Introduction to Fourier decoupling

Po-Lam Yung

Australian National University

June 15, 2023

For those interested, I highly recommend:

 Larry Guth's ICM 2022 video + survey Decoupling estimates in Fourier analysis arXiv:2207.00652

Fixed time estimates for the wave equation

Consider the initial value problem for the wave equation

$$\partial_t^2 U = \Delta_x U, \quad U(x,0) = f(x), \quad \partial_t U(x,0) = 0.$$

▶ Its solution is $U(x,t) = \frac{1}{2}(e^{it\sqrt{-\Delta}}f(x) + e^{-it\sqrt{-\Delta}}f(x))$, where

$$e^{\pm it\sqrt{-\Delta}}f(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi)e^{2\pi i(\pm t|\xi| + x \cdot \xi)}d\xi.$$

▶ Without loss of generality we consider u(x,t) = e^{it√-∆}f(x).
▶ By Plancherel,

$$||u(x,t)||_{L^2(\mathbb{R}^n)} = ||f||_{L^2(\mathbb{R}^n)} \quad \forall t,$$

but it was known that $||u(x,t)||_{L^p(\mathbb{R}^n)}$ is in general not bounded by $||f||_{L^p(\mathbb{R}^n)}$ if $p \neq 2$ and $t \neq 0$.

Take t = 1. Question: What is the smallest s = s(p, n) > 0, so that

$$||u(x,1)||_{L^{p}(\mathbb{R}^{n})} \lesssim ||f||_{W^{s,p}(\mathbb{R}^{n})}?$$

Peral and Miyachi showed independently that

$$|u(x,1)||_{L^p(\mathbb{R}^n)} \lesssim ||f||_{W^{s,p}(\mathbb{R}^n)} \quad \text{if} \quad s = (n-1)|\frac{1}{2} - \frac{1}{p}|.$$

- ► Let's say $p \ge 2$. Consider a special case where \hat{f} is supported in a dyadic annulus $A_R := \{R \le |\xi| \le 2R\}$, $R \gg 1$.
- Then the above result is equivalent to saying that

$$||e^{i\sqrt{-\Delta}}f(x)||_{L^{p}(\mathbb{R}^{n})} \lesssim R^{(n-1)(\frac{1}{2}-\frac{1}{p})}||f||_{L^{p}(\mathbb{R}^{n})}.$$

This actually follows from a semi-trivial decoupling theorem for the sectorial decomposition of A: Decompose A_R into a disjoint union of N := Rⁿ⁻¹/₂ sectors {θ} of size (R¹/₂)ⁿ⁻¹ × R.

Theorem

Suppose $F_{\theta} \in \mathcal{S}(\mathbb{R}^n)$ with supp $\widehat{F_{\theta}} \subset \theta$ for all θ . Then for $p \geq 2$,

$$\|\sum_{\theta} F_{\theta}\|_{L^{p}(\mathbb{R}^{n})} \lesssim N^{\frac{1}{2} - \frac{1}{p}} \Big(\sum_{\theta} \|F_{\theta}\|_{L^{p}(\mathbb{R}^{n})}^{2} \Big)^{\frac{1}{2}} \lesssim N^{2(\frac{1}{2} - \frac{1}{p})} \Big(\sum_{\theta} \|F_{\theta}\|_{L^{p}(\mathbb{R}^{n})}^{p} \Big)^{\frac{1}{p}}$$

Waves focusing at a point

$$||e^{i\sqrt{-\Delta}}f(x)||_{L^p(\mathbb{R}^n)} \lesssim R^{(n-1)(\frac{1}{2}-\frac{1}{p})}||f||_{L^p(\mathbb{R}^n)}, \quad p \ge 2.$$

Suppose supp f̂ ⊂ A_R. Why is the above inequality sharp?
The example comes from waves focusing at a point:

$$|f(x)| = \mathbf{1}_{1 \le |x| \le 1 + \frac{1}{R}}, \quad |e^{i\sqrt{-\Delta}}f(x)| \simeq R^{\frac{n-1}{2}}\mathbf{1}_{|x| \le \frac{1}{R}}$$

▶ The height $R^{\frac{n-1}{2}}$ at time 1 can be explained by conservation of energy $||u(x, 1)||_{L^2(\mathbb{R}^n)} = ||f||_{L^2(\mathbb{R}^n)}$.

