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Discrete restriction

I For every positive integer M, let K (M) be the best constant so that∥∥∥∥∥
M∑
n=1

bne(nx + n2t)

∥∥∥∥∥
L6([0,1]2)

≤ K (M)

(
M∑
n=1

|bn|2
)1/2

for every b1, . . . , bM ∈ C, where e(t) := exp(2πit).

I Study of K (M) is motivated by the study of the periodic
Schrödinger equation on T (dating back to Bourgain 1993):
The solution to the initial value problem{

2πi∂tu = ∂2xu

u(x , 0) =
∑M

n=1 bne(nx)

is precisely
∑M

n=1 bne(nx + n2t).



Bounds on K (M)
I Bourgain showed that

(logM)1/6 . K (M) ≤ exp(O(
logM

log logM
)).

I Building upon Bourgain and Demeter’s work on Fourier decoupling
for the parabola, and Wooley’s work on efficient congruencing (as in
the exposition of Pierce), Li gave a new proof of this upper bound
of K (M).

I Very recently Guth, Maldague and Wang improved the best constant
for the Fourier decoupling inequality for the parabola, sharpening the
upper bound of K (M) to

K (M) . (logM)c

for some finite, but unspecified constant c .

I In joint work with Shaoming Guo and Zane Kun Li, we improve this
bound further, to

K (M) .ε (logM)2+ε

for every ε > 0.



Overview of our proof

I Our proof of the upper bound for K (M) follows closely that of Guth,
Maldague and Wang.

I In particular, we use a decomposition of square functions into high
and low frequencies, which we will explain in due course.

I The main new difference is that we work p-adically.

I Indeed, we observed that if we are only interested in moments of
exponential sums, then since p = 6 is an even integer, we do not
need the full power of Fourier decoupling on the parabola in R2.

I Rather, we study Fourier decoupling for the parabola in Q2
p.

I In place of p, we write q for any odd prime, and work on Q2
q.

I We will describe some Fourier analysis on Q2
q, discuss why it is

advantageous to work on Q2
q over R2, and explain how the proof of

Guth, Maldague and Wang works.



The q-adic field Qq

I From now on, q is a fixed odd prime.

I Qq is the set of all formal power series

∞∑
j=k

ajq
j , where k ∈ Z and aj ∈ {0, . . . , q − 1} for all j .

I It is a field of characteristic zero if we add and multiply with carries.

I The q-adic absolute value on Qq is given by |0| = 0 and
|
∑∞

j=k ajq
j | = q−k if ak 6= 0. It satisfies an ultrametric inequality:

|x + y | ≤ max{|x |, |y |} for all x , y ∈ Qq

with equality if |x | 6= |y |.
I The ring of q-adic integers is then Zq := {x ∈ Qq : |x | ≤ 1}.
I We write dx for the Haar measure on Qq with

´
Zq

dx = 1.



Geometry of Qq

I If a ∈ Qq, then the q-adic interval of ‘length’ q−` around a is the set

B(a, q−`) := {x ∈ Qq : |x−a| ≤ q−`} = {x ∈ Qq : x ≡ a (mod q`)}.

(x ≡ a (mod q`) means q−`(x − a) ∈ Zq.)

I Any two q-adic intervals of the same length are either disjoint or
equal. Indeed, if |b − a| ≤ q−`, then B(a, q−`) = B(b, q−`), and if
|b − a| > q−`, then B(a, q−`) ∩ B(b, q−`) = ∅.

I Each interval of length q−` is the disjoint union of q equidistant
sub-intervals of lengths q−`−1.

I For example, Zq = B(1, q−1) t B(2, q−1) t · · · t B(q, q−1), a
disjoint union of q equidistant intervals of length q−1.

q = 3

Zq

I Thus
´
B(a,q−`)

dx = q−` for any a ∈ Qq (notion of ‘length’ justified).



Geometry of Qq

I If a ∈ Qq, then the q-adic interval of ‘length’ q−` around a is the set

B(a, q−`) := {x ∈ Qq : |x−a| ≤ q−`} = {x ∈ Qq : x ≡ a (mod q`)}.

(x ≡ a (mod q`) means q−`(x − a) ∈ Zq.)

I Any two q-adic intervals of the same length are either disjoint or
equal. Indeed, if |b − a| ≤ q−`, then B(a, q−`) = B(b, q−`), and if
|b − a| > q−`, then B(a, q−`) ∩ B(b, q−`) = ∅.

I Each interval of length q−` is the disjoint union of q equidistant
sub-intervals of lengths q−`−1.

