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Introduction

◮ Part I: Elliptic case

◮ Some compensation phenomena that has to do with
divergence, curl and L1

◮ Seems quite different from the classical theory of
compensation compactness

◮ Part II: Subelliptic case



Hodge de-Rham complex on Rn

◮ To say u is a 0-form means u is a function; then
du =

∑n
i=1

∂u
∂x i

dx i (gradient of a function)

◮ To say u is a 1-form means u =
∑n

i=1 uidx
i ; then

du =
∑

i<j

(
∂ui
∂x j

−
∂uj
∂x i

)
dx i ∧ dx j

(curl of a vector field if n = 3)

◮ In general d maps q-forms to (q + 1)-forms, and

du =

n∑

j=1

∂uJ
∂x j

dx j ∧ dxJ .



◮ Inner product on q forms:

(u, v) =
∑

J

∫

Rn

uJvJ

◮ We write d∗ the formal adjoint of d under this inner product

◮ e.g. If u is a 1-form, then d∗u = −
∑n

i=1
∂ui
∂x i

(divergence of a
vector field)



◮ d forms a complex: d ◦ d = 0. Same for d∗.

◮ dd∗ + d∗d = ∆ componentwise

◮ Hodge decomposition: If u ∈ C∞
c (Λq), then

u = dα+ d∗β

where α = ∆−1(d∗u) and β = ∆−1(du). In particular, u is
determined by du and d∗u.



Three pillars of the theory: elementary version

◮ From now on we work on Rn, n ≥ 2.

◮ First pillar is the solution of the following system of equations.

Proposition (Bourgain-Brezis)

For any f ∈ Ln, there exists a vector field Y ∈ L∞ such that

div Y = f

with ‖Y ‖L∞ ≤ C‖f ‖Ln .

◮ Can always find Y ∈ Ẇ 1,n by Hodge decomposition, but
Ẇ 1,n fails to embed into L∞.

◮ But system is underdetermined: if Y is a solution, so is Y
plus any divergence free vector field

◮ The claim is one can find a solution that is bounded by adding
a divergence free vector field



More generally

Theorem (Bourgain-Brezis)

If q 6= n− 1, then for any f ∈ d∗(Ẇ 1,n(Λq+1)), there exists
Y ∈ L∞(Λq+1) such that

d∗Y = f

with ‖Y ‖L∞ ≤ C‖f ‖Ln .



◮ Second pillar is the Gagliardo-Nirenberg inequality and its
generalization.

◮ Recall Gagliardo-Nirenberg: If u ∈ C∞
c (Λ0), then

‖u‖Ln/(n−1) ≤ C‖∇u‖L1 .

Theorem (Lanzani-Stein)

Suppose q 6= 1 nor n − 1. Then for any u ∈ C∞
c (Λq),

‖u‖Ln/(n−1) ≤ C (‖du‖L1 + ‖d∗u‖L1).

Furthermore, assume n ≥ 3. Then if q = 1, the same inequality
holds if d∗u = 0; if q = n − 1, the same inequality holds if du = 0.

◮ Control of u by du and d∗u; since d∗ of a function is always
zero, when q = 0 this is just Gagliardo-Nirenberg

◮ On the other hand, when q = 1, du is curl of u, and d∗u is
divergence of u, so this is sometimes called a div-curl
inequality.



◮ Third pillar is the following compensation phenomenon.

Theorem (van Schaftingen)

If u ∈ C∞
c (Λ1) and d∗u = 0, then for any function Φ ∈ C∞

c ,

∣∣∣∣
∫

Rn

u1Φdx

∣∣∣∣ ≤ C‖u‖L1‖∇Φ‖Ln .

◮ Inequality would be trivial if Ẇ 1,n embeds into L∞. So this is
some remedy of failure of this critical Sobolev embedding
when one test a Ẇ 1,n function against something divergence
free (inequality fails otherwise).



Equivalence of the three pillars

◮ The three theorems above are all equivalent.

