Subelliptic divergence-curl inequalities

Po-Lam Yung

Rutgers University
June 10, 2011

Introduction

- Part I: Elliptic case
- Some compensation phenomena that has to do with divergence, curl and L^{1}
- Seems quite different from the classical theory of compensation compactness
- Part II: Subelliptic case

Hodge de-Rham complex on \mathbb{R}^{n}

- To say u is a 0 -form means u is a function; then $d u=\sum_{i=1}^{n} \frac{\partial u}{\partial x^{i}} d x^{i}$ (gradient of a function)
- To say u is a 1 -form means $u=\sum_{i=1}^{n} u_{i} d x^{i}$; then

$$
d u=\sum_{i<j}\left(\frac{\partial u_{i}}{\partial x^{j}}-\frac{\partial u_{j}}{\partial x^{i}}\right) d x^{i} \wedge d x^{j}
$$

(curl of a vector field if $n=3$)

- In general d maps q-forms to $(q+1)$-forms, and

$$
d u=\sum_{j=1}^{n} \frac{\partial u_{J}}{\partial x^{j}} d x^{j} \wedge d x^{J}
$$

- Inner product on q forms:

$$
(u, v)=\sum_{J} \int_{\mathbb{R}^{n}} u_{J} \overline{\nabla_{J}}
$$

- We write d^{*} the formal adjoint of d under this inner product
- e.g. If u is a 1 -form, then $d^{*} u=-\sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x^{i}}$ (divergence of a vector field)
- d forms a complex: $d \circ d=0$. Same for d^{*}.
- $d d^{*}+d^{*} d=\Delta$ componentwise
- Hodge decomposition: If $u \in C_{c}^{\infty}\left(\Lambda^{q}\right)$, then

$$
u=d \alpha+d^{*} \beta
$$

where $\alpha=\Delta^{-1}\left(d^{*} u\right)$ and $\beta=\Delta^{-1}(d u)$. In particular, u is determined by $d u$ and $d^{*} u$.

Three pillars of the theory: elementary version

- From now on we work on $\mathbb{R}^{n}, n \geq 2$.
- First pillar is the solution of the following system of equations.

Proposition (Bourgain-Brezis)
For any $f \in L^{n}$, there exists a vector field $Y \in L^{\infty}$ such that

$$
\operatorname{div} Y=f
$$

with $\|Y\|_{L^{\infty}} \leq C\|f\|_{L^{n}}$.

- Can always find $Y \in \dot{W}^{1, n}$ by Hodge decomposition, but $\dot{W}^{1, n}$ fails to embed into L^{∞}.
- But system is underdetermined: if Y is a solution, so is Y plus any divergence free vector field
- The claim is one can find a solution that is bounded by adding a divergence free vector field

More generally
Theorem (Bourgain-Brezis)
If $q \neq n-1$, then for any $f \in d^{*}\left(\dot{W}^{1, n}\left(\Lambda^{q+1}\right)\right)$, there exists $Y \in L^{\infty}\left(\Lambda^{q+1}\right)$ such that

$$
d^{*} Y=f
$$

with $\|Y\|_{L^{\infty}} \leq C\|f\|_{L^{n}}$.

- Second pillar is the Gagliardo-Nirenberg inequality and its generalization.
- Recall Gagliardo-Nirenberg: If $u \in C_{c}^{\infty}\left(\Lambda^{0}\right)$, then

$$
\|u\|_{L^{n /(n-1)}} \leq C\|\nabla u\|_{L^{1}} .
$$

Theorem (Lanzani-Stein)
Suppose $q \neq 1$ nor $n-1$. Then for any $u \in C_{c}^{\infty}\left(\Lambda^{q}\right)$,

$$
\|u\|_{L^{n /(n-1)}} \leq C\left(\|d u\|_{L^{1}}+\left\|d^{*} u\right\|_{L^{1}}\right) .
$$

Furthermore, assume $n \geq 3$. Then if $q=1$, the same inequality holds if $d^{*} u=0$; if $q=n-1$, the same inequality holds if $d u=0$.

- Control of u by $d u$ and $d^{*} u$; since d^{*} of a function is always zero, when $q=0$ this is just Gagliardo-Nirenberg
- On the other hand, when $q=1, d u$ is curl of u, and $d^{*} u$ is divergence of u, so this is sometimes called a div-curl inequality.
- Third pillar is the following compensation phenomenon.

Theorem (van Schaftingen)
If $u \in C_{c}^{\infty}\left(\wedge^{1}\right)$ and $d^{*} u=0$, then for any function $\Phi \in C_{c}^{\infty}$,

$$
\left|\int_{\mathbb{R}^{n}} u_{1} \Phi d x\right| \leq C\|u\|_{L^{1}}\|\nabla \Phi\|_{L^{n}}
$$

- Inequality would be trivial if $\dot{W}^{1, n}$ embeds into L^{∞}. So this is some remedy of failure of this critical Sobolev embedding when one test a $\dot{W}^{1, n}$ function against something divergence free (inequality fails otherwise).

