δ.

Theorem (Bourgain-Demeter 2014)

Suppose fθ ∈ S(R2) with supp f̂θ ⊂ θ for all θ. Then for p ≥ 6,

∥
∑
θ

fθ∥Lp(R2) ⪅ N
1
2
− 3

p

(∑
θ

∥fθ∥2Lp(R2)

)1/2
.

▶ Here ⪅ means ≲ε N
ε.

▶ Estimate beats the trivial bound N
1
2 , and the semi-trivial

bound N
1
2
− 1

p obtained by interpolating between L2 and L∞.

▶ Estimate sharp up to N ε loss by considering fθ = |θ|−11θ, i.e.∑
θ

fθ(x) =
∑
θ

e2πiωθ·x1θ∗(x).

(Draw it - it looks like a bush.)



Connection to Strichartz

▶ p = 6 is the Tomas-Stein / Strichartz exponent in R2.

▶ Strichartz inequality says if u solves the Schrödinger equation
i∂tu = ∂2

xu on R1+1 and u(x, 0) = g(x) then

∥u(x, t)∥L6(R2) ≲ ∥g(x)∥L2(R).

▶ Base line: u(x, t) = eit∂
2
xg(x) is in L2(dx) for every time t.

▶ Strichartz says for most time t, u(x, t) is in L6(dx) as well -
solution spreads out.

▶ Curvature of this paraboloid makes the Schrödinger equation
dispersive, which makes Strichartz inequality possible.

▶ p = 6 is the correct exponent for Strichartz on R1+1.

▶ Not a coincidence that the Strichartz exponent shows up in
decoupling: decoupling implies some forms of Strichartz.



▶ Decoupling for the paraboloid implies discrete Strichartz.
▶ If T = R/Z and g ∈ L2(T), then the solution u(x, t) to the

Schrödinger equation i∂tu = ∂2
xu with initial data g obeys

∥u(x, t)∥L6([0,1]2) ⪅ ∥g(x)∥L2([0,1])

whenever supp ĝ ⊂ [−N,N ].
▶ Discrete Strichartz is harder to prove than the original one,

because waves exhibit less dispersion on the compact manifold
T. In fact, examples show the N ε factor cannot be removed.

▶ Can be reformulated as an exponential sum estimate, since if

g(x) =

N∑
n=−N

bne(nx) =⇒ u(x, t) =

N∑
n=−N

bne(nx+n2t).

(Here e(t) := e2πit.)
▶ In other words, discrete Strichartz just says∥∥∥ N∑

n=−N

bne(nx+ n2t)
∥∥∥
L6([0,1]2)

⪅
( N∑

n=−N

|bn|2
)1/2

for all finite sequences {bn} ⊂ C.



Why does decoupling implies discrete Strichartz?

▶ The point of decoupling is to replace L6 norm of a sum, by ℓ2

norm of the L6 norm of the pieces.

▶ By rescaling the frequencies (n, n2) back to ( n
N , n2

N2 ), one can
actually apply decoupling for the parabola, and deduce

∥∥∥ N∑
n=−N

bne(nx+ n2t)
∥∥∥
L6([0,1]2)

⪅
( N∑

n=−N

∥∥∥bne(nx+ n2t)
∥∥∥2
L6([0,1]2)

)1/2

=
( N∑

n=−N

|bn|2
)1/2

.

The first inequality has to be justfied via a change of variables
(x, t) 7→ ( x

N , t
N2 ), and using periodicity.



Why is decoupling easier than discrete Strichartz?

▶ The formulation of decoupling allows easy access to a useful
tool called induction on scales.

▶ Fix p = 6. Our goal is to bound D(δ) := Dp(δ), which is the
best constant for which

∥f∥Lp ≤ D(δ)
(∑

θ

∥fθ∥2Lp

)1/2
,

whenever f =
∑

θ fθ, supp f̂θ ⊂ θ, and θ cover a δ
neighborhood of the parabola in R2.

▶ D(1) is trivial: when δ = 1 there are only O(1) many θ’s.

▶ Let’s say by induction we already understand D(δ1) for some
1 ≥ δ1, δ2 ≫ δ with δ = δ1δ2.