◮ To illustrate this, assume the following proposition of
Bourgain-Brezis (special case of first theorem):

Proposition

For any f ∈ Ln, there exists a vector field Y ∈ L∞ such that

div Y = f

with ‖Y ‖L∞ ≤ C‖f ‖Ln .

We deduce from this the usual Gagliardo-Nirenberg inequality
for functions (special case of second theorem).



Let u ∈ C∞
c function in R

n. We want to prove

‖u‖Ln/(n−1) ≤ C‖∇u‖L1 .

Use duality: consider
∫
Rn uf for f ∈ Ln.

By Proposition, given f ∈ Ln, there is a vector field Y in L∞ such
that div Y = f with ‖Y ‖L∞ ≤ C‖f ‖Ln . Then

∫

Rn

uf =

∫

Rn

udiv Y

= −

∫

Rn

∇u · Y

≤ ‖∇u‖L1‖Y ‖L∞

≤ C‖∇u‖L1‖f ‖Ln .



◮ Conversely, one can deduce the above Proposition from the
Gagliardo-Nirenberg inequality.
Given function f ∈ Ln, we want to find vector field Y ∈ L∞

such that div Y = f . The latter equation can be written

−

∫

Rn

uf =

∫

Rn

∇u · Y

for all functions u ∈ C∞
c .

Let L1(Λ1) be the space of vector fields in L1, E be the
subspace spanned by ∇u where u ∈ C∞

c (Λ0) (equipped with
L1 norm).
Define a linear functional T on E by

T (∇u) = −

∫

Rn

uf .



By Gagliardo-Nirenberg, T is bounded on E with ‖T‖ ≤ C‖f ‖Ln :
this is because

|T (∇u)| =

∣∣∣∣
∫

Rn

uf

∣∣∣∣ ≤ ‖u‖Ln/(n−1)‖f ‖Ln ≤ C‖∇u‖L1‖f ‖Ln

for all u ∈ C∞
c .

By Hahn-Banach, we can extend T to L1(Λ1) without increasing
its norm. But all bounded linear functionals on L1(Λ1) is of the
form v 7→

∫
Rn v · Y for some vector field Y ∈ L∞. Thus there is

some Y ∈ L∞ with

T (∇u) =

∫

Rn

∇u · Y

for all u ∈ C∞
c , as desired.



◮ Similarly one can prove that the first two theorems above are
equivalent (although I have not shown you how to prove
either of them).



◮ Next remember there is also a third theorem, which is a
compensation phenomenon for divergence-free 1-forms.

◮ To illustrate why this third theorem is also equivalent to the
first two, let’s try to deduce from it the following special case
of the second theorem:

Proposition

Suppose n ≥ 3. Then ‖u‖Ln/(n−1) ≤ C‖du‖L1 if u is a 1-form and
d∗u = 0.



To prove this, use Hodge decomposition: u = d∗∆−1(du).

Use duality: Let φ be another 1-form, φ ∈ Ln. Consider

(u, φ) = (d∗∆−1(du), φ) = (du,∆−1dφ)

which is equal to

∑

|J|=2

∫

Rn

(du)J∆−1(dφ)J .

Need to estimate this.

Key: One could do so using the third theorem, because for each
|J| = 2, (du)J is a component of some divergence free vector field.



Reason: d forms a complex: d(du) = 0. So say 1 is not in
J = (j1, j2) (an index like that exist since n ≥ 3). Then considering
the component 1J of d(du), we get

∂(du)J
∂x1

±
∂(du)1j1
∂x j2

±
∂(du)1j2
∂x j1

= 0.

Arguments like this will prove the second theorem from the third.



◮ To complete this circle of ideas, van Schaftingen provided an
elementary (but very beautiful) proof of the third theorem
(thus establishes all three theorems).

◮ Turns out there is a more sophiscated version of the same
story, which we describe below.



Three pillars of the theory: sophiscated version

◮ First pillar is the solution of the following system of equations.

Proposition (Bourgain-Brezis)

For any f ∈ Ln, there exists a vector field Y ∈ L∞∩ Ẇ 1,n such that

div Y = f

with ‖Y ‖L∞ + ‖Y ‖
Ẇ 1,n ≤ C‖f ‖Ln .