Equivalence of the three pillars

- The three theorems above are all equivalent.
- To illustrate this, assume the following proposition of Bourgain-Brezis (special case of first theorem):

Proposition
For any $f \in L^{n}$, there exists a vector field $Y \in L^{\infty}$ such that

$$
\operatorname{div} Y=f
$$

with $\|Y\|_{L^{\infty}} \leq C\|f\|_{L^{n}}$.
We deduce from this the usual Gagliardo-Nirenberg inequality for functions (special case of second theorem).

Let $u \in C_{c}^{\infty}$ function in \mathbb{R}^{n}. We want to prove

$$
\|u\|_{L^{n /(n-1)}} \leq C\|\nabla u\|_{L^{1}} .
$$

Use duality: consider $\int_{\mathbb{R}^{n}}$ uf for $f \in L^{n}$.
By Proposition, given $f \in L^{n}$, there is a vector field Y in L^{∞} such that $\operatorname{div} Y=f$ with $\|Y\|_{L^{\infty}} \leq C\|f\|_{L^{n}}$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} u f & =\int_{\mathbb{R}^{n}} u \operatorname{div} Y \\
& =-\int_{\mathbb{R}^{n}} \nabla u \cdot Y \\
& \leq\|\nabla u\|_{L^{1}}\|Y\|_{L^{\infty}} \\
& \leq C\|\nabla u\|_{L^{1}}\|f\|_{L^{n}} .
\end{aligned}
$$

- Conversely, one can deduce the above Proposition from the Gagliardo-Nirenberg inequality.
Given function $f \in L^{n}$, we want to find vector field $Y \in L^{\infty}$ such that $\operatorname{div} Y=f$. The latter equation can be written

$$
-\int_{\mathbb{R}^{n}} u f=\int_{\mathbb{R}^{n}} \nabla u \cdot Y
$$

for all functions $u \in C_{c}^{\infty}$.
Let $L^{1}\left(\Lambda^{1}\right)$ be the space of vector fields in L^{1}, E be the subspace spanned by ∇u where $u \in C_{c}^{\infty}\left(\Lambda^{0}\right)$ (equipped with L^{1} norm).
Define a linear functional T on E by

$$
T(\nabla u)=-\int_{\mathbb{R}^{n}} u f .
$$

By Gagliardo-Nirenberg, T is bounded on E with $\|T\| \leq C\|f\|_{L^{n}}$: this is because

$$
|T(\nabla u)|=\left|\int_{\mathbb{R}^{n}} u f\right| \leq\|u\|_{L^{n} /(n-1)}\|f\|_{L^{n}} \leq C\|\nabla u\|_{L^{1}}\|f\|_{L^{n}}
$$

for all $u \in C_{c}^{\infty}$.
By Hahn-Banach, we can extend T to $L^{1}\left(\Lambda^{1}\right)$ without increasing its norm. But all bounded linear functionals on $L^{1}\left(\Lambda^{1}\right)$ is of the form $v \mapsto \int_{\mathbb{R}^{n}} v \cdot Y$ for some vector field $Y \in L^{\infty}$. Thus there is some $Y \in L^{\infty}$ with

$$
T(\nabla u)=\int_{\mathbb{R}^{n}} \nabla u \cdot Y
$$

for all $u \in C_{c}^{\infty}$, as desired.

- Similarly one can prove that the first two theorems above are equivalent (although I have not shown you how to prove either of them).
- Next remember there is also a third theorem, which is a compensation phenomenon for divergence-free 1 -forms.
- To illustrate why this third theorem is also equivalent to the first two, let's try to deduce from it the following special case of the second theorem:

Proposition
Suppose $n \geq 3$. Then $\|u\|_{L^{n /(n-1)}} \leq C\|d u\|_{L^{1}}$ if u is a 1-form and $d^{*} u=0$.

To prove this, use Hodge decomposition: $u=d^{*} \Delta^{-1}(d u)$. Use duality: Let ϕ be another 1 -form, $\phi \in L^{n}$. Consider

$$
(u, \phi)=\left(d^{*} \Delta^{-1}(d u), \phi\right)=\left(d u, \Delta^{-1} d \phi\right)
$$

which is equal to

$$
\sum_{|J|=2} \int_{\mathbb{R}^{n}}(d u) J \overline{\Delta^{-1}(d \phi)_{J}}
$$

Need to estimate this.
Key: One could do so using the third theorem, because for each $|J|=2,(d u)_{J}$ is a component of some divergence free vector field.

Reason: d forms a complex: $d(d u)=0$. So say 1 is not in $J=\left(j_{1}, j_{2}\right)$ (an index like that exist since $n \geq 3$). Then considering the component $1 J$ of $d(d u)$, we get

$$
\frac{\partial(d u)_{J}}{\partial x^{1}} \pm \frac{\partial(d u)_{1 j_{1}}}{\partial x^{j_{2}}} \pm \frac{\partial(d u)_{1 j_{2}}}{\partial x^{j_{1}}}=0
$$

Arguments like this will prove the second theorem from the third.

