
DIV-CURL SYSTEMS (PART 1)

PO-LAM YUNG

In this sequence of two talks, we describe the work of Bourgain-Brezis, van
Schfatingen, and Lanzani-Stein, which represents a new array of compensa-
tion estimates related to the divergence and curl operators on Rn. There
are three major pillars in the theory. First, we consider the solvability of
the equation

div Y = f

on Rn, where f ∈ Ln is given, Y is an unknown vector field on Rn, and
n ≥ 2. Classical theory tells us that for any f ∈ Ln, one can find a solution
Y to the equation in Ẇ 1,n (componentwise); in fact, the canonical solution
Y = ∇u, where ∆u = f with u ∈ Ẇ 2,n, is one such solution. However,
due to the failure of the Sobolev embedding Ẇ 1,n into L∞, such solutions
may not be bounded. Nevertheless, since the equation div Y = f is largely
underdetermined, the question is whether one can find some solution Y that
is in L∞. If one thinks of the vector field Y as a differential 1-form and the
divergence operator as d∗ acting on a 1-form, where d∗ is the adjoint of the
Hodge-de Rham exterior derivative d with respect to the Euclidean metric
on Rn, then one can also consider the more general equation

d∗Y = f,

where now f is a differential l-form on Rn satisfying the compatibility con-
ditions d∗f = 0, and Y is a differential (l + 1)-form on Rn. One can then
ask for the solvability for Y in L∞ if the given f has components in Ln.

Second, the classical Gagliardo-Nirenberg inequality says that if u is a
smooth function with compact support on Rn, then

‖u‖
L

n
n−1

≤ C‖∇u‖L1 .

If we think of u here as a differential 0-form, then the question is whether
there is an appropriate generalization of this inequality to differential forms
of higher order.

Finally, there is the following inequality, due to van Schaftingen, that
remedies the failure of the embedding of Ẇ 1,n into L∞ on Rn:

Theorem 1 (van Schaftingen). Suppose f and φ are two smooth and com-
pactly supported vector fields on Rn, and suppose that div f = 0. Then∣∣∣∣∫

Rn

f · φdx
∣∣∣∣ ≤ C‖f‖L1‖∇φ‖Ln ,

where ‖∇φ‖Ln is the sum of the Ẇ 1,n norms of the components of φ.
1
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If Ẇ 1,n were to embed into L∞, then this inequality is trivial and holds
without requiring the divergence free condition on f . The failure of Ẇ 1,n

into L∞ is what makes this inequality interesting.
It is readily seen from the first and third pillars above that the failure of

the Sobolev embedding of Ẇ 1,n into L∞ plays a key role in our analysis.
In fact at the bottom of all these, there is an approximation lemma that
describes the extent to which Ẇ 1,n functions can be approximated by L∞

functions (c.f. Lemma 2 below).
We will begin by describing some results along these lines that can be

proved using ‘elementary methods’. Then we move on to some far-reaching
extensions of such results, whose proofs will have to wait until next time.

1. Elementary results

First, we consider the solvability of the equation

(1) div Y = f

on Rn when f ∈ Ln. If u solves ∆u = f , then Y = ∇u is called the
canonical solution to (1). Such solutions are always in Ẇ 1,n, but there are
indeed situations where it is not bounded, as Bourgain-Brezis demonstrated
(c.f. Proposition 3 below; another concrete example is due to L. Nirenberg).
Nevertheless, Bourgain-Brezis observed the following:

Proposition 1 (Bourgain-Brezis). Given any f ∈ Ln, there is always a
solution Y ∈ L∞ (in the sense of distributions) to the equation div Y = f ,
with ‖Y ‖L∞ ≤ C‖f‖Ln.

In fact they proved that the above assertion is equivalent to the usual
Gagliardo-Nirenberg inequality by duality:

Proposition 2 (Bourgain-Brezis). Proposition 1 is equivalent to the fact
that

‖u‖
L

n
n−1

≤ C‖∇u‖L1

for all smooth functions u with compact support on Rn.

This would give an elementary proof to Proposition 1.

