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Last time we saw some remarkable consequences of the following approx-
imation lemma for functions in Ẇ 1,n(Rn), which can be thought of as some
remedy of the fact that the Sobolev space Ẇ 1,n(Rn) fails to embed into L∞:

Lemma 1. For any δ > 0 there exists Cδ such that for any f ∈ Ẇ 1,n(Rn)
there exists F ∈ Ẇ 1,n ∩ L∞(Rn) satisfying{∑n

i=2 ‖∂i(f − F )‖Ln ≤ δ‖∇f‖Ln

‖∇F‖Ln + ‖F‖L∞ ≤ Cδ‖∇f‖Ln .

We saw that it follows from the following non-linear1 approximation lemma:

Lemma 2. There exists cn < 1 such that for δ > 0, there exists Cδ such that
for any f ∈ Ẇ 1,n(Rn) with ‖∇f‖Ln ≤ cn, there exists F ∈ Ẇ 1,n ∩ L∞(Rn)
such that 

‖F‖L∞ ≤ Cδ

‖∇F‖Ln ≤ Cδ‖∇f‖Ln∑n
i=2 ‖∂i(f − F )‖Ln ≤ δ‖∇f‖Ln + Cδ‖∇f‖2

Ln .

Today our goal is to give a complete proof of this second approximation
lemma, following Bourgain-Brezis [1]. We shall not take the shortest possible
route; rather, we shall try to explain some motivations behind the construc-
tion of F , and have some trial and errors on some model constructions before
we carry out the actual one.

1Note the square of ‖∇f‖Ln on the right hand side of the last assertion.
1
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1. Motivations and a basic construction

The failure of Ẇ 1,n into L∞ is the major obstacle that we need to get
around. To tackle this we use Bernstein’s inequality.

More precisely, let Pj be the Littlewood-Paley projection adapted to
frequency 2j ; in fact we shall take a smooth function χ with support in
{1

2 ≤ |ξ| ≤ 2}, such that
∑∞

j=−∞ χ(2−jξ) = 1 for all ξ 6= 0, and define

P̂jf(ξ) = χ(2−jξ)f̂(ξ).

Lemma 3 (Bernstein’s inequality). There exists a constant Cn such that
for all f ∈ Ẇ 1,n(Rn),

‖Pjf‖L∞ ≤ Cn‖∇f‖Ln

uniformly for all j.

Proof. One observes that

P̂jf(ξ) = 2−j
n∑

i=1

2−jξi
(2−j |ξ|)2

χ(2−jξ) · ξif̂(ξ),

from which it follows that there exist Schwartz functions K(i) such that

(1) Pjf =
n∑

k=1

K
(i)
j ∗ ∂if

for all j, where

K
(i)
j (x) = 2j(n−1)K(i)(2jx).

One only needs to apply Holder’s inequality to (1), noting that

‖K(i)
j ‖

L
n

n−1
= c

independent of j. �

Hence if f = Pjf for some j, then one can take F = Pjf and that will be
an L∞ approximation of f verifying the conclusions of Lemma 2.

Now in general,

f =
∑

j

Pjf,

and we cannot sum up Pjf in L∞ even though each piece is bounded. The
general construction will rely on the following algebraic identity, which reads:

Lemma 4. For any sequence {ai},

1 =
N∑

j=1

aj

∏
1≤j′<j

(1− aj′) +
N∏

j=1

(1− aj).
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Proof. This is just saying that

1 = a1 + (1− a1)

= a1 + a2(1− a1) + (1− a1)(1− a2)

= a1 + a2(1− a1) + a3(1− a1)(1− a2) + (1− a1)(1− a2)(1− a3)
= . . .

�

Note that by renaming the indices, one can also write

1 =
N∑

j=1

aj

∏
j<j′≤N

(1− aj′) +
N∏

j=1

(1− aj).

Hence if we have a sequence {ai} of numbers, all of which are non-negative
and bounded by 1, then

∞∑
j=−∞

aj

∏
j′>j

(1− aj′) ∈ [0, 1].

