Techniques for proving decoupling inequalities

Po-Lam Yung

Australian National University

March 30, 2023

Decoupling inequalities

• Given a Schwartz function f on \mathbb{R}^n and an exponent p, we seek a decomposition of f into a sum: $f = \sum_{i=1}^N f_i$, so that

$$||f||_{L^p} \le D_p(N) \Big(\sum_j ||f_j||_{L^p}^2\Big)^{1/2}$$

- If p = 2 and $f = \sum_j f_j$ is an orthogonal decomposition, then $D_p(N) = 1$.
- ► Minkowski inequality for L^p + Cauchy-Schwarz shows that the inequality always holds with D_p(N) replaced by N^{1/2} if p ≥ 2:

$$\|f\|_{L^p} \le \sum_j \|f_j\|_{L^p} \le N^{\frac{1}{2}} \Big(\sum_j \|f_j\|_{L^p}^2\Big)^{1/2}$$

(This is usually sharp at $p = \infty$)

► Often better bounds are possible for intermediate p's → powerful tools in PDEs (e.g. local smoothing, discrete restriction), analytic number theory, geometric measure theory.

Examples of non-trivial decoupling

- Start with f whose Fourier transform is supported in a δ neighbourhood of a curved, compact submanifold S in Rⁿ.
- We cut the neighbourhood into N boxes 'tangent' to S, and let f_j be the frequency localization of f to the j-th box.
- Paraboloids in $\widehat{\mathbb{R}^n}$ (Bourgain-Demeter):

Examples of non-trivial decoupling

- Start with f whose Fourier transform is supported in a δ neighbourhood of a curved, compact submanifold S in Rⁿ.
- We cut the neighbourhood into N boxes 'tangent' to S, and let f_j be the frequency localization of f to the j-th box.
- Paraboloids in $\widehat{\mathbb{R}^n}$ (Bourgain-Demeter):

 Cones in Rⁿ⁺¹ (Wolff, Wolff-Łaba, Pramanik-Seeger, Bourgain-Demeter):

Moment curve $\{(t, t^2, \dots, t^n): t \in [0, 1]\}$ in $\widehat{\mathbb{R}^n}$ (Bourgain-Demeter-Guth, Wooley, Guo-Li-Y.-Zorin-Kranich):

The parabola case

For every $\varepsilon > 0$, Bourgain-Demeter proved that

$$\|f\|_{L^p} \lesssim_{\varepsilon} N^{\varepsilon} \Big(\sum_{j=1}^N \|f_j\|_{L^p}^2\Big)^{1/2} \quad \text{if } 2 \le p \le 6.$$

Let's take this for granted, and see how we can use it to prove new decoupling inequalities.

Parabolic rescaling: length of parabola doesn't matter

- Let 1 ≤ a ≤ 2. If f̂ is supported in a δ neighbourhood of a short parabolic arc {(t, at²): 0 ≤ t ≤ L}, then the number of δ^{1/2} × δ boxes covering this δ neighbourhood is ≃ L/δ^{1/2}.
- These boxes rescale under (ξ₁, ξ₂) → (^{ξ₁}/_L, ^{ξ₂}/_{aL²}) to boxes covering a ^δ/_{aL²} neighbourhood of the unit parabola, so decoupling for the unit parabola applies to f(^{x₁}/_L, ^{x₂}/_{aL²}).
- ► This allows one to decouple f into $N := \frac{L}{\delta^{1/2}}$ many pieces, and obtain the corresponding decoupling inequality:

$$\|f\|_{L^p} \lesssim_{\varepsilon} N^{\varepsilon} \Big(\sum_{j=1}^N \|f_j\|_{L^p}^2\Big)^{1/2} \quad \text{if } 2 \le p \le 6.$$

Pramanik-Seeger iteration: Decoupling for C^3 curves

- ▶ Let \widehat{f} be supported in a δ neighbourhood of a C^3 curve $(t, \gamma(t))$ in $\widehat{\mathbb{R}^2}$ with $1 \leq |\gamma''(t)| \leq 2$ for all t (e.g.: a circle).
- Cut this neighbourhood into $N = \delta^{-1/2}$ boxes of size $\delta^{1/2} \times \delta$.
- A nice argument of Pramanik and Seeger allows one to decouple f = ∑_{j=1}^N f_j by frequency localizing f to these boxes, and obtain

$$\|f\|_{L^p} \lesssim_{\varepsilon} N^{\varepsilon} \Big(\sum_{j=1}^N \|f_j\|_{L^p}^2\Big)^{1/2} \quad \text{if } 2 \le p \le 6.$$

► A similar argument allows one to obtain decoupling for the sphere in Rⁿ, or the cone in Rⁿ⁺¹.

