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Decoupling inequalities
▶ Given a Schwartz function f on Rn and an exponent p, we

seek a decomposition of f into a sum: f =
∑N

j=1 fj , so that

∥f∥Lp ≤ Dp(N)
(∑

j

∥fj∥2Lp

)1/2
.

▶ If p = 2 and f =
∑

j fj is an orthogonal decomposition, then
Dp(N) = 1.

▶ Minkowski inequality for Lp + Cauchy-Schwarz shows that the
inequality always holds with Dp(N) replaced by N

1
2 if p ≥ 2:

∥f∥Lp ≤
∑
j

∥fj∥Lp ≤ N
1
2

(∑
j

∥fj∥2Lp

)1/2
.

(This is usually sharp at p = ∞)

▶ Often better bounds are possible for intermediate p’s
→ powerful tools in PDEs (e.g. local smoothing, discrete
restriction), analytic number theory, geometric measure theory.



Examples of non-trivial decoupling

▶ Start with f whose Fourier transform is supported in a δ
neighbourhood of a curved, compact submanifold S in R̂n.

▶ We cut the neighbourhood into N boxes ‘tangent’ to S, and
let fj be the frequency localization of f to the j-th box.

▶ Paraboloids in R̂n (Bourgain-Demeter):
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▶ Cones in R̂n+1 (Wolff, Wolff- Laba, Pramanik-Seeger,
Bourgain-Demeter):



▶ Moment curve {(t, t2, . . . , tn) : t ∈ [0, 1]} in R̂n

(Bourgain-Demeter-Guth, Wooley, Guo-Li-Y.-Zorin-Kranich):



The parabola case

▶ For every ε > 0, Bourgain-Demeter proved that

∥f∥Lp ≲ε N
ε
( N∑

j=1

∥fj∥2Lp

)1/2
if 2 ≤ p ≤ 6.

▶ Let’s take this for granted, and see how we can use it to prove
new decoupling inequalities.



Parabolic rescaling: length of parabola doesn’t matter
▶ Let 1 ≤ a ≤ 2. If f̂ is supported in a δ neighbourhood of a

short parabolic arc {(t, at2) : 0 ≤ t ≤ L}, then the number of
δ1/2 × δ boxes covering this δ neighbourhood is ≃ L/δ1/2.

▶ These boxes rescale under (ξ1, ξ2) 7→ ( ξ1L , ξ2
aL2 ) to boxes

covering a δ
aL2 neighbourhood of the unit parabola, so

decoupling for the unit parabola applies to f(x1
L , x2

aL2 ).
▶ This allows one to decouple f into N := L

δ1/2
many pieces,

and obtain the corresponding decoupling inequality:

∥f∥Lp ≲ε N
ε
( N∑

j=1

∥fj∥2Lp

)1/2
if 2 ≤ p ≤ 6.



Pramanik-Seeger iteration: Decoupling for C3 curves

▶ Let f̂ be supported in a δ neighbourhood of a C3 curve

(t, γ(t)) in R̂2 with 1 ≤ |γ′′(t)| ≤ 2 for all t (e.g.: a circle).

▶ Cut this neighbourhood into N = δ−1/2 boxes of size δ1/2 × δ.

▶ A nice argument of Pramanik and Seeger allows one to
decouple f =

∑N
j=1 fj by frequency localizing f to these

boxes, and obtain

∥f∥Lp ≲ε N
ε
( N∑

j=1

∥fj∥2Lp

)1/2
if 2 ≤ p ≤ 6.

▶ A similar argument allows one to obtain decoupling for the

sphere in R̂n, or the cone in R̂n+1.



▶ Proof: First trivially decouple f into δ−ε many big pieces.

▶ By Taylor expanding γ, we see that each big piece of f is
supported in a δ3ε neighbourhood of a short parabolic arc.

▶ Bourgain-Demeter allows one to decouple big piece of f into
δε/(δ3ε)1/2 = δ−ε/2 many smaller pieces.

▶ The Fourier supports of the smaller pieces are even better
approximated by short parabolic arcs.

▶ Repeat until one reaches boxes of size δ1/2 × δ.
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Fubini’s theorem: Lifting to higher dimensions
▶ From the above, we can decouple functions on R2 whose

Fourier support lies in a δ neighbourhood of the curve γ0:

t 7→ (t2, t3), t ∈ [1/2, 1].