Waves focusing at a point

$$||e^{i\sqrt{-\Delta}}f(x)||_{L^p(\mathbb{R}^n)} \lesssim R^{(n-1)(\frac{1}{2}-\frac{1}{p})}||f||_{L^p(\mathbb{R}^n)}, \quad p \ge 2.$$

Suppose supp f̂ ⊂ A_R. Why is the above inequality sharp?
The example comes from waves focusing at a point:

$$|f(x)| = \mathbf{1}_{1 \le |x| \le 1 + \frac{1}{R}}, \quad |e^{i\sqrt{-\Delta}}f(x)| \simeq R^{\frac{n-1}{2}}\mathbf{1}_{|x| \le \frac{1}{R}}$$

▶ The height $R^{\frac{n-1}{2}}$ at time 1 can be explained by conservation of energy $||u(x, 1)||_{L^2(\mathbb{R}^n)} = ||f||_{L^2(\mathbb{R}^n)}$.

The height at the center can also be understood using wave packets.

The height at the center can also be understood using wave packets.

► The wave packets have Fourier supports in sectors of size (R^{1/2})ⁿ⁻¹ × R inside the annulus A_R. Each wave packet moves in a direction dictated by its Fourier support as t varies. The height at the center can also be understood using wave packets.

► The wave packets have Fourier supports in sectors of size (R^{1/2})ⁿ⁻¹ × R inside the annulus A_R. Each wave packet moves in a direction dictated by its Fourier support as t varies. Spacetime estimates for the wave equation

- ► Earlier we fix t = 1 and quantify concentration in space of the solution u, by estimating ||u(x,t)||_{L^p(ℝⁿ)}.
- The worst case is the example where waves focus to a single point at time t = 1.
- That example does not stay focused for very long.
- ▶ They stay focused for time $1 \le t \le 1 + \frac{1}{R}$, and then disperse again afterwards.
- ► One may ask what if we quantify spacetime concentration of the solution u, by measuring ||u(x,t)||_{L^p(ℝⁿ×[1,2])}.

• The focusing example had supp $\widehat{f} \subset \{|\xi| \simeq R\}$ and

$$\|u(x,t)\|_{L^p(\mathbb{R}^n \times [1,2])} \simeq R^{(n-1)(\frac{1}{2} - \frac{1}{p})} R^{-\frac{1}{p}} \|f\|_{L^p(\mathbb{R}^n)}.$$

Thus one might wonder whether it always hold that

$$\|u(x,t)\|_{L^{p}(\mathbb{R}^{n}\times[1,2])} \lesssim \|f\|_{W^{\sigma,p}(\mathbb{R}^{n})}, \quad \sigma = (n-1)(\frac{1}{2} - \frac{1}{p}) - \frac{1}{p}$$

In particular, maybe

$$\|u(x,t)\|_{L^p(\mathbb{R}^n \times [1,2])} \lesssim \|f\|_{L^p(\mathbb{R}^n)} \quad \text{if } p = \frac{2n}{n-1}?$$

This turns out to be false when n ≥ 2 if we omit ε losses. We have worse examples coming from Kakeya sets in ℝⁿ. Kakeya sets and wave trains

Let R ≫ 1, n ≥ 2. A wave train in ℝⁿ consisting of waves of frequency ~ R looks like:

 $\begin{array}{ccc} R^{-1/2} & \updownarrow & & \\ & & & \\ & & & \\ & & R^{-1} \end{array} \end{array} \rightrightarrows$

lt concentrates around a cylinder of size $(R^{-\frac{1}{2}})^{n-1} \times 1$.

Kakeya sets and wave trains

Let R ≫ 1, n ≥ 2. A wave train in ℝⁿ consisting of waves of frequency ~ R looks like:

$$R^{-1/2}$$
 \updownarrow \Rightarrow

• It concentrates around a cylinder of size $(R^{-\frac{1}{2}})^{n-1} \times 1$.