- To complete this circle of ideas, van Schaftingen provided an elementary (but very beautiful) proof of the third theorem (thus establishes all three theorems).
- Turns out there is a more sophiscated version of the same story, which we describe below.

Three pillars of the theory: sophiscated version

- First pillar is the solution of the following system of equations.

Proposition (Bourgain-Brezis)
For any $f \in L^{n}$, there exists a vector field $Y \in L^{\infty} \cap \dot{W}^{1, n}$ such that

$$
\operatorname{div} Y=f
$$

with $\|Y\|_{L^{\infty}}+\|Y\|_{\dot{W}^{1, n}} \leq C\|f\|_{L^{n}}$.

- Y not only in L^{∞}, but also in $\dot{W}^{1, n}$!

More generally
Theorem (Bourgain-Brezis)
If $q \neq n-1$, then for any $f \in d^{*}\left(\dot{W}^{1, n}\left(\Lambda^{q+1}\right)\right)$, there exists $Y \in L^{\infty} \cap \dot{W}^{1, n}\left(\Lambda^{q+1}\right)$ such that

$$
d^{*} Y=f
$$

with $\|Y\|_{L^{\infty}}+\|Y\|_{\dot{W}^{1, n}} \leq C\|f\|_{L^{n}}$.

- Second pillar is the following generalized Gagliardo-Nirenberg inequality.

Theorem (Bourgain-Brezis)
Suppose $q \neq 1$ nor $n-1$. Then for any $u \in C_{c}^{\infty}\left(\wedge^{q}\right)$,

$$
\|u\|_{L^{n /(n-1)}} \leq C\left(\|d u\|_{L^{1}+\left(\dot{W}^{1, n}\right)^{*}}+\left\|d^{*} u\right\|_{L^{1}+\left(\dot{W}^{1, n}\right)^{*}}\right) .
$$

Furthermore, assume $n \geq 3$. Then if $q=1$, the same inequality holds if $d^{*} u=0$; if $q=n-1$, the same inequality holds if $d u=0$.

- $\left(\dot{W}^{1, n}\right)^{*}$ is the dual space of $\dot{W}^{1, n}$. If A and B are Banach spaces, their sum is a Banach space

$$
A+B=\{a+b: a \in A, b \in B\}
$$

with norm

$$
\|f\|_{A+B}=\inf \left\{\|a\|_{A}+\|b\|_{B}: f=a+b, a \in A, b \in B\right\} .
$$

Note that the dual space of $L^{1}+\left(\dot{W}^{1, n}\right)^{*}$ is $L^{\infty} \cap \dot{W}^{1, n}$, which appeared in the previous theorem.

- When $q=0$, the current theorem says

$$
\|u\|_{L^{n /(n-1)}} \leq C\|\nabla u\|_{L^{1}+\left(\dot{W}^{1, n}\right)^{*}}
$$

for all functions $u \in C_{c}^{\infty}$, which is an improvement of the usual Gagliardo-Nirenberg inequality.

- Third pillar is the following compensation phenomenon.

Theorem (Bourgain-Brezis)
If $u \in C_{c}^{\infty}\left(\Lambda^{1}\right)$ and $d^{*} u=0$, then for any function $\Phi \in C_{c}^{\infty}$,

$$
\left|\int_{\mathbb{R}^{n}} u_{1} \Phi d x\right| \leq C\|u\|_{L^{1}+\left(\dot{W}^{1, n}\right)^{*}}\|\nabla \Phi\|_{L^{n}} .
$$

- Again these three theorems are equivalent. Bourgain-Brezis gave a constructive proof of the first one directly, thereby proving all three of them.
- The proof of Bourgain-Brezis uses the following approximation lemma, which is of independent interest:

Lemma (Bourgain-Brezis)

Given any $\delta>0$, there exists a constant C_{δ} such that for any function $f \in \dot{W}^{1, n}$, there exists a function $F \in L^{\infty} \cap \dot{W}^{1, n}$ such that

$$
\sum_{i=2}^{n}\left\|\partial_{i} f-\partial_{i} F\right\|_{L^{n}} \leq \delta\|\nabla f\|_{L^{n}}
$$

and

$$
\|\nabla F\|_{L^{n}}+\|F\|_{L^{\infty}} \leq C_{\delta}\|\nabla f\|_{L^{n}} .
$$

- F approximates the derivatives of f in all but one direction!
- Proof of this lemma uses heavily the Littlewood-Paley decomposition of a function, and is highly non-linear. This is part of the nature of the subject matter; in fact, Bourgain-Brezis also proved

Proposition (Bourgain-Brezis)

There is no bounded linear operator $K: L^{n} \rightarrow L^{\infty}\left(\Lambda^{1}\right)$ such that $\operatorname{div} K f=f$ for all $f \in L^{n}$.