Proof of Proposition 2. First suppose that Proposition 1 is true. Then given
f ∈ Ln, there is some Y ∈ L∞ such that div Y = f in distributional sense,
and ‖Y ‖L∞ ≤ C‖f‖Ln . Now if u is a smooth function with compact support,
then testing u against f , we obtain∫

Rn

ufdx =
∫

Rn

u div Y dx = −
∫

Rn

(∇u) · Y dx,

which in absolute value is bounded by

‖∇u‖L1‖Y ‖L∞ ≤ C‖∇u‖L1‖f‖Ln .

This proves the Gagliardo-Nirenberg inequality on Rn.
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Conversely, suppose we begin by assuming the Gagliardo-Nirenberg in-
equality on Rn. Suppose f ∈ Ln is given. Let (L1)n be the product of n
copies of L1, i.e. the space of vector fields with L1 coefficients. Let E be
the vector subspace of (L1)n, defined by

E = {∇u : u ∈ C∞c (Rn)}
and equipped with (L1)n norm. Then define a linear functional T on E by
letting

T (∇u) = −
∫

Rn

ufdx.

The Gagliardo-Nirenberg inequality on Rn implies that this is a bounded
linear functional on E, with norm ≤ C‖f‖Ln : in fact

|T (∇u)| =
∣∣∣∣∫

Rn

ufdx

∣∣∣∣ ≤ ‖u‖
L

n
n−1

‖f‖Ln ≤ C‖∇u‖L1‖f‖Ln .

Now we extend T to a bounded linear functional on (L1)n by Hahn-Banach,
without increasing the norm of T . Then the new T is represented by some
element of (L∞)n, i.e. there is some vector field Y with coefficients in L∞

such that
T (v) =

∫
Rn

Y · vdx

for all v ∈ (L1)n. In particular, restricting back to E, we have

−
∫

Rn

ufdx =
∫

Rn

Y · ∇udx

for all u ∈ C∞c (Rn). This says Y solves div Y = f in the distribution sense.
Furthermore, we have

‖Y ‖L∞ ≤ ‖T‖ ≤ C‖f‖Ln .

This finishes the proof of Proposition 1. �

By refining the above duality arguments, Bourgain-Brezis has also proved
that the solution Y in Proposition 1 can be taken to be continuous.

Next, it is possible to generalize Proposition 1 to differential forms of
higher order. Consider now the equation d∗Y = f , where f is a differential
l form on Rn with Ln coefficients, and Y is an unknown differential (l+ 1)-
form. For the equation to be solvable, we must require the compatibility
conditions d∗f = 0, since d∗ forms a complex. Now by standard Hodge
theory on Rn, this means f = d∗X for some differential (l + 1)-form X

with coefficients in Ẇ 1,n. The question is then whether it is possible to
find Y ∈ L∞ solving d∗Y = d∗X if X is a given (l + 1)-form with Ẇ 1,n

coefficients. The theorem is the following.

Theorem 2. Suppose l 6= n− 1. Then for any (l + 1)-form X on Rn with
Ẇ 1,n coefficients, there is some (l+ 1)-form Y with coefficients in L∞ such
that

d∗Y = d∗X
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in the sense of distributions, with ‖Y ‖L∞ ≤ C‖d∗X‖Ln.

By the same duality argument as above (which we shall not repeat),
Theorem 2 is equivalent to the following Gagliardo-Nirenberg inequality for
differential l-forms:

Theorem 3. Suppose l 6= n−1. Then for all smooth l-forms u with compact
support on Rn, one has

‖u‖
L

n
n−1

≤ C‖du‖L1

if d∗u = 0. (Here the norms on the differential forms are taken component-
wise.)

Note that the condition on d∗u here is necessary, since du alone does not
determine u.

It thus remains to prove Theorem 3. We can prove something slightly
more general:

Theorem 4 (Lanzani-Stein). Suppose u is a smooth l-forms with compact
support on Rn.

(a) If l 6= 1 nor n− 1, then one has

(2) ‖u‖
L

n
n−1

≤ C (‖du‖L1 + ‖d∗u‖L1) .

