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Decoupling inequalities
» Given a Schwartz function f on R™ and an exponent p, we
seek a decomposition of f into a sum: f = Zé\;l fj, so that
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> Ifp=2and f = Zj f;j is an orthogonal decomposition, then
D,(N) = 1.

» Minkowski inequality for LP + Cauchy-Schwarz shows that the
inequality always holds with D, (V) replaced by N2 if p>2:
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(This is usually sharp at p = o0)

» Often better bounds are possible for intermediate p's
— powerful tools in PDEs (e.g. local smoothing, discrete
restriction), analytic number theory, geometric measure theory.



Examples of non-trivial decoupling

> Start with f whose Fourier transform is supported in a §
neighbourhood of a curved, compact submanifold S in R”.

» We cut the neighbourhood into IV boxes ‘tangent’ to S, and
let f; be the frequency localization of f to the j-th box.

> Paraboloids in R” (Bourgain-Demeter):
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Examples of non-trivial decoupling
> Start with f whose Fourier transform is supported in a §
neighbourhood of a curved, compact submanifold S in R”.

» We cut the neighbourhood into N boxes ‘tangent’ to .S, and
let f; be the frequency localization of f to the j-th box.

> Paraboloids in R” (Bourgain-Demeter):






» Cones in I@ (Wolff, Wolff-taba, Pramanik-Seeger,
Bourgain-Demeter):




> Moment curve {(¢,t2,...,t"): t € [0,1]} in R"
(Bourgain-Demeter-Guth, Wooley, Guo-Li-Y.-Zorin-Kranich):
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The parabola case

» For every ¢ > 0, Bourgain-Demeter proved that
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> Let's take this for granted, and see how we can use it to prove
new decoupling inequalities.



Parabolic rescaling: length of parabola doesn't matter
> letl <ag<2 If ]?is supported in a ¢ neighbourhood of a
short parabolic arc {(t,at?): 0 <t < L}, then the number of
61/2 x § boxes covering this § neighbourhood is ~ L/§'/2.

» These boxes rescale under (£1,&2) — (%, a%g) to boxes
covering a 22 neighbourhood of the unit parabola, so

decoupling for the unit parabola applies to f( T ate)-

» This allows one to decouple f into N := W many pieces,
and obtain the corresponding decoupling inequality:
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Pramanik-Seeger iteration: Decoupling for C® curves

> Let fbe supported in a § neighbourhood of a C3 curve
(t,~v(t)) in R2 with 1 < |7/(¢)| <2 for all ¢ (e.g.: a circle).
» Cut this neighbourhood into N = §~1/2 boxes of size /2 x §.

> A nice argument of Pramanik and Seeger allows one to
decouple f = Zé\;l f; by frequency localizing f to these
boxes, and obtain
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» A similar argument allows one to obtain decoupling for the
sphere in R™, or the cone in R*+1,



» Proof: First trivially decouple f into = many big pieces.



» Proof: First trivially decouple f into = many big pieces.

» By Taylor expanding -, we see that each big piece of f is
supported in a §° neighbourhood of a short parabolic arc.



» Proof: First trivially decouple f into 7 many big pieces.

» By Taylor expanding -y, we see that each big piece of f is
supported in a §°° neighbourhood of a short parabolic arc.

» Bourgain-Demeter allows one to decouple big piece of f into
6% /(63€)1/2 = §=¢/2 many smaller pieces.

» The Fourier supports of the smaller pieces are even better
approximated by short parabolic arcs.

> Repeat until one reaches boxes of size §1/2 x 4.



Fubini's theorem: Lifting to higher dimensions

» From the above, we can decouple functions on R? whose
Fourier support lies in a § neighbourhood of the curve ~:

te (2,13, te[1/2,1].

> We can lift it trivially to higher dimensions as follows.

» If f is a function on R3, then for fixed x1, the Fourier support
of f(x1,-,-) is contained in the projection of the Fourier
support of f onto the &, &3 plane:

f(xh9627553)6_2ﬂi(x2£2+$353)d962d9€3 = / J?(flafzafs)e%mlfldfl.
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» If such projection is in a  neighbourhood of 7g, then we can
decouple f(x1,-,-) into 6~'/2 many pieces for each ;.

P Integrating with respect to x1 and using Fubini's theorem, we
can now decouple f in R3.

» This corollary of parabola decoupling is what one needs to
prove decoupling for the moment curve in R3.



Proof of decoupling for the moment curve in R?
> Let v(t) = (¢,t,¢%) for t € [0,1] be the moment curve in R3.
» Partition [0, 1] into N intervals {I}.

» For each I, and let 6; be a box of size % X ﬁ X ﬁ tangent
to y(I), and f be a function with Fourier support in | J; ;.