Now recall f can be written f =
∑

j fj , if we take fj to be Pjf . In view
of the above, to approximate

(2) f =
∑

j

fj ,

one would take

(3) F =
∑

j

fj

∏
j′>j

(1−Gj′)

where Gj are some non-negative functions such that

(4) |fj | ≤ Gj ≤ 1 pointwisely for all j.

Then at least ‖F‖L∞ ≤ 1; in fact

|F (x)| ≤
∑

j

|fj |
∏
j′>j

(1−Gj′) ≤
∑

j

Gj

∏
j′>j

(1−Gj′) ≤ 1.

Now one would first ask whether this could be any sensible approximation
of f . To understand this, write f =

∑
j fj . If we think of each fj as

fj multiplied by 1, then in constructing F we are replacing this 1 by the
product over all j′ > j above. In fact,

f − F =
∑

j

fj

1−
∏
j′>j

(1−Gj′)

 .

Using Lemma 4 to expand the latter bracket and rearranging the resulting
sum, we get

(5) f − F =
∑

j

GjHj ,
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where

(6) Hj =
∑
j′<j

fj′
∏

j′<j′′<j

(1−Gj′′).

One would then estimate ∂i(f − F ); one gets

∂i(f − F ) =
∑

j

(∂iGj)Hj +
∑

j

Gj(∂iHj)

by Leibniz rule. Now

(7) |Hj | ≤ 1 pointwisely for all j;

this is a consequence of the remark after Lemma 4, the reasoning of which
is similar to why |F | is bounded by 1. Also,

(8) |∂iHj | ≤
∑
j′<j

(|∂ifj′ |+ |∂iGj′ |).

This is because if one computes ∂iHj , either the derivative hits fj′ , in which
case we get the first sum above, or the derivative hits Gj′ for some j′ < j,
and the coefficient of ∂iGj′ in ∂iHj is

−Hj′
∏

j′<j′′<j

(1−Gj′′),

which is also bounded by 1. In fact,

∂iHj =
∑
j′<j

(
(∂ifj′)− (∂iGj′)Hj′

) ∏
j′<j′′<j

(1−Gj′′).

It follows that

(9) |∂i(f − F )| ≤
∑

j

|∂iGj |+
∑

j

Gj

∑
j′<j

(|∂ifj′ |+ |∂iGj′ |);

we shall hope to estimate this in Ln(Rn) norm.
Equations (2), (3), (4), (5), (6), (7), (8) and (9) will form a basic paradigm

of all our constructions below. For given fj , we shall just take different
choices of Gj , as long as (4) is satisfied. For instance, as a very naive
attempt, one could try taking Gj = |Pjf | when fj = Pjf ; then we shall
then need to estimate ∂i(f − F ) in Ln(Rn), and using (9), what we need to
bound first is

∥∥∥∑j |∂iGj |
∥∥∥

Ln
, which basically requires one to bound

(10)

∥∥∥∥∥∥
∑

j

2j |Pjf |

∥∥∥∥∥∥
Ln

.

It is well-known that this is not bounded by any multiple of ‖∇f‖Ln ; in
fact it is only the square function in j of 2j |Pjf | whose Ln norm that is
comparable to ‖∇f‖Ln , and there is no hope to gain any small factor like
δ in any direction anyway since different directions are not distinguished in
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this naive construction. We need two ideas that deals with these two issues
separately.

1.1. Controlling the low frequencies by the high frequencies. First,
if we only need to bound

(11)

∥∥∥∥∥∥
∑

j

2j |Pjf |χ{2j |Pjf |>C
P

k<j 2k|Pkf |}

∥∥∥∥∥∥
Ln

instead of (10), where χ{... } denotes the characteristic function of the set
where the low frequencies are controlled by the high frequencies, then we
are in a better shape, since pointwisely

(12)
∑

j

2j |Pjf |χ{2j |Pjf |>C
P

k<j 2k|Pkf |} ≤ (C + 1) sup
j

2j |Pjf |,

and the right hand side of this can be estimated in Ln using

(13)

∥∥∥∥∥sup
j

2j |Pjf |

∥∥∥∥∥
Ln

≤ C‖∇f‖Ln .

