Improved discrete restriction for the parabola

Po-Lam Yung
Australian National University
The Chinese University of Hong Kong

3 June 2021

Discrete restriction

- For every positive integer M, let $K(M)$ be the best constant so that

$$
\left\|\sum_{n=1}^{M} b_{n} e\left(n x+n^{2} t\right)\right\|_{L^{6}\left([0,1]^{2}\right)} \leq K(M)\left(\sum_{n=1}^{M}\left|b_{n}\right|^{2}\right)^{1 / 2}
$$

for every $b_{1}, \ldots, b_{M} \in \mathbb{C}$, where $e(t):=\exp (2 \pi i t)$.

- Study of $K(M)$ is motivated by the study of the periodic Schrödinger equation on \mathbb{T} (dating back to Bourgain 1993):
The solution to the initial value problem

$$
\left\{\begin{aligned}
2 \pi i \partial_{t} u & =\partial_{x}^{2} u \\
u(x, 0) & =\sum_{n=1}^{M} b_{n} e(n x)
\end{aligned}\right.
$$

is precisely $\sum_{n=1}^{M} b_{n} e\left(n x+n^{2} t\right)$.

Bounds on $K(M)$

- Bourgain showed that

$$
(\log M)^{1 / 6} \lesssim K(M) \leq \exp \left(O\left(\frac{\log M}{\log \log M}\right)\right)
$$

- Building upon Bourgain and Demeter's work on Fourier decoupling for the parabola, and Wooley's work on efficient congruencing (as in the exposition of Pierce), Li gave a new proof of this upper bound of $K(M)$.
- Very recently Guth, Maldague and Wang improved the best constant for the Fourier decoupling inequality for the parabola, sharpening the upper bound of $K(M)$ to

$$
K(M) \lesssim(\log M)^{c}
$$

for some finite, but unspecified constant c.

- In joint work with Shaoming Guo and Zane Kun Li, we improve this bound further, to

$$
K(M) \lesssim \varepsilon(\log M)^{2+\varepsilon}
$$

for every $\varepsilon>0$.

Overview of our proof

- Our proof of the upper bound for $K(M)$ follows closely that of Guth, Maldague and Wang.
- In particular, we use a decomposition of square functions into high and low frequencies, which we will explain in due course.
- The main new difference is that we work p-adically.
- Indeed, we observed that if we are only interested in moments of exponential sums, then since $p=6$ is an even integer, we do not need the full power of Fourier decoupling on the parabola in \mathbb{R}^{2}.
- Rather, we study Fourier decoupling for the parabola in \mathbb{Q}_{p}^{2}.
- In place of p, we write q for any odd prime, and work on \mathbb{Q}_{q}^{2}.
- We will describe some Fourier analysis on \mathbb{Q}_{q}^{2}, discuss why it is advantageous to work on \mathbb{Q}_{q}^{2} over \mathbb{R}^{2}, and explain how the proof of Guth, Maldague and Wang works.

The q-adic field \mathbb{Q}_{q}

- From now on, q is a fixed odd prime.
- \mathbb{Q}_{q} is the set of all formal power series

$$
\sum_{j=k}^{\infty} a_{j} q^{j}, \quad \text { where } k \in \mathbb{Z} \text { and } a_{j} \in\{0, \ldots, q-1\} \text { for all } j
$$

- It is a field of characteristic zero if we add and multiply with carries.
- The q-adic absolute value on \mathbb{Q}_{q} is given by $|0|=0$ and $\left|\sum_{j=k}^{\infty} a_{j} q^{j}\right|=q^{-k}$ if $a_{k} \neq 0$. It satisfies an ultrametric inequality:

$$
|x+y| \leq \max \{|x|,|y|\} \quad \text { for all } x, y \in \mathbb{Q}_{q}
$$

with equality if $|x| \neq|y|$.

- The ring of q-adic integers is then $\mathbb{Z}_{q}:=\left\{x \in \mathbb{Q}_{q}:|x| \leq 1\right\}$.
- We write $d x$ for the Haar measure on \mathbb{Q}_{q} with $\int_{\mathbb{Z}_{q}} d x=1$.

Geometry of \mathbb{Q}_{q}

- If $a \in \mathbb{Q}_{q}$, then the q-adic interval of 'length' $q^{-\ell}$ around a is the set

$$
\begin{aligned}
& B\left(a, q^{-\ell}\right):=\left\{x \in \mathbb{Q}_{q}:|x-a| \leq q^{-\ell}\right\}=\left\{x \in \mathbb{Q}_{q}: x \equiv a\left(\bmod q^{\ell}\right)\right\} . \\
& \left(x \equiv a\left(\bmod q^{\ell}\right) \text { means } q^{-\ell}(x-a) \in \mathbb{Z}_{q} .\right)
\end{aligned}
$$

