Techniques for proving decoupling inequalities

Po-Lam Yung

Australian National University
March 30, 2023

Decoupling inequalities

- Given a Schwartz function f on \mathbb{R}^{n} and an exponent p, we seek a decomposition of f into a sum: $f=\sum_{j=1}^{N} f_{j}$, so that

$$
\|f\|_{L^{p}} \leq D_{p}(N)\left(\sum_{j}\left\|f_{j}\right\|_{L^{p}}^{2}\right)^{1 / 2}
$$

- If $p=2$ and $f=\sum_{j} f_{j}$ is an orthogonal decomposition, then $D_{p}(N)=1$.
- Minkowski inequality for $L^{p}+$ Cauchy-Schwarz shows that the inequality always holds with $D_{p}(N)$ replaced by $N^{\frac{1}{2}}$ if $p \geq 2$:

$$
\|f\|_{L^{p}} \leq \sum_{j}\left\|f_{j}\right\|_{L^{p}} \leq N^{\frac{1}{2}}\left(\sum_{j}\left\|f_{j}\right\|_{L^{p}}^{2}\right)^{1 / 2}
$$

(This is usually sharp at $p=\infty$)

- Often better bounds are possible for intermediate p 's \rightarrow powerful tools in PDEs (e.g. local smoothing, discrete restriction), analytic number theory, geometric measure theory.

Examples of non-trivial decoupling

- Start with f whose Fourier transform is supported in a δ neighbourhood of a curved, compact submanifold S in $\widehat{\mathbb{R}^{n}}$.
- We cut the neighbourhood into N boxes 'tangent' to S, and let f_{j} be the frequency localization of f to the j-th box.
- Paraboloids in $\widehat{\mathbb{R}^{n}}$ (Bourgain-Demeter):

$$
n=2 \quad \xi_{2}=\xi_{1}^{2}
$$

Examples of non-trivial decoupling

- Start with f whose Fourier transform is supported in a δ neighbourhood of a curved, compact submanifold S in $\widehat{\mathbb{R}^{n}}$.
- We cut the neighbourhood into N boxes 'tangent' to S, and let f_{j} be the frequency localization of f to the j-th box.
- Paraboloids in $\widehat{\mathbb{R}^{n}}$ (Bourgain-Demeter):

$$
n=3
$$

- Cones in $\widehat{\mathbb{R}^{n+1}}$ (Wolff, Wolff-taba, Pramanik-Seeger, Bourgain-Demeter):

- Moment curve $\left\{\left(t, t^{2}, \ldots, t^{n}\right): t \in[0,1]\right\}$ in $\widehat{\mathbb{R}^{n}}$ (Bourgain-Demeter-Guth, Wooley, Guo-Li-Y.-Zorin-Kranich):

The parabola case

- For every $\varepsilon>0$, Bourgain-Demeter proved that

$$
\|f\|_{L^{p}} \lesssim_{\varepsilon} N^{\varepsilon}\left(\sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{p}}^{2}\right)^{1 / 2} \quad \text { if } 2 \leq p \leq 6 .
$$

- Let's take this for granted, and see how we can use it to prove new decoupling inequalities.

Parabolic rescaling: length of parabola doesn't matter

- Let $1 \leq a \leq 2$. If \widehat{f} is supported in a δ neighbourhood of a short parabolic arc $\left\{\left(t, a t^{2}\right): 0 \leq t \leq L\right\}$, then the number of $\delta^{1 / 2} \times \delta$ boxes covering this δ neighbourhood is $\simeq L / \delta^{1 / 2}$.
- These boxes rescale under $\left(\xi_{1}, \xi_{2}\right) \mapsto\left(\frac{\xi_{1}}{L}, \frac{\xi_{2}}{a L^{2}}\right)$ to boxes covering a $\frac{\delta}{a L^{2}}$ neighbourhood of the unit parabola, so decoupling for the unit parabola applies to $f\left(\frac{x_{1}}{L}, \frac{x_{2}}{a L^{2}}\right)$.
- This allows one to decouple f into $N:=\frac{L}{\delta^{1 / 2}}$ many pieces, and obtain the corresponding decoupling inequality:

$$
\|f\|_{L^{p}} \lesssim \varepsilon N^{\varepsilon}\left(\sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{p}}^{2}\right)^{1 / 2} \quad \text { if } 2 \leq p \leq 6
$$