An approximation lemma for second derivatives

- The original proof of Bourgain-Brezis is restricted to controlling one derivative. In joint work with Yi Wang, we proved:

Theorem (Yi Wang-Y)
Given any $\delta>0$, there exists a constant C_{δ} such that for any function $f \in \dot{W}^{2, n / 2}$, there exists a function $F \in L^{\infty} \cap \dot{W}^{2, n / 2}$ such that

$$
\sum_{i, j=2}^{n}\left\|\partial_{i j}^{2} f-\partial_{i j}^{2} F\right\|_{L^{n / 2}} \leq \delta\left\|\nabla^{2} f\right\|_{L^{n / 2}}
$$

and

$$
\left\|\nabla^{2} F\right\|_{L^{n / 2}}+\|F\|_{L^{\infty}} \leq C_{\delta}\left\|\nabla^{2} f\right\|_{L^{n / 2}} .
$$

A hyperbolic version: An improved Strichartz estimate

Theorem (Chanillo-Y)
Suppose $u: \mathbb{R}^{1+2} \rightarrow \mathbb{R}^{2}$ is a (weak) solution of the following system of wave equations

$$
\left\{\begin{array}{l}
\square u=f \\
\left.u\right|_{t=0}=u_{0} \\
\left.\partial_{t} u\right|_{t=0}=u_{1}
\end{array}\right.
$$

where $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{1+2} \rightarrow \mathbb{R}^{2}$ is a divergence free vector field at each given time t, i.e.

$$
\partial_{x_{1}} f_{1}+\partial_{x_{2}} f_{2}=0
$$

for each t. Then

$$
\|u\|_{C_{t}^{0} L_{x}^{2}}+\left\|\partial_{t} u\right\|_{C_{t}^{0} \dot{H}_{x}^{-1}} \leq C\left(\left\|u_{0}\right\|_{L^{2}}+\left\|u_{1}\right\|_{\dot{H}^{-1}}+\|f\|_{L_{t}^{1} L_{x}^{1}}\right) .
$$

Subelliptic case: Heisenberg group

- Heisenberg group \mathbb{H}^{n} as the boundary of the upper half space

$$
\left\{\operatorname{lm} z_{n+1}>\left|z^{\prime}\right|^{2}\right\}, \quad\left(z^{\prime}, z_{n+1}\right) \in \mathbb{C}^{n+1}
$$

- \mathbb{H}^{n} diffeomorphic to $\mathbb{C}^{n} \times \mathbb{R}$ via

$$
\begin{gathered}
\mathbb{C}^{n} \times \mathbb{R} \rightarrow \mathbb{H}^{n} \\
{[z, t] \mapsto\left(z, t+i|z|^{2}\right)}
\end{gathered}
$$

- \mathbb{H}^{n} carries the structure of a non-abelian Lie group:

$$
\left[z_{1}, t_{1}\right] \cdot\left[z_{2}, t_{2}\right]=\left[z_{1}+z_{2}, t_{1}+t_{2}+2 \operatorname{lm}\left(z_{1} \overline{z_{2}}\right)\right]
$$

- homogeneous in the sense that it carries automorphic dilation

$$
\delta_{\lambda}[z, t]:=\left[\lambda z, \lambda^{2} t\right], \quad \lambda>0
$$

- Haar measure is just Lebesgue measure on $\mathbb{C}^{n} \times \mathbb{R} \simeq \mathbb{R}^{2 n+1}$. it is $d x d y d t$ if we write a point on \mathbb{H}^{n} as $[z, t], z=x+i y$
- $Q=2 n+2$ is the homogeneous dimension of \mathbb{H}^{n} :

$$
\delta_{\lambda}^{*}(d x d y d t)=\lambda^{Q} d x d y d t
$$

- Left-invariant vector fields on \mathbb{H}^{n} :

$$
\begin{gathered}
X_{j}=\frac{\partial}{\partial x_{j}}+2 y_{j} \frac{\partial}{\partial t}, \quad Y_{j}=\frac{\partial}{\partial y_{j}}-2 x_{j} \frac{\partial}{\partial t}, \quad 1 \leq j \leq n \\
T=\frac{\partial}{\partial t}=-\frac{1}{4}\left[X_{j}, Y_{j}\right]
\end{gathered}
$$

- Think of X_{j}, Y_{j} as of degree 1, T of degree 2. Also write $X_{j+n}=Y_{j}$ if $1 \leq j \leq n$, and ∇_{b} for subelliptic gradient:

$$
\nabla_{b} f=\left(X_{1} f, \ldots, X_{2 n} f\right) \quad \text { for functions } f \text { on } \mathbb{H}^{n}
$$

- Sobolev embedding: $\nabla_{b} f \in L^{p}$ implies $f \in L^{p^{*}}$,

$$
\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{Q}, \quad 1 \leq p<Q
$$

- Fails when $p=Q$; nonetheless we have

Theorem (Chanillo-van Schaftingen)
If $f_{1}, \ldots, f_{2 n}$ and Φ are C_{c}^{∞} functions on \mathbb{H}^{n} and

$$
X_{1} f_{1}+\cdots+X_{2 n} f_{2 n}=0
$$

then for any j,

$$
\left|\int_{\mathbb{H}^{n}} f_{j} \Phi\right| \leq C\|f\|_{L^{1}}\left\|\nabla_{b} \Phi\right\|_{L^{Q}} .
$$

Here $\|f\|_{L^{1}}=\sum_{j=1}^{2 n}\left\|f_{j}\right\|_{L^{1}}$.