◮ Y not only in L∞, but also in Ẇ 1,n!



More generally

Theorem (Bourgain-Brezis)

If q 6= n− 1, then for any f ∈ d∗(Ẇ 1,n(Λq+1)), there exists
Y ∈ L∞ ∩ Ẇ 1,n(Λq+1) such that

d∗Y = f

with ‖Y ‖L∞ + ‖Y ‖
Ẇ 1,n ≤ C‖f ‖Ln .



◮ Second pillar is the following generalized Gagliardo-Nirenberg
inequality.

Theorem (Bourgain-Brezis)

Suppose q 6= 1 nor n − 1. Then for any u ∈ C∞
c (Λq),

‖u‖Ln/(n−1) ≤ C (‖du‖
L1+(Ẇ 1,n)∗ + ‖d∗u‖

L1+(Ẇ 1,n)∗).

Furthermore, assume n ≥ 3. Then if q = 1, the same inequality
holds if d∗u = 0; if q = n − 1, the same inequality holds if du = 0.



◮ (Ẇ 1,n)∗ is the dual space of Ẇ 1,n. If A and B are Banach
spaces, their sum is a Banach space

A+ B = {a + b : a ∈ A, b ∈ B}

with norm

‖f ‖A+B = inf{‖a‖A + ‖b‖B : f = a + b, a ∈ A, b ∈ B}.

Note that the dual space of L1 + (Ẇ 1,n)∗ is L∞ ∩ Ẇ 1,n,
which appeared in the previous theorem.



◮ When q = 0, the current theorem says

‖u‖Ln/(n−1) ≤ C‖∇u‖
L1+(Ẇ 1,n)∗

for all functions u ∈ C∞
c , which is an improvement of the

usual Gagliardo-Nirenberg inequality.



◮ Third pillar is the following compensation phenomenon.

Theorem (Bourgain-Brezis)

If u ∈ C∞
c (Λ1) and d∗u = 0, then for any function Φ ∈ C∞

c ,

∣∣∣∣
∫

Rn

u1Φdx

∣∣∣∣ ≤ C‖u‖
L1+(Ẇ 1,n)∗‖∇Φ‖Ln .



◮ Again these three theorems are equivalent. Bourgain-Brezis
gave a constructive proof of the first one directly, thereby
proving all three of them.

◮ The proof of Bourgain-Brezis uses the following approximation
lemma, which is of independent interest:

Lemma (Bourgain-Brezis)

Given any δ > 0, there exists a constant Cδ such that for any
function f ∈ Ẇ 1,n, there exists a function F ∈ L∞ ∩ Ẇ 1,n such
that

n∑

i=2

‖∂i f − ∂iF‖Ln ≤ δ‖∇f ‖Ln

and
‖∇F‖Ln + ‖F‖L∞ ≤ Cδ‖∇f ‖Ln .

◮ F approximates the derivatives of f in all but one direction!



◮ Proof of this lemma uses heavily the Littlewood-Paley
decomposition of a function, and is highly non-linear. This is
part of the nature of the subject matter; in fact,
Bourgain-Brezis also proved

Proposition (Bourgain-Brezis)

There is no bounded linear operator K : Ln → L∞(Λ1) such that
div Kf = f for all f ∈ Ln.



An approximation lemma for second derivatives

◮ The original proof of Bourgain-Brezis is restricted to
controlling one derivative. In joint work with Yi Wang, we
proved:

Theorem (Yi Wang-Y)

Given any δ > 0, there exists a constant Cδ such that for any
function f ∈ Ẇ 2,n/2, there exists a function F ∈ L∞ ∩ Ẇ 2,n/2 such
that

n∑

i ,j=2

‖∂2
ij f − ∂2

ijF‖Ln/2 ≤ δ‖∇2f ‖Ln/2

and
‖∇2F‖Ln/2 + ‖F‖L∞ ≤ Cδ‖∇

2f ‖Ln/2 .