Pramanik-Seeger iteration: Decoupling for C^{3} curves

- Let \widehat{f} be supported in a δ neighbourhood of a C^{3} curve $(t, \gamma(t))$ in \mathbb{R}^{2} with $1 \leq\left|\gamma^{\prime \prime}(t)\right| \leq 2$ for all t (e.g.: a circle).
- Cut this neighbourhood into $N=\delta^{-1 / 2}$ boxes of size $\delta^{1 / 2} \times \delta$.
- A nice argument of Pramanik and Seeger allows one to decouple $f=\sum_{j=1}^{N} f_{j}$ by frequency localizing f to these boxes, and obtain

$$
\|f\|_{L^{p}} \lesssim \varepsilon N^{\varepsilon}\left(\sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{p}}^{2}\right)^{1 / 2} \quad \text { if } 2 \leq p \leq 6
$$

- A similar argument allows one to obtain decoupling for the sphere in $\widehat{\mathbb{R}^{n}}$, or the cone in $\widehat{\mathbb{R}^{n+1}}$.
- Proof: First trivially decouple f into $\delta^{-\varepsilon}$ many big pieces.

- Proof: First trivially decouple f into $\delta^{-\varepsilon}$ many big pieces.

- By Taylor expanding γ, we see that each big piece of f is supported in a $\delta^{3 \varepsilon}$ neighbourhood of a short parabolic arc.
- Proof: First trivially decouple f into $\delta^{-\varepsilon}$ many big pieces.

$\longleftarrow \delta^{\varepsilon} \longrightarrow$
- By Taylor expanding γ, we see that each big piece of f is supported in a $\delta^{3 \varepsilon}$ neighbourhood of a short parabolic arc.
- Bourgain-Demeter allows one to decouple big piece of f into $\delta^{\varepsilon} /\left(\delta^{3 \varepsilon}\right)^{1 / 2}=\delta^{-\varepsilon / 2}$ many smaller pieces.
- The Fourier supports of the smaller pieces are even better approximated by short parabolic arcs.
- Repeat until one reaches boxes of size $\delta^{1 / 2} \times \delta$.

Fubini's theorem: Lifting to higher dimensions

- From the above, we can decouple functions on \mathbb{R}^{2} whose Fourier support lies in a δ neighbourhood of the curve γ_{0} :

$$
t \mapsto\left(t^{2}, t^{3}\right), \quad t \in[1 / 2,1] .
$$

- We can lift it trivially to higher dimensions as follows.
- If f is a function on \mathbb{R}^{3}, then for fixed x_{1}, the Fourier support of $f\left(x_{1}, \cdot, \cdot\right)$ is contained in the projection of the Fourier support of f onto the ξ_{2}, ξ_{3} plane:

$$
\int_{\mathbb{R}^{2}} f\left(x_{1}, x_{2}, x_{3}\right) e^{-2 \pi i\left(x_{2} \xi_{2}+x_{3} \xi_{3}\right)} d x_{2} d x_{3}=\int_{\mathbb{R}} \widehat{f}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) e^{2 \pi i x_{1} \xi_{1}} d \xi_{1}
$$

- If such projection is in a δ neighbourhood of γ_{0}, then we can decouple $f\left(x_{1}, \cdot, \cdot\right)$ into $\delta^{-1 / 2}$ many pieces for each x_{1}.
- Integrating with respect to x_{1} and using Fubini's theorem, we can now decouple f in \mathbb{R}^{3}.
- This corollary of parabola decoupling is what one needs to prove decoupling for the moment curve in \mathbb{R}^{3}.