▶ Proof: First trivially decouple f into $\delta^{-\epsilon}$ many big pieces.

Proof: First trivially decouple f into $\delta^{-\varepsilon}$ many big pieces.

By Taylor expanding γ, we see that each big piece of f is supported in a δ^{3ε} neighbourhood of a short parabolic arc. ▶ Proof: First trivially decouple f into $\delta^{-\varepsilon}$ many big pieces.

- By Taylor expanding γ, we see that each big piece of f is supported in a δ^{3ε} neighbourhood of a short parabolic arc.
- ▶ Bourgain-Demeter allows one to decouple big piece of f into $\delta^{\varepsilon}/(\delta^{3\varepsilon})^{1/2} = \delta^{-\varepsilon/2}$ many smaller pieces.
- The Fourier supports of the smaller pieces are even better approximated by short parabolic arcs.
- Repeat until one reaches boxes of size $\delta^{1/2} \times \delta$.

Fubini's theorem: Lifting to higher dimensions

From the above, we can decouple functions on R² whose Fourier support lies in a δ neighbourhood of the curve γ₀:

$$t \mapsto (t^2, t^3), \quad t \in [1/2, 1].$$

We can lift it trivially to higher dimensions as follows.

If f is a function on ℝ³, then for fixed x₁, the Fourier support of f(x₁, ·, ·) is contained in the projection of the Fourier support of f onto the ξ₂, ξ₃ plane:

$$\int_{\mathbb{R}^2} f(x_1, x_2, x_3) e^{-2\pi i (x_2 \xi_2 + x_3 \xi_3)} dx_2 dx_3 = \int_{\mathbb{R}} \widehat{f}(\xi_1, \xi_2, \xi_3) e^{2\pi i x_1 \xi_1} d\xi_1.$$

- If such projection is in a δ neighbourhood of γ₀, then we can decouple f(x₁, ·, ·) into δ^{-1/2} many pieces for each x₁.
- lntegrating with respect to x_1 and using Fubini's theorem, we can now decouple f in \mathbb{R}^3 .
- ► This corollary of parabola decoupling is what one needs to prove decoupling for the moment curve in ℝ³.

Proof of decoupling for the moment curve in \mathbb{R}^3

- Let $\gamma(t) = (t, t^2, t^3)$ for $t \in [0, 1]$ be the moment curve in \mathbb{R}^3 .
- Partition [0,1] into N intervals $\{I\}$.
- For each I, and let θ_I be a box of size $\frac{1}{N} \times \frac{1}{N^2} \times \frac{1}{N^3}$ tangent to $\gamma(I)$, and f be a function with Fourier support in $\bigcup_I \theta_I$.
- Below we sketch a proof how one decouples f into $\sum_I f_I$, where f_I is the frequency localization of f to θ_I . Goal:

$$||f||_{L^{12}} \lesssim_{\varepsilon} N^{\varepsilon} \quad \text{if} \left(\sum_{I} ||f_{I}||_{L^{12}}^{2}\right)^{1/2} = 1.$$

▶ Notations: *I* is always one of these intervals of length 1/N. For interval $J \subset [0, 1]$ with length $\geq 1/N$, write

$$f_J := \sum_{I \subset J} f_I,$$

where sum is over the subintervals I contained in J. Also write |J| for the length of an interval J. D(N) is the best constant in our main inequality.

