Introduction to Fourier decoupling

Po-Lam Yung

Australian National University

$$
\text { June 15, } 2023
$$

For those interested, I highly recommend:

- Larry Guth's ICM 2022 video + survey

Decoupling estimates in Fourier analysis arXiv:2207.00652

Fixed time estimates for the wave equation

- Consider the initial value problem for the wave equation

$$
\partial_{t}^{2} U=\Delta_{x} U, \quad U(x, 0)=f(x), \quad \partial_{t} U(x, 0)=0
$$

- Its solution is $U(x, t)=\frac{1}{2}\left(e^{i t \sqrt{-\Delta}} f(x)+e^{-i t \sqrt{-\Delta}} f(x)\right)$, where

$$
e^{ \pm i t \sqrt{-\Delta}} f(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{2 \pi i(\pm t|\xi|+x \cdot \xi)} d \xi
$$

- Without loss of generality we consider $u(x, t)=e^{i t \sqrt{-\Delta}} f(x)$.
- By Plancherel,

$$
\|u(x, t)\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)} \quad \forall t
$$

but it was known that $\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ is in general not bounded by $\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ if $p \neq 2$ and $t \neq 0$.

- Take $t=1$. Question: What is the smallest $s=s(p, n)>0$, so that

$$
\|u(x, 1)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W^{s, p}\left(\mathbb{R}^{n}\right)} ?
$$

- Peral and Miyachi showed independently that

$$
\|u(x, 1)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W^{s, p}\left(\mathbb{R}^{n}\right)} \quad \text { if } \quad s=(n-1)\left|\frac{1}{2}-\frac{1}{p}\right| .
$$

- Let's say $p \geq 2$. Consider a special case where \widehat{f} is supported in a dyadic annulus $A_{R}:=\{R \leq|\xi| \leq 2 R\}, R \gg 1$.
- Then the above result is equivalent to saying that

$$
\left\|e^{i \sqrt{-\Delta}} f(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- This actually follows from a semi-trivial decoupling theorem for the sectorial decomposition of A : Decompose A_{R} into a disjoint union of $N:=R^{\frac{n-1}{2}}$ sectors $\{\theta\}$ of size $\left(R^{\frac{1}{2}}\right)^{n-1} \times R$.

Theorem
Suppose $F_{\theta} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with supp $\widehat{F_{\theta}} \subset \theta$ for all θ. Then for $p \geq 2$,

$$
\left\|\sum_{\theta} F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim N^{\frac{1}{2}-\frac{1}{p}}\left(\sum_{\theta}\left\|F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{2}\right)^{\frac{1}{2}} \lesssim N^{2\left(\frac{1}{2}-\frac{1}{p}\right)}\left(\sum_{\theta}\left\|F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}\right)^{\frac{1}{p}} .
$$

Waves focusing at a point

$$
\left\|e^{i \sqrt{-\Delta}} f(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \quad p \geq 2
$$

- Suppose supp $\widehat{f} \subset A_{R}$. Why is the above inequality sharp?
- The example comes from waves focusing at a point:

$$
|f(x)|=1_{1 \leq|x| \leq 1+\frac{1}{R}}, \quad\left|e^{i \sqrt{-\Delta}} f(x)\right| \simeq R^{\frac{n-1}{2}} 1_{|x| \leq \frac{1}{R}}
$$

- The height $R^{\frac{n-1}{2}}$ at time 1 can be explained by conservation of energy $\|u(x, 1)\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}$.

Waves focusing at a point

$$
\left\|e^{i \sqrt{-\Delta}} f(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \quad p \geq 2
$$

- Suppose supp $\widehat{f} \subset A_{R}$. Why is the above inequality sharp?
- The example comes from waves focusing at a point:

$$
|f(x)|=1_{1 \leq|x| \leq 1+\frac{1}{R}}, \quad\left|e^{i \sqrt{-\Delta}} f(x)\right| \simeq R^{\frac{n-1}{2}} 1_{|x| \leq \frac{1}{R}}
$$

- The height $R^{\frac{n-1}{2}}$ at time 1 can be explained by conservation of energy $\|u(x, 1)\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}$.
- The height at the center can also be understood using wave packets.

