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Discrete restriction

» For every positive integer M, let K(M) be the best constant so that

M 1/2
< K(M) <Z|bn2>

for every by, ..., by € C, where e(t) := exp(2mit).
» Study of K(M) is motivated by the study of the periodic

Schrédinger equation on T (dating back to Bourgain 1993):
The solution to the initial value problem

M
Z bne(nx + n*t)
n=1

L5(0,1)

2mideu = O2u
u(x,0) = Z,’:ﬂzl bne(nx)

is precisely S | bye(nx + n?t).



Bounds on K(M)

» Bourgain showed that

log M

1/6 < < _e
(og M)"/° < K(M) < explO( 500

)

» Building upon Bourgain and Demeter's work on Fourier decoupling
for the parabola, and Wooley's work on efficient congruencing (as in
the exposition of Pierce), Li gave a new proof of this upper bound
of K(M).

> Very recently Guth, Maldague and Wang improved the best constant
for the Fourier decoupling inequality for the parabola, sharpening the
upper bound of K(M) to

K(M) < (log M)*

for some finite, but unspecified constant c.

» In joint work with Shaoming Guo and Zane Kun Li, we improve this
bound further, to
K(M) <. (log M)**e

for every € > 0.



Overview of our proof

v

Our proof of the upper bound for K(M) follows closely that of Guth,
Maldague and Wang.

In particular, we use a decomposition of square functions into high
and low frequencies, which we will explain in due course.

The main new difference is that we work p-adically.

Indeed, we observed that if we are only interested in moments of
exponential sums, then since p = 6 is an even integer, we do not
need the full power of Fourier decoupling on the parabola in R?.

Rather, we study Fourier decoupling for the parabola in Qf,.
In place of p, we write g for any odd prime, and work on Qi.

We will describe some Fourier analysis on Q2, discuss why it is
advantageous to work on (@f’ over R?, and explain how the proof of
Guth, Maldague and Wang works.



The g-adic field Q

v

From now on, q is a fixed odd prime.

Qg is the set of all formal power series

oo
Zajqj, where k € Z and a; € {0,...,q — 1} for all j.
j=k
It is a field of characteristic zero if we add and multiply with carries.

The g-adic absolute value on Qg is given by [0] = 0 and
| Yk ad| = g~k if ax # 0. It satisfies an ultrametric inequality:

Ix +y| < max{|x], |y|} forall x,y € Qq

with equality if |x| # |y|.
The ring of g-adic integers is then Zg := {x € Qq: |x| < 1}.
We write dx for the Haar measure on Qg with [, dx = 1.

q



Geometry of Q,

4

> If a € Qq, then the g-adic interval of ‘length’ g~* around a is the set

B(a,q7") :={x€Qq: |x—a| < ¢} ={x€Qq: x=a (mod q")}.

(x =a (mod ¢°) means g~¥(x — a) € Z,.)

» Any two g-adic intervals of the same length are either disjoint or
equal. Indeed, if |b— a| < g7, then B(a,q~ %) = B(b,q™ "), and if
|b—a| > g~ then B(a,q~*) N B(b,qg~*) = 0.

‘

is the disjoint union of g equidistant
-1

» Each interval of length g~
sub-intervals of lengths g~

> For example, Zq = B(1,q ) UB(2,g7)U---UB(gq,97!), a

disjoint union of g equidistant intervals of length g~ 1.

q=3
ZLq

» Thus fB(a’q_Z) dx = q~* for any a € Qg (notion of ‘length’ justified).
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Fourier analysis on Q,

» A Schwartz function on Qq is a finite linear combination of
characteristic functions of intervals (over C).

> Let x: Q4 — C* be the additive character on Qg given by

[eS) -1
(Yad) = Tad
Jj=k Jj=k

» The Fourier transform on Qg is defined for all Schwartz functions by
Fe) = /Q FOOX(—xE)dx, € € Qq

(Henceforth we work only with Schwartz functions.)
» The Fourier inversion formula then says

)= | AOOe.
» The convolution on Qg is defined by f x g(x) = qu f(x—y)g(y)dy.