Proof of decoupling for the moment curve in \mathbb{R}^{3}

- Let $\gamma(t)=\left(t, t^{2}, t^{3}\right)$ for $t \in[0,1]$ be the moment curve in \mathbb{R}^{3}.
- Partition $[0,1]$ into N intervals $\{I\}$.
- For each I, and let θ_{I} be a box of size $\frac{1}{N} \times \frac{1}{N^{2}} \times \frac{1}{N^{3}}$ tangent to $\gamma(I)$, and f be a function with Fourier support in $\bigcup_{I} \theta_{I}$.
- Below we sketch a proof how one decouples f into $\sum_{I} f_{I}$, where f_{I} is the frequency localization of f to θ_{I}. Goal:

$$
\|f\|_{L^{12}} \lesssim \varepsilon N^{\varepsilon} \quad \text { if }\left(\sum_{I}\left\|f_{I}\right\|_{L^{12}}^{2}\right)^{1 / 2}=1
$$

- Notations: I is always one of these intervals of length $1 / N$. For interval $J \subset[0,1]$ with length $\geq 1 / N$, write

$$
f_{J}:=\sum_{I \subset J} f_{I}
$$

where sum is over the subintervals I contained in J. Also write $|J|$ for the length of an interval J. $D(N)$ is the best constant in our main inequality.

Bilinearization

- Fix $\varepsilon>0$. Since $f=\sum_{|J|=N^{-\varepsilon}} f_{J}$, if we expand
$\|f\|_{L^{12}}=\left(\int|f|^{12}\right)^{\frac{1}{12}}$, we need to estimate terms like

$$
\begin{equation*}
\left(\int\left|f_{J_{1}}\right|^{6}\left|f_{J_{2}}\right|^{6}\right)^{\frac{1}{12}}=\left\|\left|f_{J_{1}}\right|^{\frac{1}{2}}\left|f_{J_{2}}\right|^{\frac{1}{2}}\right\|_{L^{12}} \tag{*}
\end{equation*}
$$

where $\left|J_{1}\right|=\left|J_{2}\right|=N^{-\varepsilon}$ are at distance $\geq N^{-\varepsilon}$.

- These are the main terms. Fix such J_{1}, J_{2} from now on.
- For $0<a, b \leq 1$ introduce

$$
Q_{a, b}:=\| \|\| \|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-a}}^{4}} \|_{\ell_{\left|K_{2}\right|=N^{-b}}^{4}}
$$

where in the ℓ^{4} norms, we sum over partitions $\left\{K_{i}\right\}$ of J_{i}.

- $Q_{\varepsilon, \varepsilon}$ is precisely the main term $\left(^{*}\right)$ we want to estimate.
- $Q_{1,1}$ is bounded by $\left(\sum_{I}\left\|f_{I}\right\|_{L^{12}}^{2}\right)^{1 / 2}$ since Hölder gives

$$
\left\|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\right\|_{L^{12}} \leq\left\|f_{K_{1}}\right\|_{L^{12}}^{1 / 2}\left\|f_{K_{2}}\right\|_{L^{12}}^{1 / 2}
$$

$$
Q_{a, b}:=\| \|\| \|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-a}}^{4}} \|_{\ell_{\left|K_{2}\right|=N^{-b}}^{4}}
$$

- We want to bound $Q_{\varepsilon, \varepsilon}$ by $Q_{1,1}$.
- To do so, for $0<b \leq 1$ we bound $Q_{b, b}$ by $Q_{3 b, 3 b}$, and then iterate:
we bound $Q_{\varepsilon, \varepsilon}$ by $Q_{3 \varepsilon, 3 \varepsilon}$, which in turn is bounded by $Q_{9 \varepsilon, 9 \varepsilon}$, $Q_{27 \varepsilon, 27 \varepsilon}$ etc until we reach $Q_{1,1}$.
- It will also be useful to consider, for $0<a, b \leq 1$, a quantity

$$
P_{a, b}:=\| \|\| \|\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-a}}^{12}} \|_{l_{\left|K_{2}\right|=N^{-b}}^{\frac{12}{5}}}+\text { sym }
$$

where sym is a similar term with roles of K_{1} and K_{2} reversed.