▶ We can lift it trivially to higher dimensions as follows.
▶ If f is a function on R3, then for fixed x1, the Fourier support

of f(x1, ·, ·) is contained in the projection of the Fourier
support of f onto the ξ2, ξ3 plane:∫
R2

f(x1, x2, x3)e
−2πi(x2ξ2+x3ξ3)dx2dx3 =

∫
R
f̂(ξ1, ξ2, ξ3)e

2πix1ξ1dξ1.

▶ If such projection is in a δ neighbourhood of γ0, then we can
decouple f(x1, ·, ·) into δ−1/2 many pieces for each x1.

▶ Integrating with respect to x1 and using Fubini’s theorem, we
can now decouple f in R3.

▶ This corollary of parabola decoupling is what one needs to
prove decoupling for the moment curve in R3.



Proof of decoupling for the moment curve in R3

▶ Let γ(t) = (t, t2, t3) for t ∈ [0, 1] be the moment curve in R3.

▶ Partition [0, 1] into N intervals {I}.

▶ For each I, and let θI be a box of size 1
N × 1

N2 × 1
N3 tangent

to γ(I), and f be a function with Fourier support in
⋃

I θI .

▶ Below we sketch a proof how one decouples f into
∑

I fI ,
where fI is the frequency localization of f to θI . Goal:

∥f∥L12 ≲ε N
ε if

(∑
I

∥fI∥2L12

)1/2
= 1.

▶ Notations: I is always one of these intervals of length 1/N .
For interval J ⊂ [0, 1] with length ≥ 1/N , write

fJ :=
∑
I⊂J

fI ,

where sum is over the subintervals I contained in J .
Also write |J | for the length of an interval J .
D(N) is the best constant in our main inequality.



Bilinearization
▶ Fix ε > 0. Since f =

∑
|J |=N−ε fJ , if we expand

∥f∥L12 = (
∫
|f |12)

1
12 , we need to estimate terms like(∫

|fJ1 |6|fJ2 |6
) 1

12
=

∥∥∥|fJ1 | 12 |fJ2 | 12∥∥∥
L12

(*)

where |J1| = |J2| = N−ε are at distance ≥ N−ε.
▶ These are the main terms. Fix such J1, J2 from now on.
▶ For 0 < a, b ≤ 1 introduce

Qa,b :=

∥∥∥∥∥∥∥∥∥∥∥|fK1 |
1
2 |fK2 |

1
2

∥∥∥
L12

∥∥∥
ℓ4
|K1|=N−a

∥∥∥∥∥
ℓ4
|K2|=N−b

where in the ℓ4 norms, we sum over partitions {Ki} of Ji.
▶ Qε,ε is precisely the main term (*) we want to estimate.

▶ Q1,1 is bounded by
(∑

I ∥fI∥2L12

)1/2
since Hölder gives∥∥∥|fK1 |

1
2 |fK2 |

1
2

∥∥∥
L12

≤ ∥fK1∥
1/2
L12∥fK2∥

1/2
L12 .



Qa,b :=

∥∥∥∥∥∥∥∥∥∥∥|fK1 |
1
2 |fK2 |

1
2

∥∥∥
L12

∥∥∥
ℓ4
|K1|=N−a

∥∥∥∥∥
ℓ4
|K2|=N−b

▶ We want to bound Qε,ε by Q1,1.

▶ To do so, for 0 < b ≤ 1 we bound Qb,b by Q3b,3b, and then
iterate:
we bound Qε,ε by Q3ε,3ε, which in turn is bounded by Q9ε,9ε,
Q27ε,27ε etc until we reach Q1,1.

▶ It will also be useful to consider, for 0 < a, b ≤ 1, a quantity

Pa,b :=

∥∥∥∥∥∥∥∥∥∥∥|fK1 |
1
6 |fK2 |

5
6

∥∥∥
L12

∥∥∥
ℓ12
|K1|=N−a

∥∥∥∥∥
ℓ
12
5

|K2|=N−b

+ sym

where sym is a similar term with roles of K1 and K2 reversed.



Bounding Qb,b by Q3b,3b

▶ Three tools:
1. Hölder’s inequality
2. L2 orthogonality
3. Decoupling for parabola in R2

▶ Four steps:
1. Qb,b ≤ Pb,b via Hölder
2. Pb,b ≲ P3b,b via L2 orthogonality

3. P3b,b ≤ Q
1/3
b,3bD(N1−b)2/3 via Hölder

4. Qb,3b ≲ε′ N
ε′Q3b,3b via parabola decoupling

▶ Altogether, one gets

Qb,b ≲ε′ N
ε′Q

1/3
3b,3bD(N1−b)2/3

which one can then bootstrap to show D(N) ≲ε N
ε.