> Below we sketch a proof how one decouples f into Y, fr,
where f7 is the frequency localization of f to 8;. Goal:
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» Notations: I is always one of these intervals of length 1/N.
For interval J C [0, 1] with length > 1/N, write

fr=>Y_1n
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where sum is over the subintervals I contained in J.
Also write |J| for the length of an interval J.
D(N) is the best constant in our main inequality.



Bilinearization
» Fix € > 0. Since f = ZU':N,E f7, if we expand

£z = ([ 1£]12)72, we need to estimate terms like
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where |J1| = |Ja| = N~¢ are at distance > N~°.
» These are the main terms. Fix such Ji, Js from now on.
» For 0 < a,b <1 introduce

Qus = ||HH|le|z|fK2|z
I 1=N"%]]p4
|Kol=N—b

where in the £4 norms, we sum over partitions { K;} of .J;.
» Q. is precisely the main term (*) we want to estimate.
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> We want to bound Q.. by Q1 1.

» To do so, for 0 < b <1 we bound Q4 by @33, and then
iterate:
we bound Q. . by Q3: 3., which in turn is bounded by Qo o,
Q27¢,27 etc until we reach Q1.

» It will also be useful to consider, for 0 < a,b < 1, a quantity
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where sym is a similar term with roles of K7 and K> reversed.



Bounding Q. by Q31,3

» Three tools:
1. Holder's inequality
2. L? orthogonality
3. Decoupling for parabola in R?

» Four steps:
1. Qb,b < Pb,b via Holder
2. Py S Payyp via L? orthogonality

3. Py < Q;/?fi D(N'=)2/3 yia Holder
4. Quzp Ser N° ng 3p via parabola decoupling
> Altogether, one gets

Qvp Ser N° Q;,égb (N1=b)2/3

which one can then bootstrap to show D(N) <. N°¢.



Holder's inequality

» If 6 € [0, 1] then for any p we have
IEPIGI e < 1PN G (H1)
» Also works for /P norm of sequences:
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» More generally, if 6 € [0,1] and 1% = % + 1;9, then
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(The earlier inequality is the special case ¢ = r = p.)



Step 1: ij, < Pb,b via Holder
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» To bound Q5 by Py, first write
1 1 1 5.1 1 5.1
|fK1|2|fK2|2 = (|fK1|6|fK2|6)2(’fK2’6‘fK1‘6)2
and apply (H1) with  =1/2, p = 12:
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> Now take E‘}( and then E}L( norm of both sides, and apply
(H2)Wlth(9_ and —12—{—11;7200r%:%+%_
5 5

L2 —

Together with Minkowski for moving the E}é norm inside the

631/5 norm in the second term, we get Qp, < Py .



Step 2: Py, < Py via L? orthogonality

Lo + sym
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» The key is that for each Ky C .J with |Ks| = N7°, we have
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» Upon taking power 6 of both sides, this is the same as
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» This follows from the fact that for each K7 C Jj,
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which in turn is a consequence of L? orthogonality (and local

constancy for |fx,|° at the correct scale).
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Step 3: Py < Qylyy D(N')%/3 via Holder

+ sym
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» To bound Psyp, by Qsp.3p, first write
1 5 1 1.1 2
’fK1’6’fK2’6 = (’fK1’2’fK2’2)3(|fK2|)3
and apply (H1) with 6 =1/3, p = 12:
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> Now take 6}(21 and then 6}52/5 norm of both sides, and apply
(H2) with 6 = 1/3 and gg = % + 128 in doing the latter.

By parabolic rescaling, we get Py < Q;/;;D(Nl b)2/3,



Step 4: Qp3p Ser NE/ngjgb via parabola decoupling
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» The key is that for each Ky C Jo with |Ks| = N30 we have
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» Upon taking power 2 of both sides, this is the same as
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» This follows from the fact that for each K1 C Ji,
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which in turn is a consequence of the corollary of parabola
decoupling we mentioned earlier (and local constancy for
|fK,| at the correct scale).
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Remarks

>

>

The above proof is from joint work with Shaoming Guo, Zane
Kun Li and Pavel Zorin-Kranich.

It was inspired by Wooley's work on efficient congruencing.
The original proof of Bourgain, Demeter and Guth uses a

multilinear reduction (as opposed to bilinear) and uses
incidence estimates (multilinear Kakeya).

We actually have D(N) < exp(Clog’ﬁjgN) (Schippa 2023).

This is in turn based on an improved decoupling constant for
the parabola at p = 6, due to Guth, Maldague and Wang.
They proved a slightly easier estimate using square functions:

I 1lze S (log V) Hfu”?’(z 503"

and then upgraded it to decoupling.



Questions

> We know the decoupling constant for the parabola in R2 (for
p = 6) is just a power of log N. What about the circle?

» Can one give a direct proof of decoupling for the circle in R2
without the Pramanik-Seeger iteration?

» Analogous question for the cone in R2+1?

Small cap decoupling for the moment curve in R™, n > 47

v

» What other tools do we have when decoupling alone does not
give the optimal estimate?