- The height at the center can also be understood using wave packets.

$$
\begin{aligned}
& \qquad|f| \simeq 1 \\
& R^{\frac{n-1}{2}} \text { many } \\
& \text { wave packets } \\
& \text { of height } 1
\end{aligned}
$$

- The wave packets have Fourier supports in sectors of size $\left(R^{\frac{1}{2}}\right)^{n-1} \times R$ inside the annulus A_{R}. Each wave packet moves in a direction dictated by its Fourier support as t varies.
- The height at the center can also be understood using wave packets.

$$
\begin{aligned}
& \qquad|f| \simeq 1 \\
& R^{\frac{n-1}{2}} \text { many } \\
& \text { wave packets } \\
& \text { of height } 1
\end{aligned}
$$

- The wave packets have Fourier supports in sectors of size $\left(R^{\frac{1}{2}}\right)^{n-1} \times R$ inside the annulus A_{R}. Each wave packet moves in a direction dictated by its Fourier support as t varies.

Spacetime estimates for the wave equation

- Earlier we fix $t=1$ and quantify concentration in space of the solution u, by estimating $\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.
- The worst case is the example where waves focus to a single point at time $t=1$.
- That example does not stay focused for very long.
- They stay focused for time $1 \leq t \leq 1+\frac{1}{R}$, and then disperse again afterwards.
- One may ask what if we quantify spacetime concentration of the solution u, by measuring $\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)}$.
- The focusing example had supp $\widehat{f} \subset\{|\xi| \simeq R\}$ and

$$
\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \simeq R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)} R^{-\frac{1}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

Thus one might wonder whether it always hold that

$$
\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \lesssim\|f\|_{W^{\sigma, p}\left(\mathbb{R}^{n}\right)}, \quad \sigma=(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p} .
$$

In particular, maybe

$$
\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { if } p=\frac{2 n}{n-1} ?
$$

- This turns out to be false when $n \geq 2$ if we omit ε losses. We have worse examples coming from Kakeya sets in \mathbb{R}^{n}.

Kakeya sets and wave trains

- Let $R \gg 1, n \geq 2$. A wave train in \mathbb{R}^{n} consisting of waves of frequency $\sim R$ looks like:

$$
\begin{array}{cc}
R^{-1 / 2} & \uparrow||||||||||||||||||||||||||\mid \\
\\
R^{-1}
\end{array}
$$

- It concentrates around a cylinder of size $\left(R^{-\frac{1}{2}}\right)^{n-1} \times 1$.

Kakeya sets and wave trains

- Let $R \gg 1, n \geq 2$. A wave train in \mathbb{R}^{n} consisting of waves of frequency $\sim R$ looks like:

$$
R^{-1 / 2} \quad \uparrow \quad \rightrightarrows
$$

- It concentrates around a cylinder of size $\left(R^{-\frac{1}{2}}\right)^{n-1} \times 1$.

Wave trains moving in different directions

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter $R^{-1 / 2}$ and height 2 at time $t=0$, which travel in $R^{-1 / 2}$ separated directions into a unit cube.
- For any time $1 \leq t \leq 2$, each wave train occupies a fixed cylinder \tilde{T} of height ~ 1 in the unit cube.

Wave trains moving in different directions

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter $R^{-1 / 2}$ and height 2 at time $t=0$, which travel in $R^{-1 / 2}$ separated directions into a unit cube.
- For any time $1 \leq t \leq 2$, each wave train occupies a fixed cylinder \tilde{T} of height ~ 1 in the unit cube.

$$
t=1
$$

Wave trains moving in different directions

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter $R^{-1 / 2}$ and height 2 at time $t=0$, which travel in $R^{-1 / 2}$ separated directions into a unit cube.
- For any time $1 \leq t \leq 2$, each wave train occupies a fixed cylinder \tilde{T} of height ~ 1 in the unit cube.

$$
t=2
$$

Wave trains moving in different directions

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter $R^{-1 / 2}$ and height 2 at time $t=0$, which travel in $R^{-1 / 2}$ separated directions into a unit cube.
- For any time $1 \leq t \leq 2$, each wave train occupies a fixed cylinder \tilde{T} of height ~ 1 in the unit cube.