It interacts well with the Fourier transform: f x g = fg.



Properties of the Fourier transform on Qg

» We have 1/Z\q =1z,. Indeed,

B - 1 il <1
0= [ x xs)dx—{o el

because x — x(—x&) defines a character on the compact group Zg,
which is non-trivial if and only if |¢] > 1.

> Also, if M,f(x) := x(—ax)f(x), then
Mo (€) = F(& +2),

and if Def(x) = f(g‘x), then

Dy (€) = g Dg-eF(€).



The uncertainty principle for the Fourier transform on Q,

» As a result, we can prove rigorously the uncertainty principle for the
Fourier transform on Qq:

> If(eZandfis compactly supported on a g-adic interval of length
g~*, then |f| is a constant on every g-adic interval of length g°.

» Proof: First suppose fis compactly supported on Zg. Then
f= flzq = flzq, )

F(x) = F o 1g, (x) = / F(y)dy

Ix—y|<1
which is constant on g-adic intervals of length 1.

If now £ is compactly supported on B(a, g~*) for some a € (@3 and
¢ € Z, then ?(a +q7%) = qumf@) is supported on Zg. So its
inverse Fourier transform q’x(—aq’x)f(g’x) is constant on intervals
of length 1. Hence |f(g’x)| is constant on intervals of length 1,
which means |f(x)| is constant on intervals of length g*.



Fourier analysis on Q7

>
>
>

>
>

v

Q3 is a (2-dimensional) vector space over Q.

Define norm |x — a| = max{|x1 — a1/, |x> — a2|} if x,a € Q2.
Balls are squares, written B(a,r) = {x € Q2: |x — a| < r}.
Q2 is equipped with a Haar measure dx = dx; dx,.

Schwartz functions on Qf] are just finite linear combinations of
characteristic functions of rectangles (products of g-adic intervals).
The Fourier transform on Q7 is defined by

9= [ feox-x-g)ax
Q

where x - € = X161 + x& if x = (x1,%2),€ = (€1,&2) € Q.

Fourier inversion reads

700 = [ Flmtxe e,
Q

and one can formulate a rigorous version of the uncertainty principle.

One advantage of working over Qg as opposed to R? is that the

uncertainty principle over Qﬁ is so clean. We thereby avoid a lot of

technical difficulties Guth, Maldague and Wang encountered on R2,



Geometry in Q7

>

>

Another slight advantage of working in Q§ is that the geometry
trivializes completely when we zoom in to the right scale.

Let R € g—2N. We will be dealing with Schwartz functions on Qf,

whose Fourier transform is supported on a R™! neighborhood of the
unit parabola:

{(&.£) € Q}: &1 € Zg, |2 — &) < R}
If we restrict & to a g-adic interval 6 of length R~1/2 the set
{(£,£) € Q& €0, -l <RY}
actually becomes a parallelogram: it is equal to
Py :={(&.&) € Q2: & — a| < R7Y2,|g — 238 + a°| < R}
for any a € 6. A dual paralleogram to Py is then
P; = {(x.t) € Q2: |x + 2at| < RY? |t| < R}.

The uncertainty principle shows that if fis supported in Py, then |f]
is constant on translates of Pj.



Main theorem

» Theorem. (Guo-Li-Y.) Let R € g2 Let {6} be a partition of Z,
into a disjoint union of g-adic intervals of length R~1/2, and for
each 0, let fy be a Schwartz function on Qg whose Fourier transform
is supported in the parallelogram Py. Write

fi= Z f.

10]=R-1/2

Then for every € > 0, there exists C. such that

2
e < closRy2 (Y Wl | [ I
Q2 Q2

0=R~/2

» Guth, Maldague and Wang proved a similar theorem on R2, with
(log R) in place of (log R)*2.
> Since the Py's are disjoint (they have disjoint projections onto the &;

axis), we have
72 = / P,
/Qg > /.