- Result does not make use of any complex structure; in fact they proved it for more general homogeneous Lie groups
- Proof is more difficult than the abelian case since the vector fields do not commute
- Analog of the first two pillars of the previous theory?

Application to the $\bar{\partial}_{b}$ complex on \mathbb{H}^{n}

- Notations: $Z_{j}=X_{j}+i Y_{j}, \bar{Z}_{j}=X_{j}-i Y_{j}, 1 \leq j \leq n$
- Write $[z, t]$ coordinate on \mathbb{H}^{n}. For each multiindex $J=\left(j_{1}, \ldots, j_{q}\right), 1 \leq j_{k} \leq n$ for all k, we write

$$
d \bar{z}^{J}=d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}}
$$

- A $(0, q)$ form on \mathbb{H}^{n} is an expression of the form

$$
u=\sum_{|J|=q} u_{J} d \bar{z}^{J} ;
$$

then $\bar{\partial}_{b} u$ is a $(0, q+1)$ form given by

$$
\bar{\partial}_{b} u:=\sum_{j=1}^{n} \bar{Z}_{j}\left(u_{J}\right) d \bar{z}^{j} \wedge d \bar{z}^{J}
$$

- L^{2} inner product on space of $(0, q)$ forms:

$$
(u, v)=\sum_{J} \int_{\mathbb{H}^{n}} u_{J} \overline{v_{J}}
$$

- $\bar{\partial}_{b}^{*}$: formal adjoint of $\bar{\partial}_{b}$ under this inner product
- e.g. If $u=\sum_{j=1}^{n} u_{j} d \bar{z}^{j}$ is a $(0,1)$ form, then

$$
\bar{\partial}_{b}^{*} u=-\sum_{j=1}^{n} Z_{j}\left(u_{j}\right)
$$

We have the following apriori inequalities: (Recall $Q=2 n+2$.)
Theorem
If u is a $(0, q)$ form on $\mathbb{H}^{n}, 2 \leq q \leq n-2$, then

$$
\|u\|_{L^{Q} /(Q-1)} \leq C\left(\left\|\bar{\partial}_{b} u\right\|_{L^{1}}+\left\|\bar{\partial}_{b}^{*} u\right\|_{L^{1}}\right)
$$

Suppose further that $n \geq 3$. If $q=1$, the same inequality holds if $\bar{\partial}_{b}^{*} u=0$; if $q=n-1$, the same result holds if $\bar{\partial}_{b} u=0$.

Theorem

Assume $n \geq 2$. If u is a function orthogonal to the kernel of $\bar{\partial}_{b}$ in L^{2}, then

$$
\|u\|_{L^{Q Q /(Q-1)}} \leq C\left\|\bar{\partial}_{b} u\right\|_{L^{1}} ;
$$

an analogous result holds if u is a $(0, n)$ form orthogonal to the kernel of $\bar{\partial}_{b}^{*}$ in L^{2}.

We also have
Theorem
On \mathbb{H}^{n}, if $q \neq n-1$, then for any $f \in \bar{\partial}_{b}^{*}\left(\dot{N L^{1, Q}}\left(\Lambda^{0, q+1}\right)\right)$, there exists $Y \in L^{\infty}\left(\Lambda^{0, q+1}\right)$ such that

$$
\bar{\partial}_{b}^{*} Y=f
$$

with $\|Y\|_{L^{\infty}} \leq C\|f\|_{L Q}$.
Here $\dot{N} \dot{L}^{1, Q}$ is the space of functions whose ∇_{b} is in L^{Q}.

Subelliptic case: Hormander's vector fields

- Question: What happens if there is no group structure? Can one still have a theorem analogous to the one of Chanillo-van Schaftingen?
- Setup: X_{1}, \ldots, X_{n} smooth real vector fields near 0 on \mathbb{R}^{N}
- Assume that they are linearly independent at 0 , and that their commutators of length $\leq r$ span at 0
- Let $V_{j}(0)$ be the span of restrictions of the commutators of X_{1}, \ldots, X_{n} of length $\leq j$ to 0
- Let $Q=\sum_{j=1}^{r} j \cdot\left(\operatorname{dim} V_{j}(0)-\operatorname{dim} V_{j-1}(0)\right)$

Theorem (Y)