I For example, Zq = B(1, q−1) t B(2, q−1) t · · · t B(q, q−1), a
disjoint union of q equidistant intervals of length q−1.

q = 3

Zq

I Thus
´
B(a,q−`)

dx = q−` for any a ∈ Qq (notion of ‘length’ justified).



Geometry of Qq

I If a ∈ Qq, then the q-adic interval of ‘length’ q−` around a is the set

B(a, q−`) := {x ∈ Qq : |x−a| ≤ q−`} = {x ∈ Qq : x ≡ a (mod q`)}.

(x ≡ a (mod q`) means q−`(x − a) ∈ Zq.)

I Any two q-adic intervals of the same length are either disjoint or
equal. Indeed, if |b − a| ≤ q−`, then B(a, q−`) = B(b, q−`), and if
|b − a| > q−`, then B(a, q−`) ∩ B(b, q−`) = ∅.

I Each interval of length q−` is the disjoint union of q equidistant
sub-intervals of lengths q−`−1.

I For example, Zq = B(1, q−1) t B(2, q−1) t · · · t B(q, q−1), a
disjoint union of q equidistant intervals of length q−1.

q = 3

Zq

I Thus
´
B(a,q−`)

dx = q−` for any a ∈ Qq (notion of ‘length’ justified).



Fourier analysis on Qq
I A Schwartz function on Qq is a finite linear combination of

characteristic functions of intervals (over C).

I Let χ : Qq → C× be the additive character on Qq given by

χ

 ∞∑
j=k

ajq
j

 = e

 −1∑
j=k

ajq
j

 .

I The Fourier transform on Qq is defined for all Schwartz functions by

f̂ (ξ) =

ˆ
Qq

f (x)χ(−xξ)dx , ξ ∈ Qq.

(Henceforth we work only with Schwartz functions.)

I The Fourier inversion formula then says

f (x) =

ˆ
Qq

f̂ (ξ)χ(xξ)dξ.

I The convolution on Qq is defined by f ∗ g(x) =
´
Qq

f (x − y)g(y)dy .

It interacts well with the Fourier transform: f̂ ∗ g = f̂ ĝ .



Properties of the Fourier transform on Qq

I We have 1̂Zq = 1Zq . Indeed,

1̂Zq (ξ) =

ˆ
Zq

χ(−xξ)dx =

{
1 if |ξ| ≤ 1

0 if |ξ| > 1

because x 7→ χ(−xξ) defines a character on the compact group Zq,
which is non-trivial if and only if |ξ| > 1.

I Also, if Maf (x) := χ(−ax)f (x), then

M̂af (ξ) = f̂ (ξ + a),

and if Dq` f (x) = f (q`x), then

D̂q` f (ξ) = q−`Dq−` f̂ (ξ).



The uncertainty principle for the Fourier transform on Qq

I As a result, we can prove rigorously the uncertainty principle for the
Fourier transform on Qq:

I If ` ∈ Z and f̂ is compactly supported on a q-adic interval of length
q−`, then |f | is a constant on every q-adic interval of length q`.

I Proof: First suppose f̂ is compactly supported on Zq. Then

f̂ = f̂ 1Zq = f̂ 1̂Zq , so

f (x) = f ∗ 1Zq (x) =

ˆ
|x−y |≤1

f (y)dy

which is constant on q-adic intervals of length 1.

If now f̂ is compactly supported on B(a, q−`) for some a ∈ Q2
q and

` ∈ Z, then f̂ (a + q−`ξ) = q`D̂q`Maf (ξ) is supported on Zq. So its
inverse Fourier transform q`χ(−aq`x)f (q`x) is constant on intervals
of length 1. Hence |f (q`x)| is constant on intervals of length 1,
which means |f (x)| is constant on intervals of length q`.



Fourier analysis on Q2
q

I Q2
q is a (2-dimensional) vector space over Qq.

I Define norm |x − a| = max{|x1 − a1|, |x2 − a2|} if x , a ∈ Q2
q.

I Balls are squares, written B(a, r) = {x ∈ Q2
q : |x − a| ≤ r}.

I Q2
q is equipped with a Haar measure dx = dx1dx2.

I Schwartz functions on Q2
q are just finite linear combinations of

characteristic functions of rectangles (products of q-adic intervals).
I The Fourier transform on Q2

q is defined by

f̂ (ξ) =

ˆ
Q2

q

f (x)χ(−x · ξ)dx

where x · ξ = x1ξ1 + x2ξ2 if x = (x1, x2), ξ = (ξ1, ξ2) ∈ Q2
q.