(b) If l = 1 or n − 1 (or both), then the same inequality holds, except that
one has to replace ‖du‖L1 by ‖du‖H1 if du is a top form, and ‖d∗u‖L1

by ‖d∗u‖H1 if d∗u is a function. Here H1 is the Hardy H1 norm.

This turns out to be a consequence of Theorem 1 we stated at the be-
ginning. We shall first show how this implication works, and then prove
Theorem 1.

First, it is clear that Theorem 1 has the following equivalent formulation:

Theorem 5 (van Schaftingen). Let f = (f1, . . . , fn) be a divergence-free
vector field on Rn, and Φ be a function on Rn. Suppose they are all smooth
and compactly supported. Then∣∣∣∣∫

Rn

f1Φdx
∣∣∣∣ ≤ C‖f‖L1‖∇Φ‖Ln .

We use this to prove Theorem 4.

Proof of Theorem 4. The proof proceeds by duality. The case l = 0 or n
is just the ordinary Gagliardo-Nirenberg inequality. So from now on we
assume 1 ≤ l ≤ n− 1. Write

(u, φ) :=
∑

I

∫
Rn

uIφIdx
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for any differential forms u and φ of the same order. If u is a differential
l-form on Rn, then for any C∞c test l-form φ,

(u, φ) = (du, d∆−1φ) + (d∗u, d∗∆−1φ)

=
∑

I

∫
Rn

(du)I(d∆−1φ)I +
∑
J

∫
Rn

(d∗u)J(d∗∆−1φ)J .

For each multiindex I, if l ≤ n−2 then (du)I is a component of a divergence-
free vector field; this is because if i is a label from 1 to n that is not in I
(which exists because |I| ≤ n− 1), we have, from d(du) = 0, that

∂i(du)I =
∑
j∈I

∂j(du)Ij

where Ij is the multiindex obtained from I by replacing j by i. Hence by
Theorem 5, we have∣∣(du, d∆−1φ)

∣∣ ≤ C‖du‖L1‖∇d∆−1φ‖Ln ≤ C‖du‖L1‖φ‖Ln

by the boundedness of the Riesz transforms on Ln. If l ≥ 2 as well, then
using d∗d∗ = 0 we get similarly the estimate∣∣(d∗u, d∗∆−1φ)

∣∣ ≤ C‖d∗u‖L1‖φ‖Ln

from the lemma. Hence when 2 ≤ l ≤ n− 2,

|(u, φ)| ≤ C (‖du‖L1 + ‖d∗u‖L1) ‖φ‖Ln .

This proves the inequality (2).
If d∗u is a 0-form, then∣∣(d∗u, d∗∆−1φ)

∣∣ ≤ ‖d∗u‖H1‖d∗∆−1φ‖BMO

≤ C‖d∗u‖H1‖d∗∆−1φ‖Ẇ 1,n

≤ C‖d∗u‖H1‖φ‖Ln

(Alternatively,∣∣(d∗u, d∗∆−1φ)
∣∣ = |(∆− 1

2d∗u, d∗∆− 1
2φ)|

≤ C‖∆− 1
2d∗u‖

L
n

n−1
‖d∗∆− 1

2φ‖Ln

≤ C‖d∗u‖H1‖φ‖Ln

by the boundedness of the Riesz potential fromH1 to L
n

n−1 and the bounded-
ness of Riesz transform on Ln.) Similarly if du is an n-form. This completes
the proof of Theorem 4. �

Next we turn to the proof of Theorem 5. The key is the following decom-
position lemma:

Lemma 1 (van Schaftingen). For any Schwartz function Φ on RN and
p > N , if δ > 0 is given, then there exists a decomposition

Φ = Φ1 + Φ2
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such that {
‖Φ1‖L∞ ≤ Cδ

1−N
p ‖∇Φ‖Lp

‖∇Φ2‖L∞ ≤ Cδ
−N

p ‖∇Φ‖Lp .