Wave trains moving in different directions

- Consider many wave trains, initially concentrated on disjoint cylinders T of diameter $R^{-1 / 2}$ and height 2 at time $t=0$, which travel in $R^{-1 / 2}$ separated directions into a unit cube.
- For any time $1 \leq t \leq 2$, each wave train occupies a fixed cylinder \tilde{T} of height ~ 1 in the unit cube.

Connections to incidence geometry

- It can be arranged so that the \tilde{T} 's overlap quite a lot more than the initial T 's (which are disjoint): we can have

$$
\text { Volume }(\bigcup T) \gtrsim \frac{\log R^{1 / 2}}{\log \log R^{1 / 2}} \cdot \text { Volume }(\bigcup \tilde{T})
$$

Then for $p \geq 2$, conservation of energy gives

$$
\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \gtrsim\left(\frac{\log R^{1 / 2}}{\log \log R^{1 / 2}}\right)^{\frac{1}{2}-\frac{1}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { for every } 1 \leq t \leq 2
$$

As a result,

$$
\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \gtrsim\left(\frac{\log R^{1 / 2}}{\log \log R^{1 / 2}}\right)^{\frac{1}{2}-\frac{1}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

The local smoothing conjecture

- At $p=\frac{2 n}{n-1}$, the tube example has

$$
\|u(x, t)\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \gtrsim\left(\frac{\log R^{1 / 2}}{\log \log R^{1 / 2}}\right)^{\frac{1}{2 n}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- This example is worse than the example of wave focusing at a point, where we had no loss in $\log R$.
- It motivates the local smoothing conjecture, which says

$$
\left\|e^{i t \sqrt{-\Delta}} f\right\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \lesssim \varepsilon\|f\|_{W^{\sigma+\varepsilon, p}\left(\mathbb{R}^{n}\right)}
$$

whenever $\sigma=(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}, p \geq \frac{2 n}{n-1}$ and $\varepsilon>0$.
(This ε loss is necessary in light of the above tube example, at least when $p=\frac{2 n}{n-1}$.)

- Conjecture true in dimensions $n=1$ (classical), $n=2$ (Guth, Wang, Zhang 2019), open in all higher dimensions.
- It is a difficult conjecture: it implies e.g. the Kakeya conjecture in \mathbb{R}^{n}.

The Kakeya conjecture

- Issue: If we can produce another pattern of thin cylinders in \mathbb{R}^{n} that point in separated directions but overlap even more than the previous example, we might produce a counterexample to the local smoothing conjecture!
- In other words, in order to prove the local smoothing conjecture, we will have to rule out the possibility of having lots of thin cylinders in \mathbb{R}^{n} that point in separated directions but overlap significantly more than the previous example.
- This is the content of the Kakeya conjecture. One form of it states: Any collection of cylinders in \mathbb{R}^{n} with diameter $R^{-1 / 2}$ and height 1 that point in $R^{-1 / 2}$ separated directions cannot overlap too much: their union has measure $\gtrsim \varepsilon R^{-\varepsilon} \forall \varepsilon>0$!
- The Kakeya conjecture is open in dimensions $n \geq 3$ and is and considered very difficult (despite much recent progress, by Katz, Zahl, Hickman, Rogers, Zhang, building upon earlier work of Bourgain, Wolff, Katz, Guth, Tao...).

Decoupling for the cone

- Let $n \geq 2, R \gg 1, S=\{(\xi,|\xi|): R \leq|\xi| \leq 2 R\}$ be a truncated cone in \mathbb{R}^{n+1}. Note S has one flat direction.
- Cover 1 neighborhood of S by rectangular boxes $\{\theta\}$ of dimensions $1 \times R^{1 / 2} \times \ldots R^{1 / 2} \times R$, that are 'tangent to S^{\prime}.
- Pramanik and Seeger (2007) developed a machinery for reducing the following theorem to decoupling for paraboloid:

Theorem (Bourgain-Demeter 2014, Pramanik-Seeger 2007)
Suppose $u_{\theta} \in \mathcal{S}\left(\mathbb{R}^{n+1}\right)$ with supp $\widehat{u_{\theta}} \subset \theta$ for all θ. Then for $p \geq \frac{2(n+1)}{n-1}$ and any $\varepsilon>0$,

$$
\left\|\sum_{\theta} u_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \lesssim_{\varepsilon} R^{\frac{1}{2}\left(\frac{n-1}{2}-\frac{n}{p}\right)+\varepsilon}\left(\sum_{\theta}\left\|u_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)}^{2}\right)^{1 / 2}
$$

Application to local smoothing

- Using decoupling for the cone, one can make some progress on the local smoothing conjecture.
- It shows that in the partial range $p \geq \frac{2(n+1)}{n-1}$ (the Tomas-Stein exponent), one has the desired bound

$$
\left\|e^{i t \sqrt{-\Delta}} f\right\|_{L^{p}\left(\mathbb{R}^{n} \times[1,2]\right)} \lesssim \varepsilon\|f\|_{W^{\sigma+\varepsilon, p}\left(\mathbb{R}^{n}\right)}, \quad \sigma=(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}
$$

(Conjecture was for all $p \geq \frac{2 n}{n-1}$, the restriction exponent.)

- In fact, one decomposes $f=\sum_{\theta} f_{\theta}$ using a sum over sectors, and applies the decoupling for the light cone with

$$
u_{\theta}(x, t)=1_{[1,2]}(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)
$$

which will satisfy supp $\widehat{u_{\theta}} \subset \theta$.

Decoupling for the moment curve

- To estimate the number of solutions to the Vinogradov system

$$
\left\{\begin{aligned}
x_{1}+\cdots+x_{s} & =x_{s+1}+\cdots+x_{2 s} \\
x_{1}^{2}+\cdots+x_{s}^{2} & =x_{s+1}^{2}+\cdots+x_{2 s}^{2} \\
& \vdots \\
x_{1}^{k}+\cdots+x_{s}^{k} & =x_{s+1}^{k}+\cdots+x_{2 s}^{k}
\end{aligned}\right.
$$

with all variables $x_{i} \in\{1, \ldots, N\}$, it suffices to estimate

$$
\left\|\sum_{n=1}^{N} e(\gamma(n) \cdot x)\right\|_{L^{p}\left([0,1]^{k}\right)}^{p}, \quad p=2 s
$$

(exponential sum estimates again!). Here

$$
\gamma(t):=\left(t, t^{2}, \ldots, t^{k}\right)
$$

is the degree k moment curve.

- Bourgain, Demeter and Guth achieved this by proving an suitable decoupling theorem for the degree k moment curve.
- Wooley actually proved the bound for the exponential sum for $k=3$ case first, using number theory.
- He subsequently extended his number theory methods to all degrees $k \geq 4$.
- Using his insights, we have been able to give a simpler proof of decoupling for the degree k moment curve for all k (joint work with Shaoming Guo, Zane Kun Li, Pavel Zorin-Kranich).
- Below we describe a bit that proof, in the (much easier) case $k=2$ (due to Zane Kun Li).

Decoupling for the parabola in \mathbb{R}^{2}

- Consider the unit parabola $P:=\left\{\left(t, t^{2}\right): t \in[0,1]\right\}$.
- Cover a δ neighborhood of the parabola by $\delta^{-1 / 2}$ many rectangles of size $\delta^{1 / 2} \times \delta$ 'tangent' to the parabola.
- Suppose supp $\widehat{f}_{\theta} \subset \theta$ for every θ.
- Let $D(\delta)$ be the best constant so that

$$
\left\|\sum_{\theta} f_{\theta}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)} \leq D(\delta)\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

- We want to show $D(\delta) \lesssim \varepsilon \delta^{-\varepsilon}$ for all $\varepsilon>0$.

Idea 1: Bootstrap

$$
\left\|\sum_{\theta} f_{\theta}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)} \leq D(\delta)\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2} .
$$

- Trivial bound: $D(\delta) \leq \delta^{-1 / 4}$ by Cauchy-Schwarz.
- So we may suppose $D(\delta) \lesssim \delta^{-\eta}$ for some $\eta>0$, and show that $D(\delta) \lesssim \delta^{-\eta / 2}$.
(White lie: Actually can only show $D(\delta) \lesssim \delta^{-\eta-e^{-1 / \eta}}$.)