- Any two q-adic intervals of the same length are either disjoint or equal. Indeed, if $|b-a| \leq q^{-\ell}$, then $B\left(a, q^{-\ell}\right)=B\left(b, q^{-\ell}\right)$, and if $|b-a|>q^{-\ell}$, then $B\left(a, q^{-\ell}\right) \cap B\left(b, q^{-\ell}\right)=\emptyset$.
- Each interval of length $q^{-\ell}$ is the disjoint union of q equidistant sub-intervals of lengths $q^{-\ell-1}$.
- For example, $\mathbb{Z}_{q}=B\left(1, q^{-1}\right) \sqcup B\left(2, q^{-1}\right) \sqcup \cdots \sqcup B\left(q, q^{-1}\right)$, a disjoint union of q equidistant intervals of length q^{-1}.

$$
q=3
$$

- Thus $\int_{B\left(a, q^{-\ell}\right)} d x=q^{-\ell}$ for any $a \in \mathbb{Q}_{q}$ (notion of 'length' justified).

Geometry of \mathbb{Q}_{q}

- If $a \in \mathbb{Q}_{q}$, then the q-adic interval of 'length' $q^{-\ell}$ around a is the set

$$
\begin{aligned}
& B\left(a, q^{-\ell}\right):=\left\{x \in \mathbb{Q}_{q}:|x-a| \leq q^{-\ell}\right\}=\left\{x \in \mathbb{Q}_{q}: x \equiv a\left(\bmod q^{\ell}\right)\right\} . \\
& \left(x \equiv a\left(\bmod q^{\ell}\right) \text { means } q^{-\ell}(x-a) \in \mathbb{Z}_{q} .\right)
\end{aligned}
$$

- Any two q-adic intervals of the same length are either disjoint or equal. Indeed, if $|b-a| \leq q^{-\ell}$, then $B\left(a, q^{-\ell}\right)=B\left(b, q^{-\ell}\right)$, and if $|b-a|>q^{-\ell}$, then $B\left(a, q^{-\ell}\right) \cap B\left(b, q^{-\ell}\right)=\emptyset$.
- Each interval of length $q^{-\ell}$ is the disjoint union of q equidistant sub-intervals of lengths $q^{-\ell-1}$.
- For example, $\mathbb{Z}_{q}=B\left(1, q^{-1}\right) \sqcup B\left(2, q^{-1}\right) \sqcup \cdots \sqcup B\left(q, q^{-1}\right)$, a disjoint union of q equidistant intervals of length q^{-1}.

- Thus $\int_{B\left(a, q^{-\ell}\right)} d x=q^{-\ell}$ for any $a \in \mathbb{Q}_{q}$ (notion of 'length' justified).

Geometry of \mathbb{Q}_{q}

- If $a \in \mathbb{Q}_{q}$, then the q-adic interval of 'length' $q^{-\ell}$ around a is the set

$$
\begin{aligned}
& B\left(a, q^{-\ell}\right):=\left\{x \in \mathbb{Q}_{q}:|x-a| \leq q^{-\ell}\right\}=\left\{x \in \mathbb{Q}_{q}: x \equiv a\left(\bmod q^{\ell}\right)\right\} . \\
& \left(x \equiv a\left(\bmod q^{\ell}\right) \text { means } q^{-\ell}(x-a) \in \mathbb{Z}_{q} .\right)
\end{aligned}
$$

- Any two q-adic intervals of the same length are either disjoint or equal. Indeed, if $|b-a| \leq q^{-\ell}$, then $B\left(a, q^{-\ell}\right)=B\left(b, q^{-\ell}\right)$, and if $|b-a|>q^{-\ell}$, then $B\left(a, q^{-\ell}\right) \cap B\left(b, q^{-\ell}\right)=\emptyset$.
- Each interval of length $q^{-\ell}$ is the disjoint union of q equidistant sub-intervals of lengths $q^{-\ell-1}$.
- For example, $\mathbb{Z}_{q}=B\left(1, q^{-1}\right) \sqcup B\left(2, q^{-1}\right) \sqcup \cdots \sqcup B\left(q, q^{-1}\right)$, a disjoint union of q equidistant intervals of length q^{-1}.

- Thus $\int_{B\left(a, q^{-\ell}\right)} d x=q^{-\ell}$ for any $a \in \mathbb{Q}_{q}$ (notion of 'length' justified).

Fourier analysis on \mathbb{Q}_{q}

- A Schwartz function on \mathbb{Q}_{q} is a finite linear combination of characteristic functions of intervals (over \mathbb{C}).
- Let $\chi: \mathbb{Q}_{q} \rightarrow \mathbb{C}^{\times}$be the additive character on \mathbb{Q}_{q} given by

$$
\chi\left(\sum_{j=k}^{\infty} a_{j} q^{j}\right)=e\left(\sum_{j=k}^{-1} a_{j} q^{j}\right) .
$$

- The Fourier transform on \mathbb{Q}_{q} is defined for all Schwartz functions by

$$
\widehat{f}(\xi)=\int_{\mathbb{Q}_{q}} f(x) \chi(-x \xi) d x, \quad \xi \in \mathbb{Q}_{q}
$$

(Henceforth we work only with Schwartz functions.)