I Fourier inversion reads

f (x) =

ˆ
Q2

q

f̂ (ξ)χ(x · ξ)dξ,

and one can formulate a rigorous version of the uncertainty principle.
I One advantage of working over Q2

q as opposed to R2 is that the

uncertainty principle over Q2
q is so clean. We thereby avoid a lot of

technical difficulties Guth, Maldague and Wang encountered on R2.



Geometry in Q2
q

I Another slight advantage of working in Q2
q is that the geometry

trivializes completely when we zoom in to the right scale.
I Let R ∈ q−2N. We will be dealing with Schwartz functions on Q2

q

whose Fourier transform is supported on a R−1 neighborhood of the
unit parabola:

{(ξ1, ξ2) ∈ Q2
q : ξ1 ∈ Zq, |ξ2 − ξ21 | ≤ R−1}.

I If we restrict ξ1 to a q-adic interval θ of length R−1/2, the set

{(ξ1, ξ2) ∈ Q2
q : ξ1 ∈ θ, |ξ2 − ξ21 | ≤ R−1}

actually becomes a parallelogram: it is equal to

Pθ := {(ξ1, ξ2) ∈ Q2
q : |ξ1 − a| ≤ R−1/2, |ξ2 − 2aξ1 + a2| ≤ R−1}

for any a ∈ θ. A dual paralleogram to Pθ is then

P∗θ := {(x , t) ∈ Q2
q : |x + 2at| ≤ R1/2, |t| ≤ R}.

I The uncertainty principle shows that if f̂ is supported in Pθ, then |f |
is constant on translates of P∗θ .



Main theorem
I Theorem. (Guo-Li-Y.) Let R ∈ q−2N. Let {θ} be a partition of Zq

into a disjoint union of q-adic intervals of length R−1/2, and for
each θ, let fθ be a Schwartz function on Q2

q whose Fourier transform
is supported in the parallelogram Pθ. Write

f :=
∑

|θ|=R−1/2

fθ.

Then for every ε > 0, there exists Cε such that

ˆ
Q2

q

|f |6 ≤ Cε(logR)12+ε

 ∑
|θ|=R−1/2

‖fθ‖2L∞(Q2
q)

2 ˆ
Q2

q

|f |2.

I Guth, Maldague and Wang proved a similar theorem on R2, with
(logR)c in place of (logR)12.

I Since the Pθ’s are disjoint (they have disjoint projections onto the ξ1
axis), we have ˆ

Q2
q

|f |2 =
∑

|θ|=R−1/2

ˆ
Q2

q

|fθ|2.



Relevance for discrete restriction
I Suppose now M ∈ qN and b1, . . . , bM ∈ C.
I Write R = M2. Partition Zq into disjoint union of M q-adic

intervals {θ}, each of length R−1/2 = M−1. Then each θ contains
exactly one number from {1, . . . ,M}. Let

fθ(x , t) = bnχ(nx + n2t)1|(x,t)|≤R10

where n is the unique element in {1, . . . ,M} ∩ θ. Then f̂θ is
supported in B((n, n2),R−10) ⊂ Pθ.

I For f =
∑
θ fθ, we have

ˆ
Q2

q

|f |6 = R10

ˆ
[0,1]2

∣∣∣ M∑
n=1

bne(nx + n2t)
∣∣∣6dxdt

(indeed this works with 6 replaced by any even integer) and

ˆ
Q2

q

|f |2 = R10
M∑
n=1

|bn|2,
∑

|θ|=R−1/2

‖fθ‖2L∞(Q2
q)

=
M∑
n=1

|bn|2.

Thus asserted bound for K (M) follows from our theorem on Q2
q.



Iterating through many scales

I Bourgain and Demeter proved the first Fourier decoupling theorem
for the parabola by working at many (physical) scales: they used

R >
R

K
>

R

K 2
>

R

K 3
> · · · > 1

where K is a large but fixed constant (independent of R).

I Guth, Maldague and Wang proved their theorem using fewer scales:

R >
R

(logR)6
>

R

(logR)12
>

R

(logR)18
> · · · > 1

I We proved our theorem using roughly the same number of scales:

R >
R

(logR)ε
>

R

(logR)2ε
>

R

(logR)3ε
> · · · > 1

where ε > 0 is a small parameter.

I Our proof is, for the most part, parallel to that of Guth, Maldague
and Wang.



An L4 square function estimate

I The idea of Guth, Maldague and Wang is that to estimate
´
|f |6 one

should exploit efficiently what we know at L4.

I For instance, a classical estimate of Fefferman and Cordoba says that

ˆ
Q2

q

|f |4 ≤ 2

ˆ
Q2

q

( ∑
|θ|=R−1/2

|fθ|2
)2
.