▶ Then we can cover the δ1 neighborhood of the parabola by

boxes {τ} of dimension δ
1/2
1 × δ1, and let fτ :=

∑
θ⊂τ fθ.

(Draw it.)



▶ Information about D(δ1) tells us

∥f∥Lp ≤ D(δ1)
(∑

τ

∥fτ∥2Lp

)1/2
.

▶ With some work, information about D(δ2) will tell us

∥fτ∥Lp ≤ D(δ2)
(∑

θ⊂τ

∥fθ∥2Lp

)1/2
for all τ .

(Technically, we use the affine symmetry of the parabola here.)

▶ Together we get

∥f∥Lp ≤ D(δ1)D(δ2)
(∑

θ

∥fθ∥2Lp

)1/2
,

i.e. D(δ) ≤ D(δ1)D(δ2).



▶ Dp(δ) ≤ Dp(δ1)Dp(δ2) if δ = δ1δ2.

▶ This is not quite a proof for the desired bound for Dp(δ),
since we have no base case (given ε > 0, one needs some δ0
so that Dp(δ0) ≤ δ−ε

0 first).

▶ But it explains why decoupling might be ‘easy’; in fact, this
observation is what motivated the formulation of decoupling.

▶ For contrast, such an induction proof does not work if:
a) we try to prove discrete Strichartz directly; or

b) we are interested in bounding ∥f∥Lp by
∥∥∥(∑

θ

|fθ|2)1/2
∥∥∥
Lp
.

▶ More about the actual proof of decoupling next time.



Why is decoupling a good proof of discrete Strichartz?

▶ Discrete Strichartz for T was known to Bourgain a long time
ago using a trick from number theory.

▶ But the above proof via decoupling has 2 advantages.

▶ First it generalizes to give discrete Strichartz for all higher
dimensional torus Td (even those with irrational periods).

▶ Second for T, the N ε loss from decoupling can actually be
improved to (logN)c, and it would yield automatically an
improved discrete Strichartz where the loss is only (logN)c

(Guth, Maldague and Wang; Guo, Li and myself).



Decoupling for the circle
▶ Similar decoupling holds with the unit paraboloids replaced by

the unit spheres.
▶ 2-d: Tile a δ neighborhood of the unit circle by N := δ−1/2

many rectangles {θ} of dimensions δ1/2 × δ.

Theorem (Bourgain-Demeter 2014 + Pramanik-Seeger 2007)

Suppose fθ ∈ S(R2) with supp f̂θ ⊂ θ for all θ. Then for p ≥ 6,

∥
∑
θ

fθ∥Lp(R2) ⪅ N
1
2
− 3

p

(∑
θ

∥fθ∥2Lp(R2)

)1/2
.

▶ Difficulty: Circle not affine invariant (unlike parabola)
▶ ‘Proof’: Circle can be approximated by parabola locally.
▶ Theorem can be rescaled: for R ≫ 1, tile a 1 neighborhood of

a circle of radius R by N := R1/2 many rectangles {θ} of
sizes R1/2 × 1. Then the above theorem continues to hold.

▶ The rescaled theorem is equivalent to the original one. It is
sharp thanks to the bush example again. (Draw it.)



A case with no non-trivial decoupling
▶ Tile a dyadic annulus of radius R on Rn by N := R

n−1
2 many

sectors {θ} of dimensions R1/2 × · · · ×R1/2 ×R. (Draw it.)

Theorem
Suppose Fθ ∈ S(Rn) with supp F̂θ ⊂ θ for all θ. Then for p ≥ 2,

∥
∑
θ

Fθ∥Lp(Rn) ≤ N
1
2
− 1

p

(∑
θ

∥Fθ∥2Lp(Rn)

)1/2
.

▶ ‘Proof’: Interpolation between L2 (orthogonality) and L∞

(Minkowski inequality).

▶ Theorem optimal by a bush example! Set Fθ = |θ|−11θ. Then

∥
∑
θ

Fθ∥Lp(Rn) ≳ N(R−n)
1
p ,

(∑
θ

∥Fθ∥2Lp(Rn)

) 1
2 ∼ N

1
2R

−n+1
2p ,

and their ratio is ≳ N
1
2R

−n−1
2p = N

1
2
− 1

p .