10]=R~1/2



Relevance for discrete restriction

» Suppose now M € ¢~ and by,...,by € C.

> Write R = M?. Partition Z, into disjoint union of M g-adic
intervals {6}, each of length R~/2 = M~'. Then each 6 contains
exactly one number from {1,..., M}. Let

fo(x, t) = bax(nx + n*t)1)(x | <pro

where n is the unique element in {1,..., M} 6. Then f is
supported in B((n, n?), R~1%) C P,.
» For f =3, s, we have

|f‘6 RIO/
Q [0,1]2

(indeed this works with 6 replaced by any even integer) and

M M
[E=RE 62 il = - I
QS n=1 n=1

61=R /2

Zb e(nx+n t)‘ dxdt

Thus asserted bound for K(M) follows from our theorem on Q2.



lterating through many scales

>

Bourgain and Demeter proved the first Fourier decoupling theorem
for the parabola by working at many (physical) scales: they used

R>—>—>—>..->1

where K is a large but fixed constant (independent of R).
Guth, Maldague and Wang proved their theorem using fewer scales:

R R R

N |
(logR)® ~ (log R)? ~ (log R)® ~ "~

R>

We proved our theorem using roughly the same number of scales:

R R R

. 1
(logR)F ~ (log RY%= ~ (logR)* ~ =

R>

where € > 0 is a small parameter.

Our proof is, for the most part, parallel to that of Guth, Maldague
and Wang.



An L*

square function estimate

The idea of Guth, Maldague and Wang is that to estimate [ |f|® one
should exploit efficiently what we know at L*.

For instance, a classical estimate of Fefferman and Cordoba says that

L2 (% 1aR)

7 Q " jgj=r-1/2
We want to show
2
Lies( X lhleg) [ 12
Q?, |§|=R—1/2 Q%

where < means < (log R)°.
By pigeonholing, we may assume that Hf9||Loo(Qg) are all comparable
to each other (as long as they are not zero).



> Now

2
6 2 4 2 2
/ng Sf||Lw(@g)/Qg|f| <l [, (X 16F)

a  |0|=R-1/2

» If (miracle!) f@?(ZW\ r-1/2 |fo ) NfQZZw r-1/2 |fa|*, then

[ e iy [l
q

|9‘ R-1/2
< I gy sup ey S / I
|6|=R—1/2

_ 2 2 2
= 11 sup ey |, I

> But supy [|fy||1(@2) S Ifolli(q2) as long as |[fy|(qz) # 0. Thus

2
||f||%oo(@g) sup ||f9||%°°(Qg) S ( Z Hf9||L°°(Q§,)> sup H@'H%w(@g)
’ j61=R-/2 "

(X le)

01=R-1/2



Does miracle happen?

2

> The miracle f@g (ZW\:R*UZ |f9|2> S ng > j61=r-1/2 | fol* happens
when the |f5|?'s are (almost) orthogonal to each other.

» Let's look at the Fourier support of |fy|? as 6 varies.

> |fy]2 = 1?9 * fy is supported on Py + (—Pp) = P§ where P is a
translate of Py that contains the origin.

» The Pg's are all contained inside a ball of radius R71/2 centered at

the origin. They overlap a lot near the origin as 6 varies, but overlap
less and less as one moves away from the origin.

» So miracle happens away from the origin, but not so much near it.