I We want to showˆ
Q2

q

|f |6 /
( ∑
|θ|=R−1/2

‖fθ‖2L∞(Q2
q)

)2 ˆ
Q2

q

|f |2

where / means . (logR)c .

I By pigeonholing, we may assume that ‖fθ‖L∞(Q2
q)

are all comparable

to each other (as long as they are not zero).



I Nowˆ
Q2

q

|f |6 ≤ ‖f ‖2L∞(Q2
q)

ˆ
Q2

q

|f |4 ≤ ‖f ‖2L∞(Q2
q)

ˆ
Q2

q

( ∑
|θ|=R−1/2

|fθ|2
)2
.

I If (miracle!)
´
Q2

q

(∑
|θ|=R−1/2 |fθ|2

)2
/
´
Q2

q

∑
|θ|=R−1/2 |fθ|4, then

ˆ
Q2

q

|f |6 / ‖f ‖2L∞(Q2
q)

∑
|θ|=R−1/2

ˆ
Q2

q

|fθ|4

≤ ‖f ‖2L∞(Q2
q)

sup
θ′
‖fθ′‖2L∞(Q2

q)

∑
|θ|=R−1/2

ˆ
Q2

q

|fθ|2

= ‖f ‖2L∞(Q2
q)

sup
θ′
‖fθ′‖2L∞(Q2

q)

ˆ
Q2

q

|f |2.

I But supθ′ ‖fθ′‖L∞(Q2
q)
. ‖fθ‖L∞(Q2

q)
as long as ‖fθ‖L∞(Q2

q)
6= 0. Thus

‖f ‖2L∞(Q2
q)

sup
θ
‖fθ‖2L∞(Q2

q)
.
( ∑
|θ|=R−1/2

‖fθ‖L∞(Q2
q)

)2
sup
θ′
‖fθ′‖2L∞(Q2

q)

.
( ∑
|θ|=R−1/2

‖fθ‖2L∞(Q2
q)

)2
.



Does miracle happen?

I The miracle
´
Q2

q

(∑
|θ|=R−1/2 |fθ|2

)2
/
´
Q2

q

∑
|θ|=R−1/2 |fθ|4 happens

when the |fθ|2’s are (almost) orthogonal to each other.

I Let’s look at the Fourier support of |fθ|2 as θ varies.

I |̂fθ|2 = f̂θ ∗ f̂θ is supported on Pθ + (−Pθ) := Po
θ where Po

θ is a
translate of Pθ that contains the origin.

I The Po
θ ’s are all contained inside a ball of radius R−1/2 centered at

the origin. They overlap a lot near the origin as θ varies, but overlap
less and less as one moves away from the origin.

I So miracle happens away from the origin, but not so much near it.

Pθ

Po
θ

magnify
Po
θ
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Introducing intermediate scales help
I We were trying to pass from |f | = |

∑
|θ|=R−1/2 fθ| to the square

function g :=
∑
|θ|=R−1/2 |fθ|2.

I It helps to introduce an intermediate scale R∗ satisfying
R1/2 ≤ R∗ ≤ R, and the corresponding square function

g∗ :=
∑

|τ |=R
−1/2
∗

|fτ |2, fτ =
∑
θ⊂τ

|θ|=R−1/2

fθ.

I It is certainly easier to pass from |f | to g∗ than from |f | to g .
I But g can be recovered as the low frequency part of g∗: Let’s write

g∗ = g low
∗ + ghigh

∗ , ĝ low
∗ := ĝ∗1|ξ|≤R−1/2 , ĝhigh

∗ := ĝ∗1|ξ|>R−1/2 .

translate and
magnify

scale R−1/2

ĝ

scale R
−1/2
∗scale R
−1/2
∗scale R
−1/2
∗scale R
−1/2
∗

ĝ∗
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Advantages of the high-low decomposition
I Then g low

∗ is precisely g . This is because

ĝ low
∗ =

∑
|τ |=R

−1/2
∗

|̂fτ |21|ξ|≤R−1/2 =
∑

|τ |=R
−1/2
∗

∑
θ,θ′⊂τ

|θ|=|θ′|=R−1/2

f̂θfθ′1|ξ|≤R−1/2

and f̂θfθ′1|ξ|≤R−1/2

{
= f̂θ ∗ f̂θ′1|ξ|≤R−1/2 = 0 if θ 6= θ′

= |̂fθ|21|ξ|≤R−1/2 = |̂fθ|2 if θ = θ′.
.