Under the assumptions on the previous slide, there is a neighborhood U of 0 and $C>0$ such that if

$$
X_{1} f_{1}+\cdots+X_{n} f_{n}=0
$$

on U with $f_{1}, \ldots, f_{n} \in C_{c}^{\infty}(U)$ and $\Phi \in C_{c}^{\infty}(U)$, then

$$
\left|\int_{U} f_{1}(x) \Phi(x) d x\right| \leq C\|f\|_{L^{1}(U)}\left(\sum_{j=1}^{n}\left\|X_{j} \Phi\right\|_{L^{Q}(U)}+\|\Phi\|_{L^{Q}(U)}\right) .
$$

- Generalizes Chanillo-van Schaftingen
- One difficulty in the current theorem: getting the best (i.e. smallest) possible value of Q. The one we had given is the best possible.

A model example

- On \mathbb{R}^{2}, let $X=\frac{\partial}{\partial x}, Y=x \frac{\partial}{\partial t}, Q=3$.

Theorem (Y)
If $X f_{1}+Y f_{2}=0$ on \mathbb{R}^{2}, with $f_{1}, f_{2} \in C_{c}^{\infty}$, then for all $\Phi \in C_{c}^{\infty}$,

$$
\left|\int_{\mathbb{R}^{2}} f_{1} \Phi\right| \leq C\|f\|_{L^{1}\left(\mathbb{R}^{2}\right)}\left\|\nabla_{b} \Phi\right\|_{L^{3}\left(\mathbb{R}^{2}\right)}
$$

where $\nabla_{b} \Phi=(X \Phi, Y \Phi)$.

- Strictly speaking this does not fall under the scope of the previous theorem, since Y is zero at 0 ; but it is where the ideas of the proof is the most transparent.
- The proof of this model theorem is via lifting to the Heisenberg group \mathbb{H}^{1} : there exist a submersion $\pi: \mathbb{H}^{1} \rightarrow \mathbb{R}^{2}$ such that

$$
d \pi\left(X_{1}\right)=X \quad \text { and } \quad d \pi\left(Y_{1}\right)=Y
$$

- One could try to use the result on \mathbb{H}^{1}; but this does not work, since by lifting to the Heisenberg group (which has a higher dimension), one gets less smoothing in any Sobolev-kind inequality.
- The way out: Imitate the argument on \mathbb{H}^{1}; but has to 'integrate away the additional variable' that one adds during the lifting process.
- In general, to prove the general theorem, one can still use the same lifting strategy (Rothschild-Stein), but there will be errors that one has to handle.

Application to $\bar{\partial}_{b}$ complex on domains of finite type

- M : boundary of a bounded smooth pseudoconvex domain in $\mathbb{C}^{n+1}, n \geq 2$
- Assume M is of finite commutator type m and has comparable Levi eigenvalues.
Theorem (Y)
Let $q \neq 1$ nor $n-1$. Then for any smooth $(0, q)$ form u orthogonal to Kernel $\left(\square_{b}\right)$,

$$
\|u\|_{L^{Q-1}(M)} \lesssim\left\|\bar{\partial}_{b} u\right\|_{L^{1}(M)}+\left\|\bar{\partial}_{b}^{*} u\right\|_{L^{1}(M)}
$$

where $Q=2 n+m$. In particular

$$
\|u\|_{L^{Q} \frac{Q}{Q-1}(M)} \lesssim\left\|\bar{\partial}_{b} u\right\|_{L^{1}(M)}
$$

for all smooth functions u orthogonal to $\operatorname{Kernel}\left(\bar{\partial}_{b}\right)$ (Gagliardo-Nirenberg for $\bar{\partial}_{b}$).

Under the same assumptions on M, we also have Theorem (Y)
If $q \neq n-1$, then for any $f \in \bar{\partial}_{b}^{*}\left(\dot{N L}^{1, Q}\left(\Lambda^{0, q+1}\right)\right)$ on M, there exists $Y \in L^{\infty}\left(\Lambda^{0, q+1}\right)$ such that

$$
\bar{\partial}_{b}^{*} Y=f
$$

with $\|Y\|_{L^{\infty}} \leq C\|f\|_{L Q}$.
Here again $Q=2 n+m$.

Sophiscated version of the subelliptic story

- Focus again on the Heisenberg group \mathbb{H}^{n}. We have the following approximation lemma: $(Q=2 n+2)$

Theorem (Yi Wang-Y)
Given any $\delta>0$, there exists a constant C_{δ} such that for any function f with $\nabla_{b} f \in L^{Q}$, there exists a function $F \in L^{\infty}$ with $\nabla_{b} F \in L^{Q}$ such that

$$
\sum_{j=2}^{2 n}\left\|X_{j} f-X_{j} F\right\|_{L Q} \leq \delta\left\|\nabla_{b} f\right\|_{L Q}
$$

and

$$
\left\|\nabla_{b} F\right\|_{L Q}+\|F\|_{L^{\infty}} \leq C_{\delta}\left\|\nabla_{b} f\right\|_{L^{Q}} .
$$

- F approximates the derivatives of f in all but one good direction!