Consequences for the wave equation

▶ Question: How much can the solution of the wave equation
∂2
t u = ∆xu concentrates in space given its initial data?

▶ One way is measure ∥u(x, 1)∥Lp(Rn). This gets large as
p → ∞ if solution concentrates in space.

▶ Our last theorem help us estimate ∥u(x, 1)∥Lp(Rn).

▶ For simplicity, let u(x, t) = eit
√
−∆f(x).

Proposition

If supp f̂ ⊂ {|ξ| ≃ R}, then for p ≥ 2,

∥ei
√
−∆f(x)∥Lp(Rn) ≤ R

(n−1)( 1
2
− 1

p
)∥f∥Lp(Rn).

▶ The proof relies on the trivial decoupling above, and on the
heuristic that if θ is a sector as before and supp f̂θ ⊂ θ, then
ei
√
−∆fθ is morally a translate of fθ in a direction given by θ.



▶ More precisely, decompose f =
∑

θ fθ according to the

previous theorem. Let Fθ := ei
√
−∆fθ so that supp F̂θ ⊂ θ.

▶ Since Fθ = ei
√
−∆fθ is morally just a translate of fθ, we have

∥Fθ∥Lp = ∥fθ∥Lp for all θ.

▶ For p ≥ 2, ‘decoupling’ + above fact shows

∥ei
√
−∆f∥Lp = ∥

∑
θ

Fθ∥Lp ≤ N
1
2
− 1

p

(∑
θ

∥Fθ∥2Lp

)1/2

≤ N
1
2
− 1

p

(∑
θ

∥fθ∥2Lp

)1/2
.

▶ Apply Holder to see(∑
θ

∥fθ∥2Lp

)1/2
≤ N

1
2
− 1

p

(∑
θ

∥fθ∥pLp

)1/p
.

▶ The ℓpLp norm on the right is ≤ ∥f∥Lp by interpolation

between L2 and L∞. Remembering N = R
n−1
2 , this

completes the proof.



▶ One can prove similarly the following small extension:

Proposition

If supp f̂ ⊂ {|ξ| ≃ R}, then for p ≥ q ≥ 2,

∥ei
√
−∆f(x)∥Lp(Rn) ≤ R

n−1
2

−n
p
+ 1

q ∥f∥Lq(Rn).

▶ The case p = q is just our earlier proposition.

▶ The proof goes as follows: as before

∥ei
√
−∆f∥Lp ≤ N

1
2
− 1

p

(∑
θ

∥fθ∥2Lp

)1/2
.

But the uncertainty principle asserts that |fθ| is constant on
boxes with measure R−n+1

2 . Thus using ℓq ⊂ ℓp when p ≥ q,

we see that ∥fθ∥Lp ≤ R
n+1
2

( 1
q
− 1

p
)∥fθ∥Lq . Finally use(∑

θ

∥fθ∥2Lq

)1/2
≤ N

1
2
− 1

q

(∑
θ

∥fθ∥qLq

)1/q
≤ N

1
2
− 1

q ∥f∥Lq .



▶ The proposition is sharp if the Fθ = ei
√
−∆fθ is from the bush

example.

▶ That means f =
∑

θ fθ is basically the characteristic function
of the annulus {1 ≤ |ξ| ≤ 1 + 1

R}. (Spacetime picture/movie)

▶ The proposition can be rephrased by saying that

∥ei
√
−∆f∥Lp(Rn) ≤ ∥f∥W s,q(Rn)

if p ≥ q ≥ 2, s = n−1
2 − n

p + 1
q , and supp f̂ is contained in a

dyadic annulus.

▶ The last assumption turns out to be unnecessary (Miyachi,
Peral).

▶ It was also known that ei
√
−∆ can be replaced by any Fourier

integral operators of order 0 (Seeger, Sogge, Stein).

▶ These results that involves all frequencies are best captured in
some function spaces that are introduced by Smith, & Hassell,
Portal and Rozendaal (+ later joint work with myself).