- The Fourier inversion formula then says

$$
f(x)=\int_{\mathbb{Q}_{\mathbf{q}}} \widehat{f}(\xi) \chi(x \xi) d \xi
$$

- The convolution on \mathbb{Q}_{q} is defined by $f * g(x)=\int_{\mathbb{Q}_{q}} f(x-y) g(y) d y$. It interacts well with the Fourier transform: $\widehat{f_{*} g}=\widehat{f} \widehat{g}$.

Properties of the Fourier transform on \mathbb{Q}_{q}

- We have $\widehat{\mathbb{Z}_{q}}=1_{\mathbb{Z}_{q}}$. Indeed,

$$
\widehat{\mathbb{Z}_{q}}(\xi)=\int_{\mathbb{Z}_{q}} \chi(-x \xi) d x= \begin{cases}1 & \text { if }|\xi| \leq 1 \\ 0 & \text { if }|\xi|>1\end{cases}
$$

because $x \mapsto \chi(-x \xi)$ defines a character on the compact group \mathbb{Z}_{q}, which is non-trivial if and only if $|\xi|>1$.

- Also, if $M_{a} f(x):=\chi(-a x) f(x)$, then

$$
\widehat{M_{a} f}(\xi)=\widehat{f}(\xi+a)
$$

and if $D_{q^{\ell}} f(x)=f\left(q^{\ell} x\right)$, then

$$
\widehat{D_{q^{\ell}} f}(\xi)=q^{-\ell} D_{q^{-\ell}} \widehat{f}(\xi) .
$$

The uncertainty principle for the Fourier transform on \mathbb{Q}_{q}

- As a result, we can prove rigorously the uncertainty principle for the Fourier transform on \mathbb{Q}_{q} :
- If $\ell \in \mathbb{Z}$ and \widehat{f} is compactly supported on a q-adic interval of length $q^{-\ell}$, then $|f|$ is a constant on every q-adic interval of length q^{ℓ}.
- Proof: First suppose \widehat{f} is compactly supported on \mathbb{Z}_{q}. Then $\widehat{f}=\widehat{f} 1_{\mathbb{Z}_{q}}=\widehat{f} 1_{\mathbb{Z}_{q}}$, so

$$
f(x)=f * 1_{\mathbb{Z}_{q}}(x)=\int_{|x-y| \leq 1} f(y) d y
$$

which is constant on q-adic intervals of length 1 .
If now \widehat{f} is compactly supported on $B\left(a, q^{-\ell}\right)$ for some $a \in \mathbb{Q}_{q}^{2}$ and $\ell \in \mathbb{Z}$, then $\widehat{f}\left(a+q^{-\ell} \xi\right)=q^{\ell} \widehat{D_{q^{\ell}} M_{a}} f(\xi)$ is supported on \mathbb{Z}_{q}. So its inverse Fourier transform $q^{\ell} \chi\left(-a q^{\ell} x\right) f\left(q^{\ell} x\right)$ is constant on intervals of length 1. Hence $\left|f\left(q^{\ell} x\right)\right|$ is constant on intervals of length 1 , which means $|f(x)|$ is constant on intervals of length q^{ℓ}.

Fourier analysis on \mathbb{Q}_{q}^{2}

$\rightarrow \mathbb{Q}_{q}^{2}$ is a (2-dimensional) vector space over \mathbb{Q}_{q}.

- Define norm $|x-a|=\max \left\{\left|x_{1}-a_{1}\right|,\left|x_{2}-a_{2}\right|\right\}$ if $x, a \in \mathbb{Q}_{q}^{2}$.
- Balls are squares, written $B(a, r)=\left\{x \in \mathbb{Q}_{q}^{2}:|x-a| \leq r\right\}$.
- \mathbb{Q}_{q}^{2} is equipped with a Haar measure $d x=d x_{1} d x_{2}$.
- Schwartz functions on \mathbb{Q}_{q}^{2} are just finite linear combinations of characteristic functions of rectangles (products of q-adic intervals).
- The Fourier transform on \mathbb{Q}_{q}^{2} is defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{Q}_{q}^{2}} f(x) \chi(-x \cdot \xi) d x
$$

where $x \cdot \xi=x_{1} \xi_{1}+x_{2} \xi_{2}$ if $x=\left(x_{1}, x_{2}\right), \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{Q}_{q}^{2}$.

- Fourier inversion reads

$$
f(x)=\int_{\mathbb{Q}_{q}^{2}} \widehat{f}(\xi) \chi(x \cdot \xi) d \xi,
$$

and one can formulate a rigorous version of the uncertainty principle.