(To see (12), first fix x, and for any j0, look at the partial sum over all
j ≤ j0 of the sum to be estimated; we need only consider j0 that satisfies
2j0 |Pj0f |(x) > C

∑
k<j0

2k|Pkf |(x), since otherwise the characteristic func-
tion in the last term of this partial sum is zero at x, and we are reduced to
a previous partial sum. Now assume j0 is as such. Then∑

j≤j0

2j |Pjf |(x) = 2j0 |Pj0f |(x) +
∑
k<j0

2k|Pkf |(x)

< (C + 1)2j0 |Pj0f |(x)
≤ (C + 1) sup

j
2j |Pjf |(x).

Letting j0 → ∞ we get the desired estimate. The inequality (13) follows
from the trivial pointwise bound

sup
j

2j |Pjf | ≤

∑
j

|Pjf |2
1/2

and the Littlewood-Paley inequality.) Now this suggest one to consider an
initial splitting

(14) f =
∑

j

Pjfχ{2j |Pjf |>C
P

k<j 2k|Pkf |} +
∑

j

Pjfχ{2j |Pjf |≤C
P

k<j 2k|Pkf |}

and approximate the two sums separately. To approximate the first, one
would try invoking the above general construction, taking something like
fj = Pjfχ{2j |Pjf |>C

P
k<j 2k|Pkf |} and Gj = |Pjf |χ{2j |Pjf |>C

P
k<j 2k|Pkf |},

hoping to end up with an estimate of form (11) in place of (10); this does not
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work since both fj and Gj are not even continuous, and cannot be differenti-
ated in the framework of (2), (3), (4), (5), (6), (7), (8) and (9). Nevertheless,
one can try to smooth this out a bit, and give it another go. This would
basically work, except that one still does not gain when one differentiate in
the good directions.

1.2. Special directions: Introducing the controlling functions ωj.
To gain when one differentiates in the good directions, one needs to introduce
some auxillary controlling functions ωj that controls |Pjf | in the sense that

|Pjf | ≤ ωj ≤ ‖Pjf‖L∞ ,

and has small derivatives in the good directions in the sense that

|∂iωj | ≤ 2j−σωj for i = 2, . . . , n, and |∂1ωj | ≤ 2jωj .

where σ >> 0 is a large integer to be chosen. The price to pay then is that
we only have ∥∥∥∥∥sup

j
2jωj

∥∥∥∥∥
Ln

≤ C2σ(n−1)/n‖∇f‖Ln

where the right hand side gets big as σ gets big; c.f. (13). The crucial thing
here is that the power of 2σ on the right hand side, namely (n − 1)/n, is
strictly less than 1. These will be used to define the Gj ’s when we want
to approximate the first sum in (14)2. There will then be the second sum
in (14) that needs to be approximated, again using the scheme given by
equations (2), (3), (4), (5), (6), (7), (8) and (9), but this time it is easier
since these are terms where the high frequencies are dominated by the low
frequencies (because of the support of the relevant characteristic functions),
and when one differentiate low frequencies one gains. The relevant estimates
will be made using Littlewood-Paley theory. For that reason, below we first
turn to some Littlewood-Paley theory we shall use, and then describe the
construction of these auxillary controlling functions ωj that allows one to
pick up good derivatives in all but one directions.

2. Preliminaries on Littlewood-Paley theory

We recall here a few well-known facts about Littlewood-Paley theory and
vector-valued singular integrals. Let 1 < p <∞.

(1) For Φ ∈ Lp,

‖Φ‖Lp '

∥∥∥∥∥∥∥
∑

j

|PjΦ|2
 1

2

∥∥∥∥∥∥∥
Lp

.

This is because Φ 7→ {PjΦ}j∈Z is a vector-valued singular integral
taking values in l2(Z).

2To comply with the original notations of Bourgain-Brezis, below we shall give these
Gj ’s for the first sum a different name, and call them Uj instead.
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(2) Also from the theory of vector-valued singular integrals, we have, for
any sequence of functions Φj ,∥∥∥∥∥∥∥

∑
j

|∇PjΦj |2
 1

2

∥∥∥∥∥∥∥
Lp

'

∥∥∥∥∥∥∥
∑

j

|2jPjΦj |2
 1

2

∥∥∥∥∥∥∥
Lp

.