Proof. It suffices to take Φ1 and Φ2 to be the high and low-frequency com-
ponents of Φ respectively, say

Φ1 =
∑
j>M

∆jΦ, and Φ2 =
∑
j≤M

∆jΦ

where ∆j is the Littlewood-Paley projection onto an annulus of size 2j , and
M is such that 2M ' δ−1. Then Φ1 ∈ L∞ by Bernstein inequality, because

‖∆jΦ‖L∞ ≤ C2−j(1−N
p

)‖∇Φ‖Lp ;

also ∇Φ2 =
∑

j≤M ∆j(∇Φ), and

‖∆j(∇Φ)‖L∞ ≤ C2
jN
p ‖∇Φ‖Lp .

Summing these over the corresponding ranges of j gives the desired esti-
mates. �

Remark. The decomposition of Φ used in the above proof is very flexible.
One could have used the heat kernel decomposition

Φ = (1− et∆)Φ + et∆Φ = Φ1 + Φ2, t = δ2

or more generally one could have decomposed Φ as

Φ = (Φ− Φ ∗ ρδ) + Φ ∗ ρδ = Φ1 + Φ2

where ρ is a bump function and ρδ(x) = δ−Nρ(δ−1x). The latter was the
original one given by van Schaftingen.

It is also instructive to see that the decomposition we have stated here is
dilation invariant; thus the lemma would follow once we could prove it for
δ = 1.

Proof of Theorem 5. Let us write x ∈ Rn as x = (x1, x
′) and Φx1(x′) =

Φ(x1, x
′) etc. Fix x1 and consider∫

Rn−1

f1(x1, x
′)Φ(x1, x

′)dx′ =
∫

Rn−1

fx1
1 (x′)Φx1(x′)dx′.

Decompose the function Φx1 as a function on Rn−1 using Lemma 1 with
N = n− 1 and p = n. (The decomposition depends on x1.) Then we obtain

Φx1 = Φx1
1 + Φx1

2

where {
‖Φx1

1 ‖L∞(Rn−1) ≤ Cδ
1
n ‖∇′Φx1‖Ln(Rn−1)

‖∇′Φx1
2 ‖L∞(Rn−1) ≤ Cδ

1
n
−1‖∇′Φx1‖Ln(Rn−1).

and ∇′ denotes derivatives in the x′ directions. Now∫
Rn−1

fx1
1 Φx1dx′ =

∫
Rn−1

fx1
1 Φx1

1 dx
′ +

∫
Rn−1

fx1
1 Φx1

2 dx
′ = I + II.
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I is estimated by

|I| ≤ Cδ
1
n ‖fx1‖L1(Rn−1)‖∇′Φx1‖Ln(Rn−1);

while

II =
∫

Rn−1

∫ x1

−∞
∂tf1(t, x′)Φx1

2 (x′)dtdx′

=
∫

Rn−1

∫ x1

−∞
−

n∑
j=2

∂xjfj(t, x′)Φx1
2 (x′)dtdx′

=
∫

Rn−1

∫ x1

−∞

n∑
j=2

fj(t, x′)∂xjΦ
x1
2 (x′)dtdx′

(the second equality following from d∗f = 0) so

|II| ≤ ‖f‖L1(Rn)‖∇′Φx1
2 ‖L∞(Rn−1) ≤ Cδ

1
n
−1‖f‖L1(Rn)‖∇′Φx1‖Ln(Rn−1).

Optimize by setting δ = ‖f‖L1(Rn)/‖fx1‖L1(Rn−1), we get∣∣∣∣∫
Rn−1

fx1
1 Φx1dx′

∣∣∣∣ ≤ C‖f‖
1
n

L1(Rn)
‖fx1‖

n−1
n

L1(Rn−1)
‖∇′Φx1‖Ln(Rn−1).

Unfreeze x1 now and integrate with respect to x1, we get∣∣∣∣∫
Rn

f1Φdx
∣∣∣∣ ≤ C‖f‖

1
n

L1(Rn)

∫
R
‖fx1‖

n−1
n

L1(Rn−1)
‖∇′Φx1‖Ln(Rn−1)dx1

≤ C‖f‖L1(Rn)‖∇′Φ‖Ln(Rn)

upon invoking Holder’s inequality. �

Finally, to complete this circle of ideas, we show that Theorem 1 can
also be deduced from Theorem 2. Thus Theorems 1, 2, 3, 4, and 5 are all
equivalent.