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter R^{-1/2} and height 2 at time t = 0, which travel in R^{-1/2} separated directions into a unit cube.
- For any time 1 ≤ t ≤ 2, each wave train occupies a fixed cylinder T̃ of height ~ 1 in the unit cube.

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter R^{-1/2} and height 2 at time t = 0, which travel in R^{-1/2} separated directions into a unit cube.
- For any time $1 \le t \le 2$, each wave train occupies a fixed cylinder \tilde{T} of height ~ 1 in the unit cube.

t = 1

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter R^{-1/2} and height 2 at time t = 0, which travel in R^{-1/2} separated directions into a unit cube.
- For any time 1 ≤ t ≤ 2, each wave train occupies a fixed cylinder T̃ of height ~ 1 in the unit cube.

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter R^{-1/2} and height 2 at time t = 0, which travel in R^{-1/2} separated directions into a unit cube.
- For any time $1 \le t \le 2$, each wave train occupies a fixed cylinder \tilde{T} of height ~ 1 in the unit cube.

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter R^{-1/2} and height 2 at time t = 0, which travel in R^{-1/2} separated directions into a unit cube.
- For any time 1 ≤ t ≤ 2, each wave train occupies a fixed cylinder T̃ of height ~ 1 in the unit cube.

Connections to incidence geometry

lt can be arranged so that the \tilde{T} 's overlap quite a lot more than the initial T's (which are disjoint): we can have

$$\mathsf{Volume}\Bigl(igcup T\Bigr)\gtrsim rac{\log R^{1/2}}{\log\log R^{1/2}}\cdot\mathsf{Volume}\Bigl(igcup ilde T\Bigr)$$

Then for $p\geq 2,$ conservation of energy gives

$$\|u(x,t)\|_{L^p(\mathbb{R}^n)} \gtrsim (\frac{\log R^{1/2}}{\log \log R^{1/2}})^{\frac{1}{2} - \frac{1}{p}} \|f\|_{L^p(\mathbb{R}^n)} \quad \text{for every } 1 \le t \le 2.$$

As a result,

$$||u(x,t)||_{L^p(\mathbb{R}^n \times [1,2])} \gtrsim (\frac{\log R^{1/2}}{\log \log R^{1/2}})^{\frac{1}{2} - \frac{1}{p}} ||f||_{L^p(\mathbb{R}^n)}.$$

The local smoothing conjecture

• At
$$p = \frac{2n}{n-1}$$
, the tube example has

$$\|u(x,t)\|_{L^{p}(\mathbb{R}^{n}\times[1,2])} \gtrsim \left(\frac{\log R^{1/2}}{\log\log R^{1/2}}\right)^{\frac{1}{2n}} \|f\|_{L^{p}(\mathbb{R}^{n})}.$$

- This example is worse than the example of wave focusing at a point, where we had no loss in log R.
- It motivates the local smoothing conjecture, which says

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p(\mathbb{R}^n\times[1,2])}\lesssim_{\varepsilon}\|f\|_{W^{\sigma+\varepsilon,p}(\mathbb{R}^n)}$$

whenever $\sigma = (n-1)(\frac{1}{2} - \frac{1}{p}) - \frac{1}{p}$, $p \ge \frac{2n}{n-1}$ and $\varepsilon > 0$. (This ε loss is necessary in light of the above tube example, at least when $p = \frac{2n}{n-1}$.)

- Conjecture true in dimensions n = 1 (classical), n = 2 (Guth, Wang, Zhang 2019), open in all higher dimensions.
- It is a difficult conjecture: it implies e.g. the Kakeya conjecture in Rⁿ.

The Kakeya conjecture

- Issue: If we can produce another pattern of thin cylinders in Rⁿ that point in separated directions but overlap even more than the previous example, we might produce a counterexample to the local smoothing conjecture!
- In other words, in order to prove the local smoothing conjecture, we will have to rule out the possibility of having lots of thin cylinders in ℝⁿ that point in separated directions but overlap significantly more than the previous example.
- This is the content of the Kakeya conjecture. One form of it states: Any collection of cylinders in ℝⁿ with diameter R^{-1/2} and height 1 that point in R^{-1/2} separated directions cannot overlap too much: their union has measure ≥_ε R^{-ε} ∀ε > 0!
- ► The Kakeya conjecture is open in dimensions n ≥ 3 and is and considered very difficult (despite much recent progress, by Katz, Zahl, Hickman, Rogers, Zhang, building upon earlier work of Bourgain, Wolff, Katz, Guth, Tao...).