I On the other hand, ĝhigh
∗ =

∑
|τ |=R

−1/2
∗
|̂fτ |21|ξ|>R−1/2 is a sum of

functions whose support overlaps at most (R/R∗)
1/2 times, so

ˆ
Q2

q

|ghigh
∗ |2 ≤ (R/R∗)

1/2
∑

|τ |=R
−1/2
∗

ˆ
Q2

q

|fτ |4

which by Hölder’s inequality is

≤ (R/R∗)
2

∑
|θ|=R−1/2

ˆ
Q2

q

|fθ|4.



Putting these together

I Let H := {x ∈ Q2
q : g∗(x) ≤ A|ghigh

∗ (x)|} where A is a constant to

be determined. We write
´
Q2

q
|f |6 =

´
H
|f |6 +

´
Hc |f |6.

I For the first term, if we had (problem 1!)
´
H
|f |4 ≤

´
H
g2
∗ , then

ˆ
H

|f |6 ≤ ‖f ‖2L∞(Q2
q)

ˆ
H

|f |4≤?‖f ‖2L∞(Q2
q)

ˆ
H

g2
∗ ≤ A2‖f ‖2L∞(Q2

q)

ˆ
Q2

q

|ghigh
∗ |2

which is bounded by

≤ A2(R/R∗)
2‖f ‖2L∞(Q2

q)

∑
|θ|=R−1/2

ˆ
Q2

q

|fθ|4

≤ A2(R/R∗)
2‖f ‖2L∞(Q2

q)
sup
θ′
‖fθ′‖2L∞(Q2

q)

∑
|θ|=R−1/2

ˆ
Q2

q

|fθ|2

≤ A2(R/R∗)
2
( ∑
|θ|=R−1/2

‖fθ‖2L∞(Q2
q)

)2 ˆ
Q2

q

|f |2.

This is good if A and R/R∗ are (small) powers of logR.



I For the second term, note if x /∈ H, then |ghigh
∗ (x)| ≤ A−1g∗(x), so

g∗(x) = g low
∗ (x) + ghigh

∗ (x) ≤ g low
∗ (x) + A−1g∗(x)

which implies

g∗(x) ≤ (1− A−1)−1g low
∗ (x) = (1− A−1)−1

∑
|θ|=R−1/2

|fθ|2.

Henceˆ
Hc

|f |6 ≤ R
3/2
∗

ˆ
Hc

g3
∗ (Hölder)

≤ R
3/2
∗ (1− A−1)−3

ˆ
Q2

q

( ∑
|θ|=R−1/2

|fθ|2
)3

≤ R
3/2
∗ (1− A−1)−3

( ∑
|θ|=R−1/2

‖fθ‖2L∞(Q2
q)

)2 ˆ
Q2

q

|f |2.

I Altogether, assuming problem 1 is solved, we haveˆ
Q2

q

|f |6 ≤ (A2(R/R∗)
2+R

3/2
∗ (1−A−1)−3)

( ∑
|θ|=R−1/2

‖fθ‖2L∞(Q2
q)

)2 ˆ
Q2

q

|f |2.

Problem 2: R
3/2
∗ is much bigger than logR!



The ways out: many scales and bilinearize (plus pruning)

I To solve problem 2, we need to introduce N ∼ logR scales, and
apply the Hölder’s inequality only once on the set of all x that is not
in the high set at any scale. The loss incurred when Hölder is
applied once is insignificant, so we are good there.

I But since we needed N many scales, instead of (1− A−1)−3 we
accumulate a factor of (1− A−1)−3N . Thus when we defined the
high sets, we want A to be large, so that (1− A−1)−3N is bounded;
this suggests that we choose A ∼ N ∼ logR.

I To solve problem 1, we really can’t say
´
H
|f |4 ≤

´
H
g2
∗ via

Fefferman and Cordoba. But we can bilinearize and use bilinear
restriction instead: this gives us access to smaller physical scales at
which we have a nice partition of H.

I In fact we bilinearize a little more efficiently than Guth, Maldague
and Wang, using a Whitney decomposition as in previous work with
Zorin-Kranich.

I The introduction of many scales also requires one to bound
‖f ‖2L∞(Q2

q)
sup|τ |=R

−1/2
k

‖fτ‖2L∞(Q2
q)

for many intermediate Rk ’s.

This requires a careful wave packet pruning process, which we omit.



Thank you for your attention!

Advertisement (for those who have students interested in incidences):

Summer school on Brascamp-Lieb inequalities
September 26 - October 01, 2021, at Kopp, Germany

organized by Christoph Thiele and Pavel Zorin-Kranich

https://www.math.uni-bonn.de/ag/ana/WiSe2122/BL-school/