A hyperbolic version: An improved Strichartz estimate

Theorem (Chanillo-Y)

Suppose u : R1+2 → R
2 is a (weak) solution of the following

system of wave equations





�u = f

u|t=0 = u0

∂tu|t=0 = u1

where f = (f1, f2) : R
1+2 → R

2 is a divergence free vector field at
each given time t, i.e.

∂x1 f1 + ∂x2 f2 = 0

for each t. Then

‖u‖C0
t L

2
x
+ ‖∂tu‖C0

t Ḣ
−1
x

≤ C
(
‖u0‖L2 + ‖u1‖Ḣ−1 + ‖f ‖L1t L1x

)
.



Subelliptic case: Heisenberg group

◮ Heisenberg group H
n as the boundary of the upper half space

{Im zn+1 > |z ′|2}, (z ′, zn+1) ∈ C
n+1

◮ H
n diffeomorphic to C

n × R via

C
n × R → H

n

[z , t] 7→ (z , t + i |z |2)

◮ H
n carries the structure of a non-abelian Lie group:

[z1, t1] · [z2, t2] = [z1 + z2, t1 + t2 + 2Im (z1z̄2)]

◮ homogeneous in the sense that it carries automorphic dilation

δλ[z , t] := [λz , λ2t], λ > 0



◮ Haar measure is just Lebesgue measure on C
n × R ≃ R

2n+1:
it is dxdydt if we write a point on H

n as [z , t], z = x + iy

◮ Q = 2n + 2 is the homogeneous dimension of Hn:

δ∗λ(dxdydt) = λQdxdydt

◮ Left-invariant vector fields on H
n:

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, 1 ≤ j ≤ n

T =
∂

∂t
= −

1

4
[Xj ,Yj ]

◮ Think of Xj , Yj as of degree 1, T of degree 2. Also write
Xj+n = Yj if 1 ≤ j ≤ n, and ∇b for subelliptic gradient:

∇bf = (X1f , . . . ,X2nf ) for functions f on H
n



◮ Sobolev embedding: ∇bf ∈ Lp implies f ∈ Lp
∗

,

1

p∗
=

1

p
−

1

Q
, 1 ≤ p < Q

◮ Fails when p = Q; nonetheless we have

Theorem (Chanillo-van Schaftingen)

If f1, . . . , f2n and Φ are C∞
c functions on H

n and

X1f1 + · · · + X2nf2n = 0,

then for any j,

∣∣∣∣
∫

Hn

fjΦ

∣∣∣∣ ≤ C‖f ‖L1‖∇bΦ‖LQ .

Here ‖f ‖L1 =
∑2n

j=1 ‖fj‖L1 .



◮ Result does not make use of any complex structure; in fact
they proved it for more general homogeneous Lie groups

◮ Proof is more difficult than the abelian case since the vector
fields do not commute

◮ Analog of the first two pillars of the previous theory?



Application to the ∂b complex on Hn

◮ Notations: Zj = Xj + iYj , Z j = Xj − iYj , 1 ≤ j ≤ n

◮ Write [z , t] coordinate on H
n. For each multiindex

J = (j1, . . . , jq), 1 ≤ jk ≤ n for all k , we write

dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq

◮ A (0, q) form on H
n is an expression of the form

u =
∑

|J|=q

uJdz̄
J ;

then ∂bu is a (0, q + 1) form given by

∂bu :=

n∑

j=1

Z j(uJ)dz̄
j ∧ dz̄J



◮ L2 inner product on space of (0, q) forms:

(u, v) =
∑

J

∫

Hn

uJ v̄J

◮ ∂
∗
b: formal adjoint of ∂b under this inner product

◮ e.g. If u =
∑n

j=1 ujdz̄
j is a (0, 1) form, then

∂
∗
bu = −

n∑

j=1

Zj(uj ).



We have the following apriori inequalities: (Recall Q = 2n + 2.)

Theorem
If u is a (0, q) form on H

n, 2 ≤ q ≤ n − 2, then

‖u‖LQ/(Q−1) ≤ C (‖∂bu‖L1 + ‖∂
∗
bu‖L1).