From this we deduce
Theorem (Yi Wang-Y)
If $q \neq n-1$, then for any $f \in \bar{\partial}_{b}^{*}\left(\dot{N L}^{1, Q}\left(\Lambda^{0, q+1}\right)\right)$ on \mathbb{H}^{n}, there exists $Y \in L^{\infty} \cap \dot{N} \dot{L}^{1, Q}\left(\Lambda^{0, q+1}\right)$ such that

$$
\bar{\partial}_{b}^{*} Y=f
$$

with $\|Y\|_{L^{\infty}}+\left\|\nabla_{b} Y\right\|_{L^{Q}} \leq C\|f\|_{L Q}$.

- This is remarkable since now one has not only $Y \in L^{\infty}$, but also $\nabla_{b} Y \in L^{Q}$.

We further deduced the following apriori inequalities:
Theorem (Yi Wang-Y)
If u is a $(0, q)$ form on $\mathbb{H}^{n}, 2 \leq q \leq n-2$, then

$$
\|u\|_{L^{Q} /(Q-1)} \leq C\left(\left\|\bar{\partial}_{b} u\right\|_{L^{1}+\left(\dot{N L}^{1, Q}\right)^{*}}+\left\|\bar{\partial}_{b}^{*} u\right\|_{L^{1}+\left(\dot{N} L^{1, Q}\right)^{*}}\right) .
$$

Suppose further $n \geq 3$. If $q=1$, the same inequality holds if $\bar{\partial}_{b}^{*} u=0$; if $q=n-1$, the same result holds if $\bar{\partial}_{b} u=0$.

Theorem (Yi Wang-Y)
Assume $n \geq 2$. If u is a function orthogonal to the kernel of $\bar{\partial}_{b}$ in L^{2}, then

$$
\|u\|_{L^{Q /(Q-1)}} \leq C\left\|\bar{\partial}_{b} u\right\|_{L^{1}+\left(\dot{N L}^{1, Q}\right)^{*}}
$$

an analogous result holds if u is a $(0, n)$ form orthogonal to the kernel of $\bar{\partial}_{b}^{*}$ in L^{2}.

Bourgain-Brezis's approximation lemma again

Lemma (Bourgain-Brezis)

Given any $\delta>0$, there exists a constant C_{δ} such that for any function $f \in \dot{W}^{1, n}$, there exists a function $F \in L^{\infty} \cap \dot{W}^{1, n}$ such that

$$
\sum_{i=2}^{n}\left\|\partial_{i} f-\partial_{i} F\right\|_{L^{n}} \leq \delta\|\nabla f\|_{L^{n}}
$$

and

$$
\|\nabla F\|_{L^{n}}+\|F\|_{L^{\infty}} \leq C_{\delta}\|\nabla f\|_{L^{n}} .
$$

Bourgain-Brezis's proof

- First ingredient: Littlewood-Paley theory
- Every $\dot{W}^{1, n}$ function f can be written

$$
\begin{gathered}
f=\sum_{j=-\infty}^{\infty} \Delta_{j} f \\
\widehat{\Delta_{j} f}(\xi)=\chi_{\left\{2^{j} \leq|\xi| \leq 2^{j+1}\right\}}(\xi) \hat{f}(\xi)
\end{gathered}
$$

- Bernstein inequality:

$$
\left\|\Delta_{j} f\right\|_{L^{\infty}} \leq C\|\nabla f\|_{L^{n}} \quad \text { for all } j
$$

- Thus if $f=\Delta_{j} f$ for some j, i.e. if f is frequency localized, then the approximation lemma is trivial; one can take $F=f$.
- In general, while each $\Delta_{j} f$ is in L^{∞}, one cannot sum all of them in L^{∞} since the L^{∞} norms do not decay in j.
- Second ingredient: algebraic identity
- Given any N numbers a_{1}, \ldots, a_{N}, we have

$$
1=\sum_{j=1}^{N} a_{j} \prod_{j^{\prime}>j}\left(1-a_{j^{\prime}}\right)+\prod_{j=1}^{N}\left(1-a_{j}\right)
$$

- This is nothing but

$$
\begin{aligned}
1= & a_{N}+\left(1-a_{N}\right) \\
= & a_{N}+a_{N-1}\left(1-a_{N}\right)+\left(1-a_{N-1}\right)\left(1-a_{N}\right) \\
= & a_{N}+a_{N-1}\left(1-a_{N}\right)+a_{N-2}\left(1-a_{N-1}\right)\left(1-a_{N}\right) \\
& +\left(1-a_{N-2}\right)\left(1-a_{N-1}\right)\left(1-a_{N}\right) \ldots
\end{aligned}
$$