Py
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Introducing intermediate scales help
> We were trying to pass from |f| = [} g _g-1/2 fo| to the square
function g := 3 g _g-12 |5]2.
» [t helps to introduce an intermediate scale R, satisfying
R'/?2 < R, < R, and the corresponding square function

g= Y, KPR =) f
_p-1/2 oc
‘TlfR* ‘elszl/Q
» It is certainly easier to pass from |f| to g. than from |f]| to g.
» But g can be recovered as the low frequency part of g,.: Let's write

—

I high Tlow .~ high . ~
g =g +8&", glvi=gl g, &° = 81gsr

translate and
magnify
_—

o)

scale R—1/2
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Advantages of the high-low decomposition
» Then g/° is precisely g. This is because

g = > IEPLgern= > > fifolgere

|7|=R/? lr|=R:Y? 6.0'CT
l6|=10"|=R /2
— BB lna =0 FOLE
and fyfplje|<p-1/2 o * Tortjgj<pmr2 = 2 I_ 7
- = |fé|21\f\§R*1/2 =|fp? ifO=0"

hlgh

» On the other hand, g ZM:RA/Q |f-[?1j¢|> g-1/2 is @ sum of

functions whose support overlaps at most (R/R,)'/? times, so
/. | hlgh|2 R/R 1/2 Z / |f|4
Q2 r|=R V2

which by Holder's inequality is

<(R/R) > [fyl*.

|9‘ R-1/2 Q%



Putting these together

> Let H:={x € QZ: g.(x) < Algl"(x)|} where A is a constant to
be determined. We write sz IF1° = [, IFI°+ [, IFI°.

> For the first term, if we had (problem 1!) [, |f|* < [, g2, then

/ 15 < 1122y / <ol 2y / g2 < AIf|2 2 / g2

which is bounded by

< A(R/RVIIflFegzy D |fol*
0|=r—1/27 Q5

SAz(R/R*)szH%OO(Qg)su/pHfG/”%N(Q? > |fp|?
0 1o|=r-1/2"

2
< A%(R/R.)? a1 e 2 /f2.
<ARIRP( D Nhliy) Y

61=R /2

This is good if A and R/R, are (small) powers of log R.



> For the second term, note if x ¢ H, then |g!"8"(x)| < A~lg,(x), so
g:(x) = g2 (x) + gl (x) < &2 (x) + A7 gu(x)

which implies

g()<(A-AN ™) =1 -AHYT DT IR
101=R~1/2

Hence

|£]6 < Rf/2/ g (Holder)
H¢ H¢e

<R 3/2 A~ 3/ Z |f9|2)

|6|=R—1/2

3/2 —1\—
SREU-A(CY k) [ IR
q

10|=R-1/2

> Altogether, assuming problem 1 is solved, we have

2
[ < RRRPRPAAD (T hly) [ 1P

61=R~/2

Problem 2: R¥/? is much bigger than log R!



The ways out: many scales and bilinearize (plus pruning)

» To solve problem 2, we need to introduce N ~ log R scales, and
apply the Holder's inequality only once on the set of all x that is not
in the high set at any scale. The loss incurred when Holder is
applied once is insignificant, so we are good there.

» But since we needed N many scales, instead of (1 — A71)~3 we

accumulate a factor of (1 — A™1)73V. Thus when we defined the

high sets, we want A to be large, so that (1 — A~1)73N is bounded;

this suggests that we choose A ~ N ~ log R.

> To solve problem 1, we really can't say [, |f|* < [}, g2 via
Fefferman and Cordoba. But we can bilinearize and use bilinear
restriction instead: this gives us access to smaller physical scales at
which we have a nice partition of H.

» In fact we bilinearize a little more efficiently than Guth, Maldague
and Wang, using a Whitney decomposition as in previous work with
Zorin-Kranich.

» The introduction of many scales also requires one to bound

2 2 . . ,
Hf||,_oo(Qg) SUP, | _g-1/2 ||fTHLoo(Qg) for many intermediate R's.
This requires a careful wave packet pruning process, which we omit.



Thank you for your attention!

Advertisement (for those who have students interested in incidences):

Summer school on Brascamp-Lieb inequalities
September 26 - October 01, 2021, at Kopp, Germany
organized by Christoph Thiele and Pavel Zorin-Kranich

https://www.math.uni-bonn.de/ag/ana/WiSe2122/BL-school /