Suppose further that n ≥ 3. If q = 1, the same inequality holds if
∂
∗
bu = 0; if q = n − 1, the same result holds if ∂bu = 0.

Theorem
Assume n ≥ 2. If u is a function orthogonal to the kernel of ∂b in
L2, then

‖u‖LQ/(Q−1) ≤ C‖∂bu‖L1 ;

an analogous result holds if u is a (0, n) form orthogonal to the
kernel of ∂

∗
b in L2.



We also have

Theorem
On H

n, if q 6= n − 1, then for any f ∈ ∂
∗
b(ṄL

1,Q
(Λ0,q+1)), there

exists Y ∈ L∞(Λ0,q+1) such that

∂
∗
bY = f

with ‖Y ‖L∞ ≤ C‖f ‖LQ .

Here ṄL
1,Q

is the space of functions whose ∇b is in LQ .



Subelliptic case: Hormander’s vector fields

◮ Question: What happens if there is no group structure? Can
one still have a theorem analogous to the one of Chanillo-van
Schaftingen?

◮ Setup: X1, . . . ,Xn smooth real vector fields near 0 on R
N

◮ Assume that they are linearly independent at 0, and that their
commutators of length ≤ r span at 0

◮ Let Vj(0) be the span of restrictions of the commutators of
X1, . . . ,Xn of length ≤ j to 0

◮ Let Q =
∑r

j=1 j · (dimVj(0) − dimVj−1(0))



Theorem (Y)

Under the assumptions on the previous slide, there is a
neighborhood U of 0 and C > 0 such that if

X1f1 + · · ·+ Xnfn = 0

on U with f1, . . . , fn ∈ C∞
c (U) and Φ ∈ C∞

c (U), then

∣∣∣∣
∫

U

f1(x)Φ(x)dx

∣∣∣∣ ≤ C‖f ‖L1(U)(
n∑

j=1

‖XjΦ‖LQ(U) + ‖Φ‖LQ (U)).

◮ Generalizes Chanillo-van Schaftingen

◮ One difficulty in the current theorem: getting the best (i.e.
smallest) possible value of Q. The one we had given is the
best possible.



A model example

◮ On R
2, let X = ∂

∂x , Y = x ∂
∂t , Q = 3.

Theorem (Y)

If Xf1 + Yf2 = 0 on R
2, with f1, f2 ∈ C∞

c , then for all Φ ∈ C∞
c ,

∣∣∣∣
∫

R2

f1Φ

∣∣∣∣ ≤ C‖f ‖L1(R2)‖∇bΦ‖L3(R2)

where ∇bΦ = (XΦ,YΦ).

◮ Strictly speaking this does not fall under the scope of the
previous theorem, since Y is zero at 0; but it is where the
ideas of the proof is the most transparent.



◮ The proof of this model theorem is via lifting to the
Heisenberg group H

1: there exist a submersion π : H1 → R
2

such that

dπ(X1) = X and dπ(Y1) = Y .

◮ One could try to use the result on H
1; but this does not work,

since by lifting to the Heisenberg group (which has a higher
dimension), one gets less smoothing in any Sobolev-kind
inequality.

◮ The way out: Imitate the argument on H
1; but has to

‘integrate away the additional variable’ that one adds during
the lifting process.

◮ In general, to prove the general theorem, one can still use the
same lifting strategy (Rothschild-Stein), but there will be
errors that one has to handle.



Application to ∂b complex on domains of finite type

◮ M: boundary of a bounded smooth pseudoconvex domain in
C
n+1, n ≥ 2

◮ Assume M is of finite commutator type m and has
comparable Levi eigenvalues.

Theorem (Y)

Let q 6= 1 nor n − 1. Then for any smooth (0, q) form u
orthogonal to Kernel(�b),

‖u‖
L

Q
Q−1 (M)

. ‖∂bu‖L1(M) + ‖∂
∗
bu‖L1(M)

where Q = 2n +m. In particular

‖u‖
L

Q
Q−1 (M)

. ‖∂bu‖L1(M)

for all smooth functions u orthogonal to Kernel(∂b)
(Gagliardo-Nirenberg for ∂b).