Proof that Theorem 2 ⇒ Theorem 1. First, we are going to interprete our
vector fields f and φ as (n − 1)-forms on Rn. The divergence of f is then
df , and by assumption this is zero.

Now given an (n− 1)-form φ ∈ Ln, one can write, via Hodge decomposi-
tion,

φ = dα+ d∗β

and from
(f, d∗β) = (df, β) = 0

we have
(f, φ) = (f, dα).



8 PO-LAM YUNG

However, by Theorem 2 in the case l = n − 2, there exists an (n − 1)-form
ψ ∈ L∞ such that{

d∗ψ = d∗(dα)
‖ψ‖L∞ ≤ C‖d∗(dα)‖Ln = C‖d∗φ‖Ln .

The first equation says that dα = ψ + d∗γ for some γ, so from df = 0 we
have

(f, dα) = (f, ψ) + (f, d∗γ) = (f, ψ).
Thus the second equation implies

|(f, φ)| = |(f, ψ)| ≤ ‖f‖L1‖ψ‖L∞ ≤ C‖f‖L1‖d∗φ‖Ln

which implies the desired estimate. �

It looks like we have proved something stronger, namely

(3) |(f, φ)| ≤ C‖f‖L1‖curlφ‖Ln

under the assumptions of Theorem 1. But this is not really stronger, be-
cause in any case (f, φ) depends only on curlφ only if f is divergence free;
in fact (f, φ) = (f, d(−∆)−1(d∗φ)) if df = 0 (again we identify the vec-
tor fields f and φ with (n − 1)-forms). Now if one can prove |(f, φ)| ≤
C‖f‖L1‖∇φ‖Ln under the assumption div f = 0, then by applying this esti-
mate to d(−∆)−1(d∗φ) instead of φ, we obtain

|(f, φ)| ≤ C‖f‖L1‖∇d(−∆)−1(d∗φ)‖Ln .

But since the operator ∇d(−∆)−1 is bounded on Ln, one obtains again (3).
(The author thanks van Schaftingen for pointing out this argument.)

Finally, we remark that in our current proof of Proposition 1 and The-
orem 2, the Hahn-Banach theorem was used, which relies on the axiom of
choice and is not constructive. One interesting feature here is, for instance,
that the solution Y in Proposition 1 cannot arise as the image of f under
any linear operator. We have the following Proposition:

Proposition 3 (Bourgain-Brezis). There does not exist any bounded linear
operator K : Ln → L∞ such that divKf = f for all f ∈ Ln.

This says that any constructive proof of Proposition 1 has to be non-linear
in nature.

The proof of this Proposition makes use of an averaging argument, which
relies on the fact that div commutes with translation. In fact if an operator
K as in the Proposition exists, then it can be taken to be a convolution
operator. Further analysis reveals that this is not possible. We omit the
details.

What is truly remarkable here is that nonlinear constructive proofs of
Proposition 1 and Theorem 2 are possible. Bourgain-Brezis gave one such
proof in their original papers, and indeed a proof of a far reaching extension
of all the theorems in this section. We present their results in the next
section, and defer the essence of the proofs to the next talk.
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2. Extensions of elementary results

First, recall that if B1 and B2 are two Banach spaces, then their intersec-
tion B1 ∩B2 can be equipped with the norm ‖ · ‖B1 + ‖ · ‖B2 , and their sum
B1 +B2 can be equipped with the norm

‖f‖B1+B2 := inf{‖g‖B1 + ‖h‖B2 : g ∈ B1, h ∈ B2, f = g + h}.
The dual of B1 ∩B2 is B∗1 +B∗2 . The first result below says that when one
solves the equation d∗Y = d∗X with X ∈ Ẇ 1,n, Y can not only be taken
in L∞, but it can be taken to be in L∞ ∩ Ẇ 1,n. The predual of this space,
namely L1 + Ẇ−1, n

n−1 , will also be of interest to us.
The results we have are the following; in essence we replace, in the theo-

rems of the previous section, all the L∞ norms by L∞ ∩ Ẇ 1,n, and all the
L1 norms by L1 + Ẇ−1, n

n−1 .