Idea 2: Affine invariance

- Recall $P:=\left\{\left(t, t^{2}\right): t \in[0,1]\right\}$ is the unit parabola.
- Let $P_{I}:=\left\{\left(t, t^{2}\right): t \in I\right\}$ be a parabolic arc over an interval I.
- Any parabolic arc P_{I} can be mapped bijectively onto the unit parabola P by an affine transformation in \mathbb{R}^{2}.
(Draw it: first consider $I=[0, b]$.)
- A δ neighborhood of the arc P_{I} is mapped bijectively onto a $|I|^{-2} \delta$ neighborhood of the P.
- If $\left\{\theta^{\prime}\right\}$ are $\delta^{1 / 2} \times \delta$ rectangles covering P_{I}, and supp $\widehat{f_{\theta^{\prime}}} \subset \theta^{\prime}$, then

$$
\left\|\sum_{\theta^{\prime}} f_{\theta^{\prime}}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)} \leq D\left(|I|^{-2} \delta\right)\left(\sum_{\theta^{\prime}}\left\|f_{\theta^{\prime}}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

Idea 3: Many scales

- Back to the situation where we have all rectangles $\{\theta\}$ covering a δ neighborhood of the unit parabola P.
- Write $f=\sum_{\theta} f_{\theta}$. Let $J \gg 1$ to be determined.
- Introduce many scales $1>\delta_{1}>\delta_{2}>\cdots>\delta_{J}=\delta$, so that

$$
\delta_{j}:=\delta^{2^{j-J}}
$$

- For any $j=1, \ldots, J$, cover a δ_{j} neighborhood of P by rectangles $\left\{\tau_{j}\right\}$ of size $\delta_{j}^{1 / 2} \times \delta_{j}$.
- For each τ_{j}, let $f_{\tau_{j}}:=\sum_{\theta \subset \tau_{j}} f_{\theta}$ so that $f=\sum_{\tau_{j}} f_{\tau_{j}} \forall j$.
- By induction on scales, we may assume we have a good bound for $D\left(\delta^{\prime}\right)$ for all $1 \geq \delta^{\prime}>\delta$.

Idea 4: Bilinearize

- Recall many scales $1>\delta_{1}>\delta_{2}>\cdots>\delta_{J}=\delta$, so that

$$
\delta_{j}:=\delta^{2^{j-J}}
$$

- In order to estimate

$$
\|f\|_{L^{6}}=\left(\int_{\mathbb{R}^{2}}|f|^{6}\right)^{1 / 6}=\left(\int_{R^{2}}\left|\sum_{\tau_{1}} f_{\tau_{1}}\right|^{4}\left|\sum_{\tau_{2}} f_{\tau_{2}}\right|^{2}\right)^{1 / 6}
$$

we might want to be able to estimate

$$
\left(\int_{\mathbb{R}^{2}}\left|f_{\tau_{1}}\right|^{4}\left|f_{\tau_{2}}\right|^{2}\right)^{1 / 6} \lesssim \delta^{-\eta / 2}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

where τ_{1} and τ_{2} are $\geq \delta_{1}^{1 / 2}$ apart. Turns out this is enough.

Idea 5: Hölder's inequality

- We estimate using Cauchy-Schwarz:

$$
\int_{\mathbb{R}^{2}}\left|f_{\tau_{1}}\right|^{4}\left|f_{\tau_{2}}\right|^{2} \leq\left(\int_{\mathbb{R}^{2}}\left|f_{\tau_{1}}\right|^{2}\left|f_{\tau_{2}}\right|^{4}\right)^{1 / 2}\left(\int_{\mathbb{R}^{2}}\left|f_{\tau_{1}}\right|^{6}\right)^{1 / 2}
$$

- The second factor is bounded using affine invariance by

$$
D\left(\delta_{1}^{-1} \delta\right)^{3}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)}^{2}\right)^{3 / 2}
$$

and $D\left(\delta_{1}^{-1} \delta\right)$ is something we assume we understand because we can induct on scale (note $\delta_{1}^{-1} \delta>\delta$). It remains to bound the first factor.