Under the same assumptions on M, we also have

Theorem (Y)

If q 6= n− 1, then for any f ∈ ∂
∗
b(ṄL

1,Q
(Λ0,q+1)) on M, there

exists Y ∈ L∞(Λ0,q+1) such that

∂
∗
bY = f

with ‖Y ‖L∞ ≤ C‖f ‖LQ .

Here again Q = 2n +m.



Sophiscated version of the subelliptic story

◮ Focus again on the Heisenberg group H
n. We have the

following approximation lemma: (Q = 2n + 2)

Theorem (Yi Wang-Y)

Given any δ > 0, there exists a constant Cδ such that for any
function f with ∇bf ∈ LQ , there exists a function F ∈ L∞ with
∇bF ∈ LQ such that

2n∑

j=2

‖Xj f − XjF‖LQ ≤ δ‖∇bf ‖LQ

and
‖∇bF‖LQ + ‖F‖L∞ ≤ Cδ‖∇bf ‖LQ .

◮ F approximates the derivatives of f in all but one good
direction!



From this we deduce

Theorem (Yi Wang-Y)

If q 6= n− 1, then for any f ∈ ∂
∗
b(ṄL

1,Q
(Λ0,q+1)) on H

n, there

exists Y ∈ L∞ ∩ ṄL
1,Q

(Λ0,q+1) such that

∂
∗
bY = f

with ‖Y ‖L∞ + ‖∇bY ‖LQ ≤ C‖f ‖LQ .

◮ This is remarkable since now one has not only Y ∈ L∞, but
also ∇bY ∈ LQ .



We further deduced the following apriori inequalities:

Theorem (Yi Wang-Y)

If u is a (0, q) form on H
n, 2 ≤ q ≤ n − 2, then

‖u‖LQ/(Q−1) ≤ C (‖∂bu‖L1+(ṄL
1,Q

)∗
+ ‖∂

∗
bu‖L1+(ṄL

1,Q
)∗
).

Suppose further n ≥ 3. If q = 1, the same inequality holds if
∂
∗
bu = 0; if q = n − 1, the same result holds if ∂bu = 0.

Theorem (Yi Wang-Y)

Assume n ≥ 2. If u is a function orthogonal to the kernel of ∂b in
L2, then

‖u‖LQ/(Q−1) ≤ C‖∂bu‖L1+(ṄL
1,Q

)∗
;

an analogous result holds if u is a (0, n) form orthogonal to the
kernel of ∂

∗
b in L2.



Bourgain-Brezis’s approximation lemma again

Lemma (Bourgain-Brezis)

Given any δ > 0, there exists a constant Cδ such that for any
function f ∈ Ẇ 1,n, there exists a function F ∈ L∞ ∩ Ẇ 1,n such
that

n∑

i=2

‖∂i f − ∂iF‖Ln ≤ δ‖∇f ‖Ln

and
‖∇F‖Ln + ‖F‖L∞ ≤ Cδ‖∇f ‖Ln .



Bourgain-Brezis’s proof

◮ First ingredient: Littlewood-Paley theory

◮ Every Ẇ 1,n function f can be written

f =

∞∑

j=−∞

∆j f

∆̂j f (ξ) = χ{2j≤|ξ|≤2j+1}(ξ)f̂ (ξ)

◮ Bernstein inequality:

‖∆j f ‖L∞ ≤ C‖∇f ‖Ln for all j

◮ Thus if f = ∆j f for some j , i.e. if f is frequency localized,
then the approximation lemma is trivial; one can take F = f .

◮ In general, while each ∆j f is in L∞, one cannot sum all of
them in L∞ since the L∞ norms do not decay in j .