Hölder’s inequality

▶ If θ ∈ [0, 1] then for any p we have

∥|F |θ|G|1−θ∥Lp ≤ ∥F∥θLp∥G∥1−θ
Lp . (H1)

▶ Also works for ℓp norm of sequences:∥∥∥|aK |θ|bK |1−θ
∥∥∥
ℓpK

≤ ∥aK∥θℓpK∥bK∥1−θ
ℓpK

.

▶ More generally, if θ ∈ [0, 1] and 1
p = θ

q +
1−θ
r , then∥∥∥|aK |θ|bK |1−θ

∥∥∥
ℓpK

≤ ∥aK∥θℓqK∥bK∥1−θ
ℓrK

. (H2)

(The earlier inequality is the special case q = r = p.)



Step 1: Qb,b ≤ Pb,b via Hölder

Qb,b =

∥∥∥∥∥∥∥∥∥∥∥|fK1
| 12 |fK2

| 12
∥∥∥
L12

∥∥∥
ℓ4
|K1|=N−b

∥∥∥∥∥
ℓ4
|K2|=N−b

Pb,b =

∥∥∥∥∥∥∥∥∥∥∥|fK1
| 16 |fK2

| 56
∥∥∥
L12

∥∥∥
ℓ12
|K1|=N−b

∥∥∥∥∥
ℓ
12
5

|K2|=N−b

+ sym

▶ To bound Qb,b by Pb,b, first write

|fK1 |
1
2 |fK2 |

1
2 = (|fK1 |

1
6 |fK2 |

5
6 )

1
2 (|fK2 |

1
6 |fK1 |

5
6 )

1
2

and apply (H1) with θ = 1/2, p = 12:∥∥∥|fK1 |
1
2 |fK2 |

1
2

∥∥∥
L12

≤
∥∥∥|fK1 |

1
6 |fK2 |

5
6

∥∥∥ 1
2

L12

∥∥∥|fK2 |
1
6 |fK1 |

5
6

∥∥∥ 1
2

L12
.

▶ Now take ℓ4K1
and then ℓ4K2

norm of both sides, and apply

(H2) with θ = 1
2 and 1

4 = θ
12 + 1−θ

12
5

or 1
4 = θ

12
5

+ 1−θ
12 .

Together with Minkowski for moving the ℓ12K2
norm inside the

ℓ
12/5
K1

norm in the second term, we get Qb,b ≤ Pb,b.



Step 2: Pb,b ≲ P3b,b via L2 orthogonality

Pa,b =

∥∥∥∥∥∥∥∥∥∥∥|fK1
| 16 |fK2

| 56
∥∥∥
L12

∥∥∥
ℓ12
|K1|=N−a

∥∥∥∥∥
ℓ
12
5

|K2|=N−b

+ sym

▶ The key is that for each K2 ⊂ J2 with |K2| = N−b, we have∥∥∥∥∥∥|fK1 |
1
6 |fK2 |

5
6

∥∥∥
L12

∥∥∥
ℓ12
|K1|=N−b

≤
∥∥∥∥∥∥|fK1 |

1
6 |fK2 |

5
6

∥∥∥
L12

∥∥∥
ℓ12
|K1|=N−3b

.

▶ Upon taking power 6 of both sides, this is the same as∥∥∥∥∥∥|fK1 ||fK2 |5
∥∥∥
L2

∥∥∥
ℓ2
|K1|=N−b

≤
∥∥∥∥∥∥|fK1 ||fK2 |5

∥∥∥
L2

∥∥∥
ℓ2
|K1|=N−3b

.

▶ This follows from the fact that for each K1 ⊂ J1,∥∥∥|fK1 ||fK2 |5
∥∥∥
L2

≤
∥∥∥∥∥∥|fK′

1
||fK2 |5

∥∥∥
L2

∥∥∥
ℓ2
K′

1⊂K1,|K′
1|=N−3b

,

which in turn is a consequence of L2 orthogonality (and local
constancy for |fK2 |5 at the correct scale).