- In particular, if all a_{j} satisfies $0 \leq a_{j} \leq 1$, then

$$
\sum_{j} a_{j} \prod_{j^{\prime}>j}\left(1-a_{j^{\prime}}\right) \leq 1
$$

- One is now tempted to take

$$
F=\sum_{j} \Delta_{j} f \prod_{j^{\prime}>j}\left(1-\left|\Delta_{j} f\right|\right)
$$

as an L^{∞} approximation to

$$
f=\sum_{j} \Delta_{j} f \cdot 1
$$

- But this is too naive, and in particular one does not gain in any good directions
- Need another controlling function that dominates $\left|\Delta_{j} f\right|$: Bourgain-Brezis introduced

$$
\omega_{j}(x)=\sup _{y \in \mathbb{R}^{n}}\left|\Delta_{j} f(x-y)\right| e^{-\left|y_{1}\right|-2^{-\sigma}\left|y^{\prime}\right|}, \quad y=\left(y_{1}, y^{\prime}\right)
$$

where σ is a large constant depending on δ. (sup-convolution)

- Bourgain-Brezis also used heavily the Fejer kernels, which are special kernels that one only finds in \mathbb{R}^{n}.

Proof of approximation lemma on the Heisenberg group

- Difficulties:
- No notion of frequency space; in particular, no special kernels like Fejer kernels
- Group is non-abelian: in particular, if X is left-invariant vector field, then $X(f * g)=f *(X g)$ but is not equal to $(X f) * g$
- Ways to overcome these:
- Simplify the argument at one crucial point so that we can convolve one fewer times, which allows us to avoid the second problem
- Price to pay: More errors to control all over the place
- Introduce two different controlling functions ω_{j} and $\tilde{\omega}_{j}$: the first one would be a discrete I^{Q} convolution, the second one is a continuous ordinary convolution

Epilogue

- We return now to the elliptic setting. A special case of the second theorem of Bourgain-Brezis is the following:

Theorem (Bourgain-Brezis)
On \mathbb{R}^{2}, if u is a function in C_{c}^{∞}, then

$$
\|u\|_{L^{2}} \leq C\|\nabla u\|_{L^{1}+\left(\dot{W}^{1,2}\right)^{*}} .
$$

- We have discussed how one could prove this by solving d^{*} (i.e. using the first theorem), but Bourgain-Brezis actually had another direct proof of this inequality, which works only in 2-dimensions.
- To illustrate this, we use their method to give a new proof of the Gagliardo-Nirenberg inequality in \mathbb{R}^{2} : Suppose $\|\nabla u\|_{L^{1}}=1$. We want to prove $\|u\|_{L^{2}} \leq C$.
- Tool: Riesz transforms R_{1}, R_{2} in \mathbb{R}^{2} :

$$
\widehat{R_{j} f}(\xi)=-i \frac{\xi_{j}}{|\xi|} \hat{f}(\xi), \quad j=1,2
$$

- Fact: $R_{1}^{2}+R_{2}^{2}=-l d,\left[R_{1}, R_{2}\right]=0$.
- Thus given $u \in C_{c}^{\infty}$ with $\|\nabla u\|_{L^{1}}=1$, we have

$$
\begin{aligned}
u & =\left(R_{1}^{2}-R_{2}^{2}\right)^{2} u+4 R_{1}^{2} R_{2}^{2} u \\
& =\left(R_{1}-R_{2}\right)^{2}\left(R_{1}+R_{2}\right)^{2} u+4 R_{1}^{2} R_{2}^{2} u
\end{aligned}
$$

- To show $u \in L^{2}$, we consider

$$
(u, u)=\left(\left(R_{1}-R_{2}\right)^{2}\left(R_{1}+R_{2}\right)^{2} u, u\right)+4\left(R_{1}^{2} R_{2}^{2} u, u\right)
$$

Suffices to bound both terms; by rotating the coordinate axes, need only bound the latter

- Now

$$
\left(R_{1}^{2} R_{2}^{2} u, u\right)=\left(\Delta^{-1} R_{1} R_{2} \partial_{1} u, \partial_{2} u\right)
$$

If one can show that $\Delta^{-1} R_{1} R_{2}$ maps L^{1} boundedly into L^{∞}, then we are done.

- To do that, let $K(x)$ be the kernel of $\Delta^{-1} R_{1} R_{2}$. One only needs to show that $K \in L^{\infty}$.
- One uses homogeneity: since $K(x)$ is homogeneous of degree 0 , it suffices to show that K is bounded on the unit sphere
- This one can do by using the integral representation

$$
K(x)=-\lim _{\substack{\varepsilon \rightarrow 0 \\ R \rightarrow \infty}} \int_{\varepsilon<|\xi|<R} \frac{\xi_{1} \xi_{2}}{|\xi|^{4}} e^{2 \pi i x \cdot \xi} d \xi
$$

and spliting the integral into integral over small and large ξ 's, which works since the multiplier $\frac{\xi_{1} \xi_{2}}{|\xi|^{4}}$ is odd in both ξ_{1} and ξ_{2}.

Thank you!