Theorem 6 (Bourgain-Brezis). Given any q-form X ∈ Ẇ 1,n, q 6= n, there
is always a distributional solution Y to the equation d∗Y = d∗X that is both
in L∞ and Ẇ 1,n, with ‖Y ‖L∞ + ‖∇Y ‖Ln ≤ C‖d∗X‖Ln.

Theorem 7 (Bourgain-Brezis). Suppose u is a smooth l-forms with compact
support on Rn.
(a) If l 6= 1 nor n− 1, then one has

‖u‖
L

n
n−1

≤ C
(
‖du‖

L1+Ẇ
−1, n

n−1
+ ‖d∗u‖

L1+Ẇ
−1, n

n−1

)
.

(b) If l = 1 or n − 1 (or both), then the same inequality holds, except that
one has to replace ‖du‖

L1+Ẇ
−1, n

n−1
by ‖du‖H1 if du is a top form, and

‖d∗u‖
L1+Ẇ

−1, n
n−1

by ‖d∗u‖H1 if d∗u is a function. Here H1 is the Hardy
H1 norm.

Theorem 8 (Bourgain-Brezis). Suppose f and φ are two smooth and com-
pactly supported vector fields on Rn, and suppose that div f = 0. Then∣∣∣∣∫

Rn

f · φdx
∣∣∣∣ ≤ C‖f‖

L1+Ẇ
−1, n

n−1
‖curlφ‖Ln ,

where ‖curlφ‖Ln is the sum of the Ln norms of the components of curlφ,
and curlφ is the (n − 2) form given by d∗φ if we identify the vector field φ
with an (n− 1)-form on Rn.

These three theorems are all equivalent, by essentially the same proofs
that we have given in the last section. Thus it suffices to prove one of them.
We will prove Theorem 6. The proof is constructive, and it relies on the
following approximation lemma for functions in Ẇ 1,n on Rn:

Lemma 2 (Bourgain-Brezis). For any δ > 0, there exists Aδ > 0, such that
for any f ∈ Ẇ 1,n, there exists F ∈ Ẇ 1,n ∩ L∞ satisfying{∑n

i=2 ‖∂i(f − F )‖Ln ≤ δ‖∇f‖Ln

‖∇F‖Ln + ‖F‖L∞ ≤ Aδ‖∇f‖Ln .
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Roughly speaking, this says one can approximate a function in Ẇ 1,n by
a function in L∞ if one is willing to give up the derivative in one direction.

Proof of Theorem 6. Assume Lemma 2 for the moment. The key idea is that
when one computes d∗ of a q form on Rn, only q of the n directional deriva-
tives of each component is involved. So if q < n, then for each component
of the q form, there will be some directional derivatives that is irrelevant
in computing d∗, and we can give up estimates in those directions when we
apply Lemma 2.

We shall use the bounded inverse theorem and an argument closely related
to the usual proof of the open mapping theorem.

Consider the map d∗ : Ẇ 1,n(ΛqRn) → Ln(Λq−1Rn). It is bounded and
has closed range. Hence it induces a bounded linear bijection between the
Banach spaces Ẇ 1,n(ΛqRn)/ker(d∗) and Image(d∗) ⊆ Ln(Λq−1Rn). By the
bounded inverse theorem, this map has a bounded inverse; hence for any
X ∈ Ẇ 1,n(ΛqRn), there exists α(0) ∈ Ẇ 1,n(ΛqRn) such that{

d∗α(0) = d∗X

‖∇α(0)‖Ln ≤ C‖d∗X‖Ln .

Now for q < n, if I is a multiindex of length q, then one can pick i /∈ I and
approximate α(0)

I by Lemma 2 in all but the i-th direction; more precisely,
for any δ > 0, there exists β(0)

I ∈ Ẇ 1,n ∩ L∞ such that∑
j 6=i

∥∥∥∂j

(
α

(0)
I − β

(0)
I

)∥∥∥
Ln
≤ δ

∥∥∥∇α(0)
I

∥∥∥
Ln
≤ Cδ ‖d∗X‖Ln

and ∥∥∥β(0)
I

∥∥∥
L∞

+
∥∥∥∇β(0)

I

∥∥∥
Ln
≤ Aδ

∥∥∥∇α(0)
I

∥∥∥
Ln
≤ CAδ ‖d∗X‖Ln .