Step 3: P3b,b ≤ Q
1/3
b,3bD(N 1−b)2/3 via Hölder

P3b,b =

∥∥∥∥∥∥∥∥∥∥∥|fK1 |
1
6 |fK2 |

5
6

∥∥∥
L12

∥∥∥
ℓ12
|K1|=N−3b

∥∥∥∥∥
ℓ
12
5

|K2|=N−b

+ sym

Q3b,3b =

∥∥∥∥∥∥∥∥∥∥∥|fK1
| 12 |fK2

| 12
∥∥∥
L12

∥∥∥
ℓ4
|K1|=N−3b

∥∥∥∥∥
ℓ4
|K2|=N−3b

▶ To bound P3b,b by Q3b,3b, first write

|fK1 |
1
6 |fK2 |

5
6 = (|fK1 |

1
2 |fK2 |

1
2 )

1
3 (|fK2 |)

2
3

and apply (H1) with θ = 1/3, p = 12:∥∥∥|fK1 |
1
6 |fK2 |

5
6

∥∥∥
L12

≤
∥∥∥|fK1 |

1
2 |fK2 |

1
2

∥∥∥ 1
3

L12
∥fK2∥

2
3

L12 .

▶ Now take ℓ12K1
and then ℓ

12/5
K2

norm of both sides, and apply

(H2) with θ = 1/3 and 1
12
5

= θ
4 + 1−θ

2 in doing the latter.

By parabolic rescaling, we get P3b,b ≤ Q
1/3
b,3bD(N1−b)2/3.



Step 4: Qb,3b ≲ε′ N
ε′Q3b,3b via parabola decoupling

Qa,3b =

∥∥∥∥∥∥∥∥∥∥∥|fK1
| 12 |fK2

| 12
∥∥∥
L12

∥∥∥
ℓ4
|K1|=N−a

∥∥∥∥∥
ℓ4
|K2|=N−3b

▶ The key is that for each K2 ⊂ J2 with |K2| = N−3b, we have∥∥∥∥∥∥|fK1 |
1
2 |fK2 |

1
2

∥∥∥
L12

∥∥∥
ℓ4
|K1|=N−b

≲ε′ N
ε′
∥∥∥∥∥∥|fK1 |

1
2 |fK2 |

1
2

∥∥∥
L12

∥∥∥
ℓ4
|K1|=N−3b

.

▶ Upon taking power 2 of both sides, this is the same as∥∥∥∥∥∥|fK1 ||fK2 |
∥∥∥
L6

∥∥∥
ℓ2
|K1|=N−b

≲ε′ N
ε′
∥∥∥∥∥∥|fK1 ||fK2 |

∥∥∥
L6

∥∥∥
ℓ2
|K1|=N−3b

.

▶ This follows from the fact that for each K1 ⊂ J1,∥∥∥|fK1 ||fK2 |
∥∥∥
L6

≲ε′ N
ε′
∥∥∥∥∥∥|fK′

1
||fK2 |

∥∥∥
L6

∥∥∥
ℓ2
K′

1⊂K1,|K′
1|=N−3b

,

which in turn is a consequence of the corollary of parabola
decoupling we mentioned earlier (and local constancy for
|fK2 | at the correct scale).



Remarks

▶ The above proof is from joint work with Shaoming Guo, Zane
Kun Li and Pavel Zorin-Kranich.

▶ It was inspired by Wooley’s work on efficient congruencing.

▶ The original proof of Bourgain, Demeter and Guth uses a
multilinear reduction (as opposed to bilinear) and uses
incidence estimates (multilinear Kakeya).

▶ We actually have D(N) ≲ exp(C logN
log logN ) (Schippa 2023).

▶ This is in turn based on an improved decoupling constant for
the parabola at p = 6, due to Guth, Maldague and Wang.
They proved a slightly easier estimate using square functions:

∥f∥L6 ≲ (logN)c∥f∥1/3
L2

( N∑
j=1

∥fj∥2L∞

)1/3

and then upgraded it to decoupling.



Questions

▶ We know the decoupling constant for the parabola in R̂2 (for
p = 6) is just a power of logN . What about the circle?

▶ Can one give a direct proof of decoupling for the circle in R̂2

without the Pramanik-Seeger iteration?

▶ Analogous question for the cone in R̂2+1?

▶ Small cap decoupling for the moment curve in R̂n, n ≥ 4?

▶ What other tools do we have when decoupling alone does not
give the optimal estimate?