- One advantage of working over \mathbb{Q}_{q}^{2} as opposed to \mathbb{R}^{2} is that the uncertainty principle over \mathbb{Q}_{q}^{2} is so clean. We thereby avoid a lot of technical difficulties Guth, Maldague and Wang encountered on $\mathbb{R}^{2}{ }_{\underline{\tilde{F}}}$

Geometry in \mathbb{Q}_{q}^{2}

- Another slight advantage of working in \mathbb{Q}_{q}^{2} is that the geometry trivializes completely when we zoom in to the right scale.
- Let $R \in q^{-2 \mathbb{N}}$. We will be dealing with Schwartz functions on \mathbb{Q}_{q}^{2} whose Fourier transform is supported on a R^{-1} neighborhood of the unit parabola:

$$
\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{Q}_{q}^{2}: \xi_{1} \in \mathbb{Z}_{q},\left|\xi_{2}-\xi_{1}^{2}\right| \leq R^{-1}\right\}
$$

- If we restrict ξ_{1} to a q-adic interval θ of length $R^{-1 / 2}$, the set

$$
\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{Q}_{q}^{2}: \xi_{1} \in \theta,\left|\xi_{2}-\xi_{1}^{2}\right| \leq R^{-1}\right\}
$$

actually becomes a parallelogram: it is equal to

$$
P_{\theta}:=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{Q}_{q}^{2}:\left|\xi_{1}-a\right| \leq R^{-1 / 2},\left|\xi_{2}-2 a \xi_{1}+a^{2}\right| \leq R^{-1}\right\}
$$

for any $a \in \theta$. A dual paralleogram to P_{θ} is then

$$
P_{\theta}^{*}:=\left\{(x, t) \in \mathbb{Q}_{q}^{2}:|x+2 a t| \leq R^{1 / 2},|t| \leq R\right\}
$$

- The uncertainty principle shows that if \widehat{f} is supported in P_{θ}, then $|f|$ is constant on translates of P_{θ}^{*}.

Main theorem

- Theorem. (Guo-Li-Y.) Let $R \in q^{-2 \mathbb{N}}$. Let $\{\theta\}$ be a partition of \mathbb{Z}_{q} into a disjoint union of q-adic intervals of length $R^{-1 / 2}$, and for each θ, let f_{θ} be a Schwartz function on \mathbb{Q}_{q}^{2} whose Fourier transform is supported in the parallelogram P_{θ}. Write

$$
f:=\sum_{|\theta|=R^{-1 / 2}} f_{\theta} .
$$

Then for every $\varepsilon>0$, there exists C_{ε} such that

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{6} \leq C_{\varepsilon}(\log R)^{12+\varepsilon}\left(\sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}\right)^{2} \int_{\mathbb{Q}_{q}^{2}}|f|^{2} .
$$

- Guth, Maldague and Wang proved a similar theorem on \mathbb{R}^{2}, with $(\log R)^{c}$ in place of $(\log R)^{12}$.
- Since the P_{θ} 's are disjoint (they have disjoint projections onto the ξ_{1} axis), we have

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{2}=\sum_{|\theta|=R^{-1 / 2}} \int_{\mathbb{Q}_{q}^{2}}\left|f_{\theta}\right|^{2} .
$$

Relevance for discrete restriction

- Suppose now $M \in q^{\mathbb{N}}$ and $b_{1}, \ldots, b_{M} \in \mathbb{C}$.
- Write $R=M^{2}$. Partition \mathbb{Z}_{q} into disjoint union of $M q$-adic intervals $\{\theta\}$, each of length $R^{-1 / 2}=M^{-1}$. Then each θ contains exactly one number from $\{1, \ldots, M\}$. Let

$$
f_{\theta}(x, t)=b_{n} \chi\left(n x+n^{2} t\right) 1_{|(x, t)| \leq R^{10}}
$$

where n is the unique element in $\{1, \ldots, M\} \cap \theta$. Then \widehat{f}_{θ} is supported in $B\left(\left(n, n^{2}\right), R^{-10}\right) \subset P_{\theta}$.

- For $f=\sum_{\theta} f_{\theta}$, we have

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{6}=R^{10} \int_{[0,1]^{2}}\left|\sum_{n=1}^{M} b_{n} e\left(n x+n^{2} t\right)\right|^{6} d x d t
$$

(indeed this works with 6 replaced by any even integer) and

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{2}=R^{10} \sum_{n=1}^{M}\left|b_{n}\right|^{2}, \quad \sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}=\sum_{n=1}^{M}\left|b_{n}\right|^{2}
$$

Thus asserted bound for $K(M)$ follows from our theorem on \mathbb{Q}_{q}^{2}.

Iterating through many scales

- Bourgain and Demeter proved the first Fourier decoupling theorem for the parabola by working at many (physical) scales: they used

$$
R>\frac{R}{K}>\frac{R}{K^{2}}>\frac{R}{K^{3}}>\cdots>1
$$

where K is a large but fixed constant (independent of R).