Idea 6: L^{2} orthogonality / 1 dimensional decoupling

- In the first factor

$$
\left(\int_{\mathbb{R}^{2}}\left|f_{\tau_{1}}\right|^{2}\left|f_{\tau_{2}}\right|^{4}\right)^{1 / 2},
$$

the Fourier support of $f_{\tau_{2}}$ is smaller. By affine invariance again, we may assume $\tau_{2}=\left[0, \delta_{2}^{1 / 2}\right] \times\left[0, \delta_{2}\right]$. We decompose

$$
f_{\tau_{1}}=\sum_{\tau_{3} \subset \tau_{1}} f_{\tau_{3}}
$$

- Since τ_{1} is transverse to τ_{2}, the relevant τ_{3} looks like a rectangle with vertical side length $\delta_{3}^{1 / 2}=\delta_{2}$ (and horizontal side length δ_{3}). Hence $\left\{f_{\tau_{3}} f_{\tau_{2}}^{2}\right\}_{\tau_{3} \subset \tau_{1}}$ form an orthogonal family. We get

$$
\left(\int_{\mathbb{R}^{2}}\left|f_{\tau_{1}}\right|^{2}\left|f_{\tau_{2}}\right|^{4}\right)^{1 / 2} \leq\left(\sum_{\tau_{3} \subset \tau_{1}} \int_{\mathbb{R}^{2}}\left|f_{\tau_{3}}\right|^{2}\left|f_{\tau_{2}}\right|^{4}\right)^{1 / 2}
$$

- Note the coarsest scale went down from scale δ_{1} to a finer scaler δ_{2}.

Idea 7: Iteration

- Repeat Steps 5 and 6 many times to go from scale δ_{1} to δ_{2} to $\delta_{3} \ldots$ until we decouple down to scale $\delta_{J}=\delta$.
- A lot of book keeping! Eventually get

$$
\left(\int_{\mathbb{R}^{2}}\left|f_{\tau_{1}}\right|^{4}\left|f_{\tau_{2}}\right|^{2}\right)^{1 / 6} \lesssim \delta^{-\frac{1}{2^{J}}} \prod_{j=1}^{J} D\left(\delta_{j}^{-1} \delta\right)^{\frac{1}{2 j}}\left(\sum_{\theta}\left\|f_{\theta}\right\|_{L^{6}\left(\mathbb{R}^{2}\right)}^{2}\right)^{1 / 2}
$$

- Apply bootstrap hypothesis $D\left(\delta_{j}^{-1} \delta\right) \lesssim\left(\delta_{j}^{-1} \delta\right)^{-\eta}$ with $\delta_{j}=\delta^{2^{j-J}}$; compute the product in terms of δ, η and J. This beats the bootstrap assumption if J be large enough.

Other possible proofs

- The original proof of decoupling for the parabola by Bourgain and Demeter used incidence geometry.
- They needed to study how transverse tubes in \mathbb{R}^{2} intersect each other.
- Yet another proof by Guth, Maldague and Wang tried to classify points in \mathbb{R}^{2} according to the finest scale at which constructive interference happens (if at all). It was inspired by ideas in combinatorics and gives the best known bound.

Summary

- Decoupling is some form of orthogonality in $L^{p}, p \geq 2$.
- Underlying mechanism: superposition of waves packets with varying orientations.
- More precisely: Decoupling happens when we sum functions which have disjoint Fourier supports along curved manifolds.
- They can be used to study a range of problems, from bounding exponential sums to studying the wave equation.
- Many other applications that we did not have time to describe.
- A large part of cleverness is in formulating decoupling, in a way that can be proved by induction.
- Decoupling has various limitations too; e.g. it is tied to the Tomas-Stein exponent, and many harder problems are tied instead to the restriction exponent.
- Decoupling also seems to fail to capture interesting Kakeya phenomena.
- This is both good and bad: good that it explains why it is relatively easy to prove, bad because this is not the most powerful tool one can have.