◮ Second ingredient: algebraic identity

◮ Given any N numbers a1, . . . , aN , we have

1 =

N∑

j=1

aj
∏

j ′>j

(1− aj ′) +

N∏

j=1

(1− aj)

◮ This is nothing but

1 = aN + (1− aN)

= aN + aN−1(1− aN) + (1− aN−1)(1 − aN)

= aN + aN−1(1− aN) + aN−2(1− aN−1)(1− aN)

+ (1− aN−2)(1− aN−1)(1− aN) . . .

◮ In particular, if all aj satisfies 0 ≤ aj ≤ 1, then

∑

j

aj
∏

j ′>j

(1− aj ′) ≤ 1.



◮ One is now tempted to take

F =
∑

j

∆j f
∏

j ′>j

(1− |∆j f |)

as an L∞ approximation to

f =
∑

j

∆j f · 1

◮ But this is too naive, and in particular one does not gain in
any good directions

◮ Need another controlling function that dominates |∆j f |:
Bourgain-Brezis introduced

ωj(x) = sup
y∈Rn

|∆j f (x − y)|e−|y1|−2−σ|y ′|, y = (y1, y
′)

where σ is a large constant depending on δ. (sup-convolution)

◮ Bourgain-Brezis also used heavily the Fejer kernels, which are
special kernels that one only finds in R

n.



Proof of approximation lemma on the Heisenberg group

◮ Difficulties:
◮ No notion of frequency space; in particular, no special kernels

like Fejer kernels
◮ Group is non-abelian: in particular, if X is left-invariant vector

field, then X (f ∗ g) = f ∗ (Xg) but is not equal to (Xf ) ∗ g

◮ Ways to overcome these:
◮ Simplify the argument at one crucial point so that we can

convolve one fewer times, which allows us to avoid the second
problem

◮ Price to pay: More errors to control all over the place
◮ Introduce two different controlling functions ωj and ω̃j : the

first one would be a discrete lQ convolution, the second one is
a continuous ordinary convolution



Epilogue

◮ We return now to the elliptic setting. A special case of the
second theorem of Bourgain-Brezis is the following:

Theorem (Bourgain-Brezis)

On R
2, if u is a function in C∞

c , then

‖u‖L2 ≤ C‖∇u‖
L1+(Ẇ 1,2)∗ .

◮ We have discussed how one could prove this by solving d∗

(i.e. using the first theorem), but Bourgain-Brezis actually
had another direct proof of this inequality, which works only in
2-dimensions.

◮ To illustrate this, we use their method to give a new proof of
the Gagliardo-Nirenberg inequality in R

2: Suppose
‖∇u‖L1 = 1. We want to prove ‖u‖L2 ≤ C .



◮ Tool: Riesz transforms R1, R2 in R
2:

R̂j f (ξ) = −i
ξj

|ξ|
f̂ (ξ), j = 1, 2

◮ Fact: R2
1 + R2

2 = −Id , [R1,R2] = 0.

◮ Thus given u ∈ C∞
c with ‖∇u‖L1 = 1, we have

u = (R2
1 − R2

2 )
2u + 4R2

1R
2
2u

= (R1 − R2)
2(R1 + R2)

2u + 4R2
1R

2
2u

◮ To show u ∈ L2, we consider

(u, u) = ((R1 − R2)
2(R1 + R2)

2u, u) + 4(R2
1R

2
2u, u).

Suffices to bound both terms; by rotating the coordinate axes,
need only bound the latter



◮ Now
(R2

1R
2
2u, u) = (∆−1R1R2∂1u, ∂2u).

If one can show that ∆−1R1R2 maps L1 boundedly into L∞,
then we are done.

◮ To do that, let K (x) be the kernel of ∆−1R1R2. One only
needs to show that K ∈ L∞.

◮ One uses homogeneity: since K (x) is homogeneous of degree
0, it suffices to show that K is bounded on the unit sphere

◮ This one can do by using the integral representation

K (x) = − lim
ε→0
R→∞

∫

ε<|ξ|<R

ξ1ξ2

|ξ|4
e2πix ·ξdξ

and spliting the integral into integral over small and large ξ’s,
which works since the multiplier ξ1ξ2

|ξ|4
is odd in both ξ1 and ξ2.



Thank you!