Bilinearization

► Fix
$$\varepsilon > 0$$
. Since $f = \sum_{|J|=N^{-\varepsilon}} f_J$, if we expand
 $\|f\|_{L^{12}} = (\int |f|^{12})^{\frac{1}{12}}$, we need to estimate terms like
 $\left(\int |f_{J_1}|^6 |f_{J_2}|^6\right)^{\frac{1}{12}} = \left\||f_{J_1}|^{\frac{1}{2}} |f_{J_2}|^{\frac{1}{2}}\right\|_{L^{12}}$ (*)

where $|J_1|=|J_2|=N^{-\varepsilon}$ are at distance $\geq N^{-\varepsilon}.$

These are the main terms. Fix such J₁, J₂ from now on.
For 0 < a, b ≤ 1 introduce

$$Q_{a,b} := \left\| \left\| \left\| \left\| f_{K_1} \right\|_{\frac{1}{2}} \left\| f_{K_2} \right\|_{\frac{1}{2}} \right\|_{L^{12}} \right\|_{\ell^4_{|K_1|=N^{-a}}} \right\|_{\ell^4_{|K_2|=N^{-b}}}$$

where in the ℓ^4 norms, we sum over partitions $\{K_i\}$ of J_i . • $Q_{\varepsilon,\varepsilon}$ is precisely the main term (*) we want to estimate. • $Q_{1,1}$ is bounded by $\left(\sum_I \|f_I\|_{L^{12}}^2\right)^{1/2}$ since Hölder gives $\left\||f_{K_1}|^{\frac{1}{2}}|f_{K_2}|^{\frac{1}{2}}\right\|_{L^{12}} \leq \|f_{K_1}\|_{L^{12}}^{1/2}\|f_{K_2}\|_{L^{12}}^{1/2}.$

$$Q_{a,b} := \left\| \left\| \left\| \left\| f_{K_1} \right\|_{2}^{\frac{1}{2}} \left\| f_{K_2} \right\|_{2}^{\frac{1}{2}} \right\|_{L^{12}} \right\|_{\ell^4_{|K_1|=N^{-a}}} \right\|_{\ell^4_{|K_2|=N^{-b}}}$$

• We want to bound $Q_{\varepsilon,\varepsilon}$ by $Q_{1,1}$.

► To do so, for 0 < b ≤ 1 we bound Q_{b,b} by Q_{3b,3b}, and then iterate:

we bound $Q_{\varepsilon,\varepsilon}$ by $Q_{3\varepsilon,3\varepsilon}$, which in turn is bounded by $Q_{9\varepsilon,9\varepsilon}$, $Q_{27\varepsilon,27\varepsilon}$ etc until we reach $Q_{1,1}$.

▶ It will also be useful to consider, for $0 < a, b \leq 1$, a quantity

$$P_{a,b} := \left\| \left\| \left\| \left\| |f_{K_1}|^{\frac{1}{6}} |f_{K_2}|^{\frac{5}{6}} \right\|_{L^{12}} \right\|_{\ell^{12}_{|K_1| = N^{-a}}} \right\|_{\ell^{\frac{12}{5}}_{|K_2| = N^{-b}}} + \operatorname{sym}$$

where sym is a similar term with roles of K_1 and K_2 reversed.

Bounding $Q_{b,b}$ by $Q_{3b,3b}$

- Three tools:
 - 1. Hölder's inequality
 - 2. L^2 orthogonality
 - 3. Decoupling for parabola in \mathbb{R}^2

Four steps:

1. $Q_{b,b} \leq P_{b,b}$ via Hölder 2. $P_{b,b} \lesssim P_{3b,b}$ via L^2 orthogonality 3. $P_{3b,b} \leq Q_{b,3b}^{1/3} D(N^{1-b})^{2/3}$ via Hölder 4. $Q_{b,3b} \lesssim_{\varepsilon'} N^{\varepsilon'} Q_{3b,3b}$ via parabola decoupling • Altogether, one gets

$$Q_{b,b} \lesssim_{\varepsilon'} N^{\varepsilon'} Q_{3b,3b}^{1/3} D(N^{1-b})^{2/3}$$

which one can then bootstrap to show $D(N) \lesssim_{\varepsilon} N^{\varepsilon}.$

Hölder's inequality

 $\blacktriangleright~$ If $\theta \in [0,1]$ then for any p we have

$$||F|^{\theta}|G|^{1-\theta}||_{L^{p}} \le ||F||_{L^{p}}^{\theta}||G||_{L^{p}}^{1-\theta}.$$
 (H1)