This is because the vector-valued multipliers ξ 7→ {2−j |ξ|χ(2−jξ)}j∈Z
and ξ 7→ {2j |ξ|−1χ(2−jξ)}j∈Z both behave as if they were homoge-
neous of degree 0. Here χ is a smooth cut-off function that is 1
the annulus {1/2 ≤ |ξ| ≤ 2} and is supported in a slightly larger
annulus.

(3) For any sequence Φj , we have∥∥∥∥∥∥∥
∑

j

|PjΦj |2
 1

2

∥∥∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥∥∥
∑

j

|Φj |2
 1

2

∥∥∥∥∥∥∥
Lp

,

again by the theory of vector-valued singular integrals.
(4) For any sequence Φj , we have∥∥∥∥∥∥∥

∑
j

|MΦj |2
 1

2

∥∥∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥∥∥
∑

j

|Φj |2
 1

2

∥∥∥∥∥∥∥
Lp

where M is the standard maximal function operator

MΦ(x) = sup
r>0

1
rn

∫
|y|<r

Φ(x+ y)dy.

This is Fefferman-Stein’s inequality for the vector-valued maximal
function.

(5) Derivatives (and indeed any multiplier operators) commute with the
Littlewood-Paley projections Pj , i.e.

∂i(Pjf) = Pj(∂if)

for all i and j.
We shall also use some special kernels on Rn. Let K0

j be a kernel on R
such that K̂0

j is piecewise linear, equals 1 in [−2−j−1, 2j+1], vanishes outside
[−2j+2, 2j+2] and is linear in between; in other words, let

K0
j (x) = (1 + e2

j+2πix + e−2j+2πix)F 0
j (x)

where F 0
j is the Fejer kernels on R, satisfying

F̂ 0
j (ξ) =

(
1− |ξ|

2j+1

)
+

.
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Note that F 0
j has an explicit expression

F 0
j (x) =

1
2j+1

(
sin 2j+1πx

πx

)2

that shows that it is non-negative, and hence ‖F 0
j ‖L1 = F̂ 0

j (0) = 1. Note
also that |K0

j (x)| ≤ 3F 0
j (x). Next define on Rn

(15) Kj(x) = K0
j (x1)K0

j (x2) . . .K0
j (xn)

and

(16) Fj(x) = F 0
j (x1)F 0

j (x2) . . . F 0
j (xn).

Then
Fj(x) ≥ 0, ‖Fj‖L1 = 1 and |Kj(x)| ≤ 3nFj(x).

We shall often need the fact that for f ∈ Ẇ 1,n, we have

|Pjf | ≤ 3n|Pjf | ∗ Fj .

This is because
Pjf = Pjf ∗Kj ,

which in turn follows from the fact that K̂j ≡ 1 on the support of P̂jf .

3. Properties of ωj

Let σ be a large integer. Given f ∈ Ẇ 1,n, we shall introduce an auxillary
controling function ωj that basically plays the role of Pjf , except that it has
better derivatives in all but one direction. More precisely, the ωj we define
will satisfy the following properties:

(17) |Pjf | ≤ ωj ≤ ‖Pjf‖L∞ ;

(18) |∂iωj | ≤ 2j−σωj for i = 2, . . . , n, and |∂1ωj | ≤ 2jωj .

We shall also need the following crucial property:

(19)

∥∥∥∥∥sup
j

2jωj

∥∥∥∥∥
Ln

≤ C2σ(n−1)/n‖∇f‖Ln .