- Guth, Maldague and Wang proved their theorem using fewer scales:

$$
R>\frac{R}{(\log R)^{6}}>\frac{R}{(\log R)^{12}}>\frac{R}{(\log R)^{18}}>\cdots>1
$$

- We proved our theorem using roughly the same number of scales:

$$
R>\frac{R}{(\log R)^{\varepsilon}}>\frac{R}{(\log R)^{2 \varepsilon}}>\frac{R}{(\log R)^{3 \varepsilon}}>\cdots>1
$$

where $\varepsilon>0$ is a small parameter.

- Our proof is, for the most part, parallel to that of Guth, Maldague and Wang.

An L^{4} square function estimate

- The idea of Guth, Maldague and Wang is that to estimate $\int|f|^{6}$ one should exploit efficiently what we know at L^{4}.
- For instance, a classical estimate of Fefferman and Cordoba says that

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{4} \leq 2 \int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{2} .
$$

- We want to show

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{6} \lesssim\left(\sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}\right)^{2} \int_{\mathbb{Q}_{q}^{2}}|f|^{2}
$$

where \lesssim means $\lesssim(\log R)^{c}$.

- By pigeonholing, we may assume that $\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}$ are all comparable to each other (as long as they are not zero).
- Now

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{6} \leq\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \int_{\mathbb{Q}_{q}^{2}}|f|^{4} \leq\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{2} .
$$

- If (miracle!) $\int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{2} \lesssim \int_{\mathbb{Q}_{q}^{2}} \sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{4}$, then

$$
\begin{aligned}
\int_{\mathbb{Q}_{q}^{2}}|f|^{6} & \lesssim\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sum_{|\theta|=R^{-1 / 2}} \int_{\mathbb{Q}_{q}^{2}}\left|f_{\theta}\right|^{4} \\
& \leq\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sup _{\theta^{\prime}}\left\|f_{\theta^{\prime}}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sum_{|\theta|=R^{-1 / 2}} \int_{\mathbb{Q}_{q}^{2}}\left|f_{\theta}\right|^{2} \\
& =\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sup _{\theta^{\prime}}\left\|f_{\theta^{\prime}}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \int_{\mathbb{Q}_{q}^{2}}|f|^{2} .
\end{aligned}
$$

- But $\sup _{\theta^{\prime}}\left\|f_{\theta^{\prime}}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)} \lesssim\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}$ as long as $\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)} \neq 0$. Thus

$$
\begin{aligned}
\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sup _{\theta}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} & \lesssim\left(\sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}\right)^{2} \sup _{\theta^{\prime}}\left\|f_{\theta^{\prime}}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \\
& \lesssim\left(\sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}\right)^{2} .
\end{aligned}
$$

Does miracle happen?

- The miracle $\int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{2} \lesssim \int_{\mathbb{Q}_{q}^{2}} \sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{4}$ happens when the $\left|f_{\theta}\right|^{2}$'s are (almost) orthogonal to each other.
- Let's look at the Fourier support of $\left|f_{\theta}\right|^{2}$ as θ varies.
$-\widehat{\left|f_{\theta}\right|^{2}}=\widehat{f_{\theta}} * \widehat{\overline{f_{\theta}}}$ is supported on $P_{\theta}+\left(-P_{\theta}\right):=P_{\theta}^{o}$ where P_{θ}^{o} is a translate of P_{θ} that contains the origin.
- The P_{θ}^{o} 's are all contained inside a ball of radius $R^{-1 / 2}$ centered at the origin. They overlap a lot near the origin as θ varies, but overlap less and less as one moves away from the origin.
- So miracle happens away from the origin, but not so much near it.

Does miracle happen?

- The miracle $\int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{2} \lesssim \int_{\mathbb{Q}_{q}^{2}} \sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{4}$ happens when the $\left|f_{\theta}\right|^{2}$'s are (almost) orthogonal to each other.
- Let's look at the Fourier support of $\left|f_{\theta}\right|^{2}$ as θ varies.
$-\widehat{\left|f_{\theta}\right|^{2}}=\widehat{f_{\theta}} * \widehat{\overline{f_{\theta}}}$ is supported on $P_{\theta}+\left(-P_{\theta}\right):=P_{\theta}^{o}$ where P_{θ}^{o} is a translate of P_{θ} that contains the origin.
- The P_{θ}^{o} 's are all contained inside a ball of radius $R^{-1 / 2}$ centered at the origin. They overlap a lot near the origin as θ varies, but overlap less and less as one moves away from the origin.
- So miracle happens away from the origin, but not so much near it.

Does miracle happen?

- The miracle $\int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{2} \lesssim \int_{\mathbb{Q}_{q}^{2}} \sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{4}$ happens when the $\left|f_{\theta}\right|^{2}$'s are (almost) orthogonal to each other.
- Let's look at the Fourier support of $\left|f_{\theta}\right|^{2}$ as θ varies.
- $\widehat{\left|f_{\theta}\right|^{2}}=\widehat{f_{\theta}} * \widehat{f_{\theta}}$ is supported on $P_{\theta}+\left(-P_{\theta}\right):=P_{\theta}^{o}$ where P_{θ}^{o} is a translate of P_{θ} that contains the origin.
- The P_{θ}^{o} 's are all contained inside a ball of radius $R^{-1 / 2}$ centered at the origin. They overlap a lot near the origin as θ varies, but overlap less and less as one moves away from the origin.
- So miracle happens away from the origin, but not so much near it.