• Also works for ℓ^p norm of sequences:

$$\left\| |a_K|^{\theta} |b_K|^{1-\theta} \right\|_{\ell_K^p} \le \|a_K\|_{\ell_K^p}^{\theta} \|b_K\|_{\ell_K^p}^{1-\theta}.$$

▶ More generally, if $\theta \in [0,1]$ and $\frac{1}{p} = \frac{\theta}{q} + \frac{1-\theta}{r}$, then

$$\left\| |a_K|^{\theta} |b_K|^{1-\theta} \right\|_{\ell^p_K} \le \|a_K\|^{\theta}_{\ell^q_K} \|b_K\|^{1-\theta}_{\ell^r_K}.$$
(H2)

(The earlier inequality is the special case q = r = p.)

Step 1: $Q_{b,b} \leq P_{b,b}$ via Hölder

$$\begin{split} Q_{b,b} &= \left\| \left\| \left\| \left\| |f_{K_1}|^{\frac{1}{2}} |f_{K_2}|^{\frac{1}{2}} \right\|_{L^{12}} \right\|_{\ell^4_{|K_1|=N^{-b}}} \right\|_{\ell^4_{|K_2|=N^{-b}}} \\ P_{b,b} &= \left\| \left\| \left\| \left\| |f_{K_1}|^{\frac{1}{6}} |f_{K_2}|^{\frac{5}{6}} \right\|_{L^{12}} \right\|_{\ell^{12}_{|K_1|=N^{-b}}} \right\|_{\ell^{\frac{12}{5}}_{|K_2|=N^{-b}}} + \operatorname{sym} \end{split}$$

Step 2: $P_{b,b} \leq P_{3b,b}$ via L^2 orthogonality

$$P_{a,b} = \left\| \left\| \left\| \left\| f_{K_1} \right\|_{6}^{\frac{1}{6}} \left\| f_{K_2} \right\|_{6}^{\frac{5}{6}} \right\|_{L^{12}} \right\|_{\ell^{12}_{|K_1|=N^{-a}}} \left\| \frac{1}{\ell^{\frac{12}{5}}_{|K_2|=N^{-b}}} + \mathsf{sym} \right\|_{\ell^{\frac{12}{5}}_{|K_2|=N^{-b}}} + \mathsf{sym}$$

- The key is that for each $K_2 \subset J_2$ with $|K_2| = N^{-b}$, we have $\left\| \left\| |f_{K_1}|^{\frac{1}{6}} |f_{K_2}|^{\frac{5}{6}} \right\|_{L^{12}} \right\|_{\ell^{12}_{|K_1|=N^{-b}}} \leq \left\| \left\| |f_{K_1}|^{\frac{1}{6}} |f_{K_2}|^{\frac{5}{6}} \right\|_{L^{12}} \right\|_{\ell^{12}_{|K_1|=N^{-3b}}}.$
- ▶ Upon taking power 6 of both sides, this is the same as $\left\| \left\| |f_{K_1}| |f_{K_2}|^5 \right\|_{L^2} \right\|_{\ell^2_{|K_1|=N^{-b}}} \leq \left\| \left\| |f_{K_1}| |f_{K_2}|^5 \right\|_{L^2} \right\|_{\ell^2_{|K_1|=N^{-3b}}}.$

► This follows from the fact that for each $K_1 \subset J_1$, $\left\| |f_{K_1}| |f_{K_2}|^5 \right\|_{L^2} \le \left\| \left\| |f_{K'_1}| |f_{K_2}|^5 \right\|_{L^2} \right\|_{\ell^2_{K'_1 \subset K_1, |K'_1| = N^{-3b}}}$,

which in turn is a consequence of L^2 orthogonality (and local constancy for $|f_{K_2}|^5$ at the correct scale).