Decoupling for the cone

- ► Let $n \ge 2$, $R \gg 1$, $S = \{(\xi, |\xi|) : R \le |\xi| \le 2R\}$ be a truncated cone in \mathbb{R}^{n+1} . Note S has one flat direction.
- Cover 1 neighborhood of S by rectangular boxes $\{\theta\}$ of dimensions $1 \times R^{1/2} \times \ldots R^{1/2} \times R$, that are 'tangent to S'.
- Pramanik and Seeger (2007) developed a machinery for reducing the following theorem to decoupling for paraboloid:

Theorem (Bourgain-Demeter 2014, Pramanik-Seeger 2007) Suppose $u_{\theta} \in S(\mathbb{R}^{n+1})$ with supp $\widehat{u_{\theta}} \subset \theta$ for all θ . Then for $p \geq \frac{2(n+1)}{n-1}$ and any $\varepsilon > 0$,

$$\Big\|\sum_{\theta} u_{\theta}\Big\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim_{\varepsilon} R^{\frac{1}{2}(\frac{n-1}{2}-\frac{n}{p})+\varepsilon} \Big(\sum_{\theta} \|u_{\theta}\|_{L^{p}(\mathbb{R}^{n+1})}^{2}\Big)^{1/2}.$$

Application to local smoothing

- Using decoupling for the cone, one can make some progress on the local smoothing conjecture.
- ▶ It shows that in the partial range $p \ge \frac{2(n+1)}{n-1}$ (the Tomas-Stein exponent), one has the desired bound

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p(\mathbb{R}^n\times[1,2])} \lesssim_{\varepsilon} \|f\|_{W^{\sigma+\varepsilon,p}(\mathbb{R}^n)}, \quad \sigma = (n-1)(\frac{1}{2}-\frac{1}{p})-\frac{1}{p}.$$

(Conjecture was for all $p \geq \frac{2n}{n-1}$, the restriction exponent.)

▶ In fact, one decomposes $f = \sum_{\theta} f_{\theta}$ using a sum over sectors, and applies the decoupling for the light cone with

$$u_{\theta}(x,t) = 1_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}(x),$$

which will satisfy supp $\widehat{u_{\theta}} \subset \theta$.

Decoupling for the moment curve

To estimate the number of solutions to the Vinogradov system

$$\begin{cases} x_1 + \dots + x_s = x_{s+1} + \dots + x_{2s} \\ x_1^2 + \dots + x_s^2 = x_{s+1}^2 + \dots + x_{2s}^2 \\ \vdots \\ x_1^k + \dots + x_s^k = x_{s+1}^k + \dots + x_{2s}^k \end{cases}$$

with all variables $x_i \in \{1, \ldots, N\}$, it suffices to estimate

$$\left\|\sum_{n=1}^{N} e(\gamma(n) \cdot x)\right\|_{L^{p}([0,1]^{k})}^{p}, \quad p = 2s$$

(exponential sum estimates again!). Here

$$\gamma(t) := (t, t^2, \dots, t^k)$$

is the degree k moment curve.

Bourgain, Demeter and Guth achieved this by proving an suitable decoupling theorem for the degree k moment curve.

- Wooley actually proved the bound for the exponential sum for k = 3 case first, using number theory.
- ► He subsequently extended his number theory methods to all degrees k ≥ 4.
- Using his insights, we have been able to give a simpler proof of decoupling for the degree k moment curve for all k (joint work with Shaoming Guo, Zane Kun Li, Pavel Zorin-Kranich).
- Below we describe a bit that proof, in the (much easier) case k = 2 (due to Zane Kun Li).

Decoupling for the parabola in \mathbb{R}^2

- Consider the unit parabola $P := \{(t, t^2) \colon t \in [0, 1]\}.$
- Cover a δ neighborhood of the parabola by $\delta^{-1/2}$ many rectangles of size $\delta^{1/2} \times \delta$ 'tangent' to the parabola.