Does miracle happen?

- The miracle $\int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{2} \lesssim \int_{\mathbb{Q}_{q}^{2}} \sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{4}$ happens when the $\left|f_{\theta}\right|^{2}$'s are (almost) orthogonal to each other.
- Let's look at the Fourier support of $\left|f_{\theta}\right|^{2}$ as θ varies.
- $\widehat{\left|f_{\theta}\right|^{2}}=\widehat{f_{\theta}} * \widehat{f_{\theta}}$ is supported on $P_{\theta}+\left(-P_{\theta}\right):=P_{\theta}^{o}$ where P_{θ}^{o} is a translate of P_{θ} that contains the origin.
- The P_{θ}^{o} 's are all contained inside a ball of radius $R^{-1 / 2}$ centered at the origin. They overlap a lot near the origin as θ varies, but overlap less and less as one moves away from the origin.
- So miracle happens away from the origin, but not so much near it.

Introducing intermediate scales help

- We were trying to pass from $|f|=\left|\sum_{|\theta|=R^{-1 / 2}} f_{\theta}\right|$ to the square function $g:=\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}$.
- It helps to introduce an intermediate scale R_{*} satisfying $R^{1 / 2} \leq R_{*} \leq R$, and the corresponding square function

$$
g_{*}:=\sum_{|\tau|=R_{*}^{-1 / 2}}\left|f_{\tau}\right|^{2}, \quad f_{\tau}=\sum_{\substack{\theta \subset \tau \\|\theta|=R^{-1 / 2}}} f_{\theta}
$$

- It is certainly easier to pass from $|f|$ to g_{*} than from $|f|$ to g.
- But g can be recovered as the low frequency part of g_{*} : Let's write

$$
g_{*}=g_{*}^{\text {low }}+g_{*}^{\text {high }}, \quad \widehat{g_{*}^{\text {low }}}:=\widehat{g_{*}} 1_{|\xi| \leq R^{-1 / 2}}, \quad \widehat{g_{*}^{\text {high }}}:=\widehat{g_{*}} 1_{|\xi|>R^{-1 / 2}}
$$

Introducing intermediate scales help

- We were trying to pass from $|f|=\left|\sum_{|\theta|=R^{-1 / 2}} f_{\theta}\right|$ to the square function $g:=\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}$.
- It helps to introduce an intermediate scale R_{*} satisfying $R^{1 / 2} \leq R_{*} \leq R$, and the corresponding square function

$$
g_{*}:=\sum_{|\tau|=R_{*}^{-1 / 2}}\left|f_{\tau}\right|^{2}, \quad f_{\tau}=\sum_{\substack{\theta \subset \tau \\|\theta|=R^{-1 / 2}}} f_{\theta}
$$

- It is certainly easier to pass from $|f|$ to g_{*} than from $|f|$ to g.
- But g can be recovered as the low frequency part of g_{*} : Let's write

$$
g_{*}=g_{*}^{\text {low }}+g_{*}^{\text {high }}, \quad \widehat{g_{*}^{\text {low }}}:=\widehat{g_{*}} 1_{|\xi| \leq R^{-1 / 2}}, \quad \widehat{g_{*}^{\text {high }}}:=\widehat{g_{*}} 1_{|\xi|>R^{-1 / 2}}
$$

Introducing intermediate scales help

- We were trying to pass from $|f|=\left|\sum_{|\theta|=R^{-1 / 2}} f_{\theta}\right|$ to the square function $g:=\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}$.
- It helps to introduce an intermediate scale R_{*} satisfying $R^{1 / 2} \leq R_{*} \leq R$, and the corresponding square function

$$
g_{*}:=\sum_{|\tau|=R_{*}^{-1 / 2}}\left|f_{\tau}\right|^{2}, \quad f_{\tau}=\sum_{\substack{\theta \subset \tau \\|\theta|=R^{-1 / 2}}} f_{\theta}
$$

- It is certainly easier to pass from $|f|$ to g_{*} than from $|f|$ to g.
- But g can be recovered as the low frequency part of g_{*} : Let's write

$$
g_{*}=g_{*}^{\text {low }}+g_{*}^{\text {high }}, \quad \widehat{g_{*}^{\text {low }}}:=\widehat{g_{*}} 1_{|\xi| \leq R^{-1 / 2}}, \quad \widehat{g_{*}^{\text {high }}}:=\widehat{g_{*}} 1_{|\xi|>R^{-1 / 2}}
$$