Bounding $Q_{b, b}$ by $Q_{3 b, 3 b}$

- Three tools:

1. Hölder's inequality
2. L^{2} orthogonality
3. Decoupling for parabola in \mathbb{R}^{2}

- Four steps:

1. $Q_{b, b} \leq P_{b, b}$ via Hölder
2. $P_{b, b} \lesssim P_{3 b, b}$ via L^{2} orthogonality
3. $P_{3 b, b} \leq Q_{b, 3 b}^{1 / 3} D\left(N^{1-b}\right)^{2 / 3}$ via Hölder
4. $Q_{b, 3 b}{\lesssim \varepsilon^{\prime}} N^{\varepsilon^{\prime}} Q_{3 b, 3 b}$ via parabola decoupling

- Altogether, one gets

$$
Q_{b, b} \lesssim_{\varepsilon^{\prime}} N^{\varepsilon^{\prime}} Q_{3 b, 3 b}^{1 / 3} D\left(N^{1-b}\right)^{2 / 3}
$$

which one can then bootstrap to show $D(N) \lesssim \varepsilon N^{\varepsilon}$.

Hölder's inequality

- If $\theta \in[0,1]$ then for any p we have

$$
\begin{equation*}
\left\||F|^{\theta}|G|^{1-\theta}\right\|_{L^{p}} \leq\|F\|_{L^{p}}^{\theta}\|G\|_{L^{p}}^{1-\theta} . \tag{H1}
\end{equation*}
$$

- Also works for ℓ^{p} norm of sequences:

$$
\left\|\left|a_{K}\right|^{\theta}\left|b_{K}\right|^{1-\theta}\right\|_{\ell_{K}^{p}} \leq\left\|a_{K}\right\|_{\ell_{K}^{p}}^{\theta}\left\|b_{K}\right\|_{\ell_{K}^{p}}^{1-\theta} .
$$

- More generally, if $\theta \in[0,1]$ and $\frac{1}{p}=\frac{\theta}{q}+\frac{1-\theta}{r}$, then

$$
\begin{equation*}
\left\|\left|a_{K}\right|^{\theta}\left|b_{K}\right|^{1-\theta}\right\|_{\ell_{K}^{p}} \leq\left\|a_{K}\right\|_{\ell_{K}}^{\theta}\left\|b_{K}\right\|_{\ell_{K}}^{1-\theta} . \tag{H2}
\end{equation*}
$$

(The earlier inequality is the special case $q=r=p$.)

Step 1: $Q_{b, b} \leq P_{b, b}$ via Hölder

$$
\begin{gathered}
Q_{b, b}=\| \|\| \|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-b}}^{4}} \|_{\ell_{\left|K_{2}\right|=N^{-b}}^{4}} \\
P_{b, b}=\| \|\| \| \left\lvert\, f_{\left.K_{1}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-b}}^{12}} \|_{\ell_{\left|K_{2}\right|=N^{-b}}^{\frac{12}{2}}}+\text { sym }}\right.
\end{gathered}
$$

- To bound $Q_{b, b}$ by $P_{b, b}$, first write

$$
\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}=\left(\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\right)^{\frac{1}{2}}\left(\left|f_{K_{2}}\right|^{\frac{1}{6}}\left|f_{K_{1}}\right|^{\frac{5}{6}}\right)^{\frac{1}{2}}
$$

and apply (H 1) with $\theta=1 / 2, p=12$:

$$
\left\|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\right\|_{L^{12}} \leq\left\|\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\right\|_{L^{12}}^{\frac{1}{2}}\left\|\left|f_{K_{2}}\right|^{\frac{1}{6}}\left|f_{K_{1}}\right|^{\frac{5}{6}}\right\|_{L^{12}}^{\frac{1}{2}} .
$$