Suppose supp
$$\widehat{f}_{\theta} \subset \theta$$
 for every θ .

• Let $D(\delta)$ be the best constant so that

$$\left\|\sum_{\theta} f_{\theta}\right\|_{L^{6}(\mathbb{R}^{2})} \leq D(\delta) \left(\sum_{\theta} \|f_{\theta}\|_{L^{6}(\mathbb{R}^{2})}^{2}\right)^{1/2}$$

• We want to show $D(\delta) \lesssim_{\varepsilon} \delta^{-\varepsilon}$ for all $\varepsilon > 0$.

Idea 1: Bootstrap

$$\left\|\sum_{\theta} f_{\theta}\right\|_{L^{6}(\mathbb{R}^{2})} \leq D(\delta) \left(\sum_{\theta} \|f_{\theta}\|_{L^{6}(\mathbb{R}^{2})}^{2}\right)^{1/2}$$

► Trivial bound: $D(\delta) \le \delta^{-1/4}$ by Cauchy-Schwarz.

So we may suppose $D(\delta) \lesssim \delta^{-\eta}$ for some $\eta > 0$, and show that $D(\delta) \lesssim \delta^{-\eta/2}$.

(White lie: Actually can only show $D(\delta) \lesssim \delta^{-\eta - e^{-1/\eta}}$.)

Idea 2: Affine invariance

- Recall $P := \{(t, t^2) : t \in [0, 1]\}$ is the unit parabola.
- Let $P_I := \{(t, t^2) : t \in I\}$ be a parabolic arc over an interval I.
- Any parabolic arc P_I can be mapped bijectively onto the unit parabola P by an affine transformation in R². (Draw it: first consider I = [0, b].)
- A δ neighborhood of the arc P_I is mapped bijectively onto a $|I|^{-2}\delta$ neighborhood of the P.
- ▶ If $\{\theta'\}$ are $\delta^{1/2} \times \delta$ rectangles covering P_I , and $\operatorname{supp} \widehat{f_{\theta'}} \subset \theta'$, then

$$\left\|\sum_{\theta'} f_{\theta'}\right\|_{L^6(\mathbb{R}^2)} \le D(|I|^{-2}\delta) \left(\sum_{\theta'} \|f_{\theta'}\|_{L^6(\mathbb{R}^2)}^2\right)^{1/2}.$$

Idea 3: Many scales

- Back to the situation where we have all rectangles {θ} covering a δ neighborhood of the unit parabola P.
- Write $f = \sum_{\theta} f_{\theta}$. Let $J \gg 1$ to be determined.
- Introduce many scales $1 > \delta_1 > \delta_2 > \cdots > \delta_J = \delta$, so that

$$\delta_j := \delta^{2^{j-J}}$$

- For any j = 1,..., J, cover a δ_j neighborhood of P by rectangles {τ_j} of size δ^{1/2}_j × δ_j.
- For each τ_j , let $f_{\tau_j} := \sum_{\theta \subset \tau_j} f_{\theta}$ so that $f = \sum_{\tau_j} f_{\tau_j} \ \forall j$.
- ▶ By induction on scales, we may assume we have a good bound for $D(\delta')$ for all $1 \ge \delta' > \delta$.

Idea 4: Bilinearize

▶ Recall many scales $1 > \delta_1 > \delta_2 > \cdots > \delta_J = \delta$, so that

$$\delta_j := \delta^{2^{j-J}}.$$

In order to estimate

$$\|f\|_{L^6} = \left(\int_{\mathbb{R}^2} |f|^6\right)^{1/6} = \left(\int_{R^2} |\sum_{\tau_1} f_{\tau_1}|^4 |\sum_{\tau_2} f_{\tau_2}|^2\right)^{1/6},$$

we might want to be able to estimate

$$\left(\int_{\mathbb{R}^2} |f_{\tau_1}|^4 |f_{\tau_2}|^2\right)^{1/6} \lesssim \delta^{-\eta/2} \left(\sum_{\theta} \|f_{\theta}\|_{L^6(\mathbb{R}^2)}^2\right)^{1/2}$$

where τ_1 and τ_2 are $\geq \delta_1^{1/2}$ apart. Turns out this is enough.