Introducing intermediate scales help

- We were trying to pass from $|f|=\left|\sum_{|\theta|=R^{-1 / 2}} f_{\theta}\right|$ to the square function $g:=\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}$.
- It helps to introduce an intermediate scale R_{*} satisfying $R^{1 / 2} \leq R_{*} \leq R$, and the corresponding square function

$$
g_{*}:=\sum_{|\tau|=R_{*}^{-1 / 2}}\left|f_{\tau}\right|^{2}, \quad f_{\tau}=\sum_{\substack{\theta \subset \tau \\|\theta|=R^{-1 / 2}}} f_{\theta}
$$

- It is certainly easier to pass from $|f|$ to g_{*} than from $|f|$ to g.
- But g can be recovered as the low frequency part of g_{*} : Let's write

$$
g_{*}=g_{*}^{\text {low }}+g_{*}^{\text {high }}, \quad \widehat{g_{*}^{\text {low }}}:=\widehat{g_{*}} 1_{|\xi| \leq R^{-1 / 2}}, \quad \widehat{g_{*}^{\text {high }}}:=\widehat{g_{*}} 1_{|\xi|>R^{-1 / 2}}
$$

Introducing intermediate scales help

- We were trying to pass from $|f|=\left|\sum_{|\theta|=R^{-1 / 2}} f_{\theta}\right|$ to the square function $g:=\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}$.
- It helps to introduce an intermediate scale R_{*} satisfying $R^{1 / 2} \leq R_{*} \leq R$, and the corresponding square function

$$
g_{*}:=\sum_{|\tau|=R_{*}^{-1 / 2}}\left|f_{\tau}\right|^{2}, \quad f_{\tau}=\sum_{\substack{\theta \subset \tau \\|\theta|=R^{-1 / 2}}} f_{\theta}
$$

- It is certainly easier to pass from $|f|$ to g_{*} than from $|f|$ to g.
- But g can be recovered as the low frequency part of g_{*} : Let's write

$$
g_{*}=g_{*}^{\text {low }}+g_{*}^{\text {high }}, \quad \widehat{g_{*}^{\text {low }}}:=\widehat{g_{*}} 1_{|\xi| \leq R^{-1 / 2}}, \quad \widehat{g_{*}^{\text {high }}}:=\widehat{g_{*}} 1_{|\xi|>R^{-1 / 2}}
$$

Advantages of the high-low decomposition

\rightarrow Then $g_{*}^{\text {low }}$ is precisely g. This is because

$$
\widehat{g_{*}^{\text {low }}}=\sum_{|\tau|=R_{*}^{-1 / 2}} \widehat{\left|f_{\tau}\right|^{2}} 1_{|\xi| \leq R^{-1 / 2}}=\sum_{|\tau|=R_{*}^{-1 / 2}} \sum_{\substack{\theta, \theta^{\prime} \subset \tau \\|\theta|=\left|\theta^{\prime}\right|=R^{-1 / 2}}} \widehat{\overline{f_{\theta}} \widehat{f_{\theta^{\prime}}}} 1_{|\xi| \leq R^{-1 / 2}}
$$

$$
\text { and } \widehat{f_{\theta} \overline{f_{\theta^{\prime}}}} 1_{|\xi| \leq R^{-1 / 2}}\left\{\begin{array}{l}
=\widehat{f_{\theta}} * \widehat{\overline{f_{\theta^{\prime}}}} 1_{|\xi| \leq R^{-1 / 2}}=0 \quad \text { if } \theta \neq \theta^{\prime} \\
=\widehat{\left|f_{\theta}\right|^{2}} 1_{|\xi| \leq R^{-1 / 2}}=\widehat{\left|f_{\theta}\right|^{2}} \quad \text { if } \theta=\theta^{\prime}
\end{array}\right.
$$

- On the other hand, $\widehat{g_{*}^{\text {high }}}=\sum_{|\tau|=R_{*}^{-1 / 2}} \widehat{\left|f_{\tau}\right|^{2}} 1_{|\xi|>R^{-1 / 2}}$ is a sum of functions whose support overlaps at most $\left(R / R_{*}\right)^{1 / 2}$ times, so

$$
\int_{\mathbb{Q}_{q}^{2}}\left|g_{*}^{h i g h}\right|^{2} \leq\left(R / R_{*}\right)^{1 / 2} \sum_{|\tau|=R_{*}^{-1 / 2}} \int_{\mathbb{Q}_{q}^{2}}\left|f_{\tau}\right|^{4}
$$

which by Hölder's inequality is

$$
\leq\left(R / R_{*}\right)^{2} \sum_{|\theta|=R^{-1 / 2}} \int_{\mathbb{Q}_{q}^{2}}\left|f_{\theta}\right|^{4}
$$