- Now take $\ell_{K_{1}}^{4}$ and then $\ell_{K_{2}}^{4}$ norm of both sides, and apply (H2) with $\theta=\frac{1}{2}$ and $\frac{1}{4}=\frac{\theta}{12}+\frac{1-\theta}{\frac{12}{5}}$ or $\frac{1}{4}=\frac{\theta}{\frac{12}{5}}+\frac{1-\theta}{12}$.
Together with Minkowski for moving the $\ell_{K_{2}}^{12}$ norm inside the $\ell_{K_{1}}^{12 / 5}$ norm in the second term, we get $Q_{b, b} \leq P_{b, b}$.

Step 2: $P_{b, b} \lesssim P_{3 b, b}$ via L^{2} orthogonality

$$
P_{a, b}=\| \|\| \|\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-a}}^{12}} \|_{\ell_{\left|K_{2}\right|=N^{-b}}^{\frac{12}{5}}}+\text { sym }
$$

- The key is that for each $K_{2} \subset J_{2}$ with $\left|K_{2}\right|=N^{-b}$, we have

$$
\left\|\left\|\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\right\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-b}}^{12}} \leq\| \|\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-3 b}}^{12}}
$$

- Upon taking power 6 of both sides, this is the same as

$$
\left\|\left\|\left|f_{K_{1}}\right|\left|f_{K_{2}}\right|^{5}\right\|_{L^{2}}\right\|_{\ell_{\left|K_{1}\right|=N^{-b}}^{2}} \leq\| \|\left|f_{K_{1}}\right|\left|f_{K_{2}}\right|^{5}\left\|_{L^{2}}\right\|_{\ell_{\left|K_{1}\right|=N^{-3 b}}^{2}} .
$$

- This follows from the fact that for each $K_{1} \subset J_{1}$,

$$
\left\|\left|f_{K_{1}}\right|\left|f_{K_{2}}\right|^{5}\right\|_{L^{2}} \leq\| \|\left|f_{K_{1}^{\prime}}\right|\left|f_{K_{2}}\right|^{5}\left\|_{L^{2}}\right\|_{\ell_{K_{1}^{\prime} \subset K_{1},\left|K_{1}^{\prime}\right|=N^{-3 b}}^{2}}
$$

which in turn is a consequence of L^{2} orthogonality (and local constancy for $\left|f_{K_{2}}\right|^{5}$ at the correct scale).

Step 3: $P_{3 b, b} \leq Q_{b, 3 b}^{1 / 3} D\left(N^{1-b}\right)^{2 / 3}$ via Hölder

$$
\begin{gathered}
P_{3 b, b}=\| \|\| \|\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-3 b}}^{12}} \|_{\ell_{\left|K_{2}\right|=N^{-b}}^{\frac{12}{5}}}+\text { sym } \\
Q_{3 b, 3 b}=\| \|\| \|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-3 b}}^{4}} \|_{\ell_{\left|K_{2}\right|=N^{-}-3 b}^{4}}
\end{gathered}
$$

- To bound $P_{3 b, b}$ by $Q_{3 b, 3 b}$, first write

$$
\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}=\left(\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\right)^{\frac{1}{3}}\left(\left|f_{K_{2}}\right|\right)^{\frac{2}{3}}
$$

and apply (H1) with $\theta=1 / 3, p=12$:

$$
\left\|\left|f_{K_{1}}\right|^{\frac{1}{6}}\left|f_{K_{2}}\right|^{\frac{5}{6}}\right\|_{L^{12}} \leq\left\|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\right\|_{L^{12}}^{\frac{1}{3}}\left\|f_{K_{2}}\right\|_{L^{12}}^{\frac{2}{3}}
$$

- Now take $\ell_{K_{1}}^{12}$ and then $\ell_{K_{2}}^{12 / 5}$ norm of both sides, and apply (H2) with $\theta=1 / 3$ and $\frac{1}{\frac{12}{5}}=\frac{\theta}{4}+\frac{1-\theta}{2}$ in doing the latter. By parabolic rescaling, we get $P_{3 b, b} \leq Q_{b, 3 b}^{1 / 3} D\left(N^{1-b}\right)^{2 / 3}$.