Then if δ is picked so that Cδ ≤ 1
2 , we have β(0) :=

∑
I β

(0)
I dxI ∈ Ẇ 1,n ∩

L∞(ΛqRn) satisfying{
‖d∗(X − β(0))‖Ln ≤ 1

2‖d
∗X‖Ln

‖β(0)‖L∞ + ‖∇β(0)‖Ln ≤ A‖d∗X‖Ln

(the first equation holds because ‖d∗(X−β(0))‖Ln = ‖d∗(α(0)−β(0))‖Ln , and
A here is a fixed constant). In other words, we have sacrificed the property
d∗X = d∗α(0) by replacing α(0) ∈ Ẇ 1,n with β(0), which in addition to being
in Ẇ 1,n is in L∞. Now we repeat the process, with X − β(0) in place of X,
so that we obtain β(1) ∈ Ẇ 1,n ∩ L∞(ΛqRn) with{

‖d∗(X − β(0) − β(1))‖Ln ≤ 1
2‖d

∗(X − β(0))‖Ln ≤ 1
22 ‖d∗X‖Ln

‖β(1)‖L∞ + ‖∇β(1)‖Ln ≤ A‖d∗(X − β(0))‖Ln ≤ A
2 ‖d

∗X‖Ln .
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Iterating, we get β(k) ∈ Ẇ 1,n ∩ L∞(ΛqRn) such that{
‖d∗(X − β(0) − · · · − β(k))‖Ln ≤ 1

2k ‖d∗X‖Ln

‖β(k)‖L∞ + ‖∇β(k)‖Ln ≤ A
2k ‖d∗X‖Ln .

Hence

Y =
∞∑

k=0

β(k)

satisfies Y ∈ Ẇ 1,n ∩ L∞(ΛqRn) with{
d∗X = d∗Y

‖Y ‖L∞ + ‖∇Y ‖Ln ≤ 2A‖d∗X‖Ln

as desired. �

While the statement of the above approximation lemma looks linear, the
proof proceeds via the following non-linear1 statement:

Lemma 3 (Bourgain-Brezis). There exists cn < 1 such that for δ > 0, there
exists Cδ > 0, such that for any f ∈ Ẇ 1,n with ‖∇f‖Ln ≤ cn, there exists
F ∈ Ẇ 1,n ∩ L∞ such that

‖F‖L∞ ≤ Cδ

‖∇F‖Ln ≤ Cδ‖∇f‖Ln∑n
i=2 ‖∂i(f − F )‖Ln ≤ δ‖∇f‖Ln + Cδ‖∇f‖2

Ln .

We end today by showing how Lemma 2 and Lemma 3 are equivalent.

Proof that Lemma 3 ⇒ Lemma 2. Since the statement of Lemma 2 is in-
variant under dilation, and only small δ’s needs to be considered, one can
without loss of generality assume that the given f ∈ Ẇ 1,n and δ satisfies
‖∇f‖Ln = δC−1

δ ≤ cn, where Cδ is the constant arising in Lemma 3. The
one can apply Lemma 3, and obtain some F ∈ Ẇ 1,n ∩ L∞ such that

‖F‖L∞ ≤ Cδ = δ−1C2
δ ‖∇f‖Ln

‖∇F‖Ln ≤ Cδ‖∇f‖Ln∑n
i=2 ‖∂i(f − F )‖Ln ≤ δ‖∇f‖Ln + Cδ‖∇f‖2

Ln = 2δ‖∇f‖Ln .

Replacing δ by δ/2 and choosing the appropriate Aδ, this finishes the proof
of Lemma 2. �

The proof of the converse is obvious, which we omit.
Next time the effort will go into proving Lemma 3. Once that is done, we

will have proved all the theorems we stated in this section.
We remark that when n = 2, there is a direct proof of Theorem 7 using

Phancherel’s theorem (which is possible because then n
n−1 is equal to 2), but

in higher dimensions there has been no direct proofs of that so far.

1Note the square of ‖∇f‖Ln in the last inequality of Lemma 3.
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