Putting these together

- Let $H:=\left\{x \in \mathbb{Q}_{q}^{2}: g_{*}(x) \leq A\left|g_{*}^{\text {high }}(x)\right|\right\}$ where A is a constant to be determined. We write $\int_{\mathbb{Q}_{q}^{2}}|f|^{6}=\int_{H}|f|^{6}+\int_{H^{c}}|f|^{6}$.
- For the first term, if we had (problem 1!) $\int_{H}|f|^{4} \leq \int_{H} g_{*}^{2}$, then

$$
\int_{H}|f|^{6} \leq\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \int_{H}|f|^{4} \leq ?\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \int_{H} g_{*}^{2} \leq A^{2}\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \int_{\mathbb{Q}_{q}^{2}}\left|g_{*}^{h i g h}\right|^{2}
$$

which is bounded by

$$
\begin{aligned}
& \leq A^{2}\left(R / R_{*}\right)^{2}\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sum_{|\theta|=R^{-1 / 2}} \int_{\mathbb{Q}_{q}^{2}}\left|f_{\theta}\right|^{4} \\
& \leq A^{2}\left(R / R_{*}\right)^{2}\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sup _{\theta^{\prime}}\left\|f_{\theta^{\prime}}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sum_{|\theta|=R^{-1 / 2}} \int_{\mathbb{Q}_{q}^{2}}\left|f_{\theta}\right|^{2} \\
& \leq A^{2}\left(R / R_{*}\right)^{2}\left(\sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}\right)^{2} \int_{\mathbb{Q}_{q}^{2}}|f|^{2} .
\end{aligned}
$$

This is good if A and R / R_{*} are (small) powers of $\log R$.

- For the second term, note if $x \notin H$, then $\left|g_{*}^{\text {high }}(x)\right| \leq A^{-1} g_{*}(x)$, so

$$
g_{*}(x)=g_{*}^{\text {low }}(x)+g_{*}^{\text {high }}(x) \leq g_{*}^{\text {low }}(x)+A^{-1} g_{*}(x)
$$

which implies

$$
g_{*}(x) \leq\left(1-A^{-1}\right)^{-1} g_{*}^{\text {low }}(x)=\left(1-A^{-1}\right)^{-1} \sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2} .
$$

Hence

$$
\begin{aligned}
\int_{H^{c}}|f|^{6} & \leq R_{*}^{3 / 2} \int_{H^{c}} g_{*}^{3} \quad \text { (Hölder) } \\
& \leq R_{*}^{3 / 2}\left(1-A^{-1}\right)^{-3} \int_{\mathbb{Q}_{q}^{2}}\left(\sum_{|\theta|=R^{-1 / 2}}\left|f_{\theta}\right|^{2}\right)^{3} \\
& \leq R_{*}^{3 / 2}\left(1-A^{-1}\right)^{-3}\left(\sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}\right)^{2} \int_{\mathbb{Q}_{q}^{2}}|f|^{2} .
\end{aligned}
$$

- Altogether, assuming problem 1 is solved, we have

$$
\int_{\mathbb{Q}_{q}^{2}}|f|^{6} \leq\left(A^{2}\left(R / R_{*}\right)^{2}+R_{*}^{3 / 2}\left(1-A^{-1}\right)^{-3}\right)\left(\sum_{|\theta|=R^{-1 / 2}}\left\|f_{\theta}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}\right)^{2} \int_{\mathbb{Q}_{q}^{2}}|f|^{2} .
$$

Problem 2: $R_{*}^{3 / 2}$ is much bigger than $\log R!$

The ways out: many scales and bilinearize (plus pruning)

- To solve problem 2, we need to introduce $N \sim \log R$ scales, and apply the Hölder's inequality only once on the set of all x that is not in the high set at any scale. The loss incurred when Hölder is applied once is insignificant, so we are good there.
- But since we needed N many scales, instead of $\left(1-A^{-1}\right)^{-3}$ we accumulate a factor of $\left(1-A^{-1}\right)^{-3 N}$. Thus when we defined the high sets, we want A to be large, so that $\left(1-A^{-1}\right)^{-3 N}$ is bounded; this suggests that we choose $A \sim N \sim \log R$.
- To solve problem 1, we really can't say $\int_{H}|f|^{4} \leq \int_{H} g_{*}^{2}$ via Fefferman and Cordoba. But we can bilinearize and use bilinear restriction instead: this gives us access to smaller physical scales at which we have a nice partition of H.
- In fact we bilinearize a little more efficiently than Guth, Maldague and Wang, using a Whitney decomposition as in previous work with Zorin-Kranich.
- The introduction of many scales also requires one to bound $\|f\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2} \sup _{|\tau|=R_{k}^{-1 / 2}}\left\|f_{\tau}\right\|_{L^{\infty}\left(\mathbb{Q}_{q}^{2}\right)}^{2}$ for many intermediate R_{k} 's. This requires a careful wave packet pruning process, which we omit.

Thank you for your attention!

Advertisement (for those who have students interested in incidences):
Summer school on Brascamp-Lieb inequalities September 26 - October 01, 2021, at Kopp, Germany organized by Christoph Thiele and Pavel Zorin-Kranich https://www.math.uni-bonn.de/ag/ana/WiSe2122/BL-school/