Step 4: $Q_{b, 3 b} \lesssim_{\varepsilon^{\prime}} N^{\varepsilon^{\prime}} Q_{3 b, 3 b}$ via parabola decoupling

$$
Q_{a, 3 b}=\| \|\| \| \left\lvert\, f_{\left.K_{1}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\left\|_{L^{12}}\right\|_{\nmid K_{1} \mid=N^{-a}}}\right. \|_{\ell\left|K_{2}\right|=N^{-3 b}}
$$

- The key is that for each $K_{2} \subset J_{2}$ with $\left|K_{2}\right|=N^{-3 b}$, we have

$$
\left\|\left\|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\right\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-b}}} \lesssim_{\varepsilon^{\prime}} N^{\varepsilon^{\prime}}\| \|\left|f_{K_{1}}\right|^{\frac{1}{2}}\left|f_{K_{2}}\right|^{\frac{1}{2}}\left\|_{L^{12}}\right\|_{\ell_{\left|K_{1}\right|=N^{-3 b}}^{4}}
$$

- Upon taking power 2 of both sides, this is the same as

$$
\left\|\left\|\left|f_{K_{1}}\right|\left|f_{K_{2}}\right|\right\|_{L^{6}}\right\|_{\ell_{\left|K_{1}\right|=N^{-b}}^{2}} \lesssim \varepsilon^{\prime} N^{\varepsilon^{\prime}}\| \|\left|f_{K_{1}}\right|\left|f_{K_{2}}\right|\left\|_{L^{6}}\right\|_{\ell_{\left|K_{1}\right|=N^{-3 b}}}
$$

- This follows from the fact that for each $K_{1} \subset J_{1}$,

$$
\left\|\left|f_{K_{1}}\right|\left|f_{K_{2}}\right|\right\|_{L^{6}} \lesssim_{\varepsilon^{\prime}} N^{\varepsilon^{\prime}}\| \|\left\|\left|f_{K_{1}^{\prime}}\right|\left|f_{K_{2}}\right|\right\|_{L^{6}} \|_{\ell_{K_{1}^{\prime} \subset K_{1},\left|K_{1}^{\prime}\right|=N^{-3 b}}}
$$

which in turn is a consequence of the corollary of parabola decoupling we mentioned earlier (and local constancy for $\left|f_{K_{2}}\right|$ at the correct scale).

Remarks

- The above proof is from joint work with Shaoming Guo, Zane Kun Li and Pavel Zorin-Kranich.
- It was inspired by Wooley's work on efficient congruencing.
- The original proof of Bourgain, Demeter and Guth uses a multilinear reduction (as opposed to bilinear) and uses incidence estimates (multilinear Kakeya).
- We actually have $D(N) \lesssim \exp \left(C \frac{\log N}{\log \log N}\right)$ (Schippa 2023).
- This is in turn based on an improved decoupling constant for the parabola at $p=6$, due to Guth, Maldague and Wang. They proved a slightly easier estimate using square functions:

$$
\|f\|_{L^{6}} \lesssim(\log N)^{c}\|f\|_{L^{2}}^{1 / 3}\left(\sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{\infty}}^{2}\right)^{1 / 3}
$$

and then upgraded it to decoupling.

Questions

- We know the decoupling constant for the parabola in $\widehat{\mathbb{R}}^{2}$ (for $p=6)$ is just a power of $\log N$. What about the circle?
- Can one give a direct proof of decoupling for the circle in $\widehat{\mathbb{R}}^{2}$ without the Pramanik-Seeger iteration?
- Analogous question for the cone in $\widehat{\mathbb{R}^{2+1}}$?
- Small cap decoupling for the moment curve in $\widehat{\mathbb{R}}^{n}, n \geq 4$?
- What other tools do we have when decoupling alone does not give the optimal estimate?