Idea 5: Hölder's inequality

We estimate using Cauchy-Schwarz:

$$\int_{\mathbb{R}^2} |f_{\tau_1}|^4 |f_{\tau_2}|^2 \le \Big(\int_{\mathbb{R}^2} |f_{\tau_1}|^2 |f_{\tau_2}|^4\Big)^{1/2} \Big(\int_{\mathbb{R}^2} |f_{\tau_1}|^6\Big)^{1/2}.$$

The second factor is bounded using affine invariance by

$$D(\delta_1^{-1}\delta)^3 \Big(\sum_{\theta} \|f_{\theta}\|_{L^6(\mathbb{R}^2)}^2\Big)^{3/2},$$

and $D(\delta_1^{-1}\delta)$ is something we assume we understand because we can induct on scale (note $\delta_1^{-1}\delta > \delta$). It remains to bound the first factor.

ldea 6: L^2 orthogonality / 1 dimensional decoupling

In the first factor

$$\left(\int_{\mathbb{R}^2} |f_{\tau_1}|^2 |f_{\tau_2}|^4\right)^{1/2},$$

the Fourier support of f_{τ_2} is smaller. By affine invariance again, we may assume $\tau_2 = [0, \delta_2^{1/2}] \times [0, \delta_2]$. We decompose

$$f_{\tau_1} = \sum_{\tau_3 \subset \tau_1} f_{\tau_3}.$$

Since τ_1 is transverse to τ_2 , the relevant τ_3 looks like a rectangle with vertical side length $\delta_3^{1/2} = \delta_2$ (and horizontal side length δ_3). Hence $\{f_{\tau_3}f_{\tau_2}^2\}_{\tau_3\subset\tau_1}$ form an orthogonal family. We get

$$\left(\int_{\mathbb{R}^2} |f_{\tau_1}|^2 |f_{\tau_2}|^4\right)^{1/2} \le \left(\sum_{\tau_3 \subset \tau_1} \int_{\mathbb{R}^2} |f_{\tau_3}|^2 |f_{\tau_2}|^4\right)^{1/2}.$$

Note the coarsest scale went down from scale δ₁ to a finer scaler δ₂.

Idea 7: Iteration

- Repeat Steps 5 and 6 many times to go from scale δ₁ to δ₂ to δ₃... until we decouple down to scale δ_J = δ.
- A lot of book keeping! Eventually get

$$\left(\int_{\mathbb{R}^2} |f_{\tau_1}|^4 |f_{\tau_2}|^2\right)^{1/6} \lesssim \delta^{-\frac{1}{2^J}} \prod_{j=1}^J D(\delta_j^{-1}\delta)^{\frac{1}{2^j}} \left(\sum_{\theta} \|f_{\theta}\|_{L^6(\mathbb{R}^2)}^2\right)^{1/2}$$

Apply bootstrap hypothesis D(δ_j⁻¹δ) ≤ (δ_j⁻¹δ)^{-η} with δ_j = δ^{2^{j-J}}; compute the product in terms of δ, η and J. This beats the bootstrap assumption if J be large enough.

Other possible proofs

- The original proof of decoupling for the parabola by Bourgain and Demeter used incidence geometry.
- ► They needed to study how transverse tubes in ℝ² intersect each other.
- Yet another proof by Guth, Maldague and Wang tried to classify points in ℝ² according to the finest scale at which constructive interference happens (if at all). It was inspired by ideas in combinatorics and gives the best known bound.

Summary

- Decoupling is some form of orthogonality in L^p , $p \ge 2$.
- Underlying mechanism: superposition of waves packets with varying orientations.
- More precisely: Decoupling happens when we sum functions which have disjoint Fourier supports along curved manifolds.
- They can be used to study a range of problems, from bounding exponential sums to studying the wave equation.
- Many other applications that we did not have time to describe.

- A large part of cleverness is in formulating decoupling, in a way that can be proved by induction.
- Decoupling has various limitations too; e.g. it is tied to the Tomas-Stein exponent, and many harder problems are tied instead to the restriction exponent.
- Decoupling also seems to fail to capture interesting Kakeya phenomena.
- This is both good and bad: good that it explains why it is relatively easy to prove, bad because this is not the most powerful tool one can have.