Step 3: $P_{3b,b} \leq Q_{b,3b}^{1/3} D(N^{1-b})^{2/3}$ via Hölder

$$\begin{split} P_{3b,b} &= \left\| \left\| \left\| \left\| |f_{K_1}|^{\frac{1}{6}} |f_{K_2}|^{\frac{5}{6}} \right\|_{L^{12}} \right\|_{\ell^{12}_{|K_1|=N^{-3b}}} \right\|_{\ell^{\frac{12}{5}}_{|K_2|=N^{-b}}} + \operatorname{sym} \\ Q_{3b,3b} &= \left\| \left\| \left\| \left\| |f_{K_1}|^{\frac{1}{2}} |f_{K_2}|^{\frac{1}{2}} \right\|_{L^{12}} \right\|_{\ell^{4}_{|K_1|=N^{-3b}}} \right\|_{\ell^{4}_{|K_2|=N^{-3b}}} \end{split}$$

By parabolic rescaling, we get $P_{3b,b} \leq Q_{b,3b}^{1/3} D(N^{1-b})^{2/3}$.

Step 4: $Q_{b,3b} \lesssim_{\varepsilon'} N^{\varepsilon'} Q_{3b,3b}$ via parabola decoupling

$$Q_{a,3b} = \left\| \left\| \left\| \left\| f_{K_1} \right\|_{2}^{\frac{1}{2}} \left\| f_{K_2} \right\|_{2}^{\frac{1}{2}} \right\|_{L^{12}} \right\|_{\ell^4_{|K_1|=N^{-a}}} \right\|_{\ell^4_{|K_2|=N^{-3b}}}$$

- The key is that for each $K_2 \subset J_2$ with $|K_2| = N^{-3b}$, we have $\left\| \left\| |f_{K_1}|^{\frac{1}{2}} |f_{K_2}|^{\frac{1}{2}} \right\|_{L^{12}} \right\|_{\ell^4_{|K_1|=N^{-b}}} \lesssim_{\varepsilon'} N^{\varepsilon'} \left\| \left\| |f_{K_1}|^{\frac{1}{2}} |f_{K_2}|^{\frac{1}{2}} \right\|_{L^{12}} \right\|_{\ell^4_{|K_1|=N^{-3b}}}$
- $\begin{array}{l} \bullet \quad \text{Upon taking power 2 of both sides, this is the same as} \\ \left\| \left\| |f_{K_1}||f_{K_2}| \right\|_{L^6} \right\|_{\ell^2_{|K_1|=N^{-b}}} \lesssim_{\varepsilon'} N^{\varepsilon'} \left\| \left\| |f_{K_1}||f_{K_2}| \right\|_{L^6} \right\|_{\ell^2_{|K_1|=N^{-3b}}}. \end{array}$
- $$\begin{split} \bullet \ \ \text{This follows from the fact that for each } K_1 \subset J_1, \\ \left\| |f_{K_1}| |f_{K_2}| \right\|_{L^6} \lesssim_{\varepsilon'} N^{\varepsilon'} \left\| \left\| |f_{K_1'}| |f_{K_2}| \right\|_{L^6} \right\|_{\ell^2_{K_1' \subset K_1, |K_1'| = N^{-3b}}}, \end{split}$$

which in turn is a consequence of the corollary of parabola decoupling we mentioned earlier (and local constancy for $|f_{K_2}|$ at the correct scale).

Remarks

- The above proof is from joint work with Shaoming Guo, Zane Kun Li and Pavel Zorin-Kranich.
- It was inspired by Wooley's work on efficient congruencing.
- The original proof of Bourgain, Demeter and Guth uses a multilinear reduction (as opposed to bilinear) and uses incidence estimates (multilinear Kakeya).
- ▶ We actually have $D(N) \leq \exp(C \frac{\log N}{\log \log N})$ (Schippa 2023).
- This is in turn based on an improved decoupling constant for the parabola at p = 6, due to Guth, Maldague and Wang. They proved a slightly easier estimate using square functions:

$$\|f\|_{L^6} \lesssim (\log N)^c \|f\|_{L^2}^{1/3} \Big(\sum_{j=1}^N \|f_j\|_{L^\infty}^2\Big)^{1/3}$$

and then upgraded it to decoupling.

Questions

- We know the decoupling constant for the parabola in R² (for p = 6) is just a power of log N. What about the circle?
- Can one give a direct proof of decoupling for the circle in R² without the Pramanik-Seeger iteration?
- Analogous question for the cone in $\widehat{\mathbb{R}^{2+1}}$?
- Small cap decoupling for the moment curve in $\widehat{\mathbb{R}}^n$, $n \geq 4$?
- What other tools do we have when decoupling alone does not give the optimal estimate?