The key here is that the power of 2σ on the right hand side is strictly less
than 1. We point out again that the analgous property for Pjf is very
easy to prove; see (13). We lose powers of 2σ here because we have good
derivatives in (n − 1) directions; in fact for each good direction one loses a
factor 2σ/n. We shall also need the facts that

(20)

∥∥∥∥∥∥∥
∑

j

(2jωj)2

1/2
∥∥∥∥∥∥∥

Ln

≤ C2σ(2n−1)‖∇f‖Ln

and that ωj is ‘locally constant’ on the natural scale:

(21) ωj(x+ y) ≤ Cωj(x) if |y1| ≤ 2−j and |y′| ≤ 2−(j−σ),



DIV-CURL SYSTEMS (PART 2) 9

where C is a constant (C = en will do).
The construction of ωj is as follows. Given f ∈ Ẇ 1,n, define

(22) ωj(x) = sup
y∈Rn

|Pjf(x− y)|e−2j |y1|−2j−σ |y′|

where we wrote y ∈ Rn as y = (y1, y
′), with y1 ∈ R and y′ ∈ Rn−1. This is

like taking a convolution, except that the integral is replaced by a sup norm.
The main advantage of this over an honest convolution is that then (17)
becomes obvious (just take y = 0 in the supremum for the first inequality),
and this is a quality that is absent if we had taken convolutions. This is
important because if we want to bound the L∞ norm of a function that one
constructs via Lemma 4, then it is essential to have pointwise estimates (c.f.
(4)). We shall think of ωj as some smoothed out version of |Pjf |, and this
serves as a useful guide of seeing what estimates are reasonable for ωj .

On the other hand, one disadvantage of this over an honest convolution
is that ωj is no longer smooth; it is only Lipschitz. Nonetheless, rewriting

(23) ωj(x) = sup
y∈Rn

|Pjf(y)|e−2j |x1−y1|−2j−σ |x′−y′|

by a change of variable, and differentiating under the supremum, one sees
that (18) holds a.e. Hence we gain when we differentiate in the good direc-
tions.

Note that (21) also follows from the alternative expression of ωj in (23).
Now to prove (19), first we observe the following:

(24) ωj(x) ≤ C sup
r∈Zn

|Pjf | ∗ tj(x− 2−jr)e−|r1|−2−σ |r′|

where
tj(x) := 2j min{1, (2j |x|)−2}n ≥ Fj(x).

In other words, it is possible to discretize the supremum defining ωj . This
is because if |y| < 2−j , then

|Pjf(x+ y)| ≤ 3n|Pjf | ∗ Fj(x− y) ≤ 3n|Pjf | ∗ tj(x− y) ≤ C|Pjf | ∗ tj(x),

the last inequality following from the fact that

tj(x+ y) ≤ Ctj(x)

uniformly in j, x and y if |y| < 2−j . It follows that for any y ∈ Rn, if we
take r ∈ Zn such that |y − 2−jr| < 2−j , then

|Pjf |(x− y)e−2j |y1|−2j−σ |y′| ≤C|Pjf | ∗ tj(x− 2−jr)e−2j |y1|−2j−σ |y′|

≤C|Pjf | ∗ tj(x− 2−jr)e−|r1|−2−σ |r′|

and hence the desired discrete estimate for ωj .
We can now prove the estimate for ‖ supj 2jωj‖Ln . Observe that

sup
j

2jωj(x) ≤ sup
j

sup
r∈Zn

2j |Pjf | ∗ tj(x− 2−jr)e−|r1|−2−σ |r′|
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so ∫ (
sup

j
2jωj(x)

)n

dx

≤
∫

sup
j

sup
r∈Zn

(
2j |Pjf | ∗ tj(x− 2−jr)e−|r1|−2−σ |r′|

)n
dx

≤
∑

j

∑
r∈Zn

∫ (
2j |Pjf | ∗ tj(x− 2−jr)e−|r1|−2−σ |r′|

)n
dx.

It is crucial here that we have discretized the sup to a discrete one; only
so one can estimate the integral of a sup by the integral of a sum. It is
also important that we are replacing the sup by the sum only after we put
the power into the expression being maximized, because this gives a smaller
sum. Now∫ (

|Pjf | ∗ tj(x− 2−jr)
)n
dx ≤

∫
|Pjf |n

(∫
tj

)n

≤
∫
|Pjf |n

and ∑
r∈Zn

e−n|r1|−n2−σ |r′| = C2σ(n−1).

Hence ∥∥∥∥∥sup
j

2jωj

∥∥∥∥∥
Ln

≤ C2σ(n−1)/n

∫ ∑
j

(2j |Pjf |)n

1/n

≤ C2σ(n−1)/n

∫
∑

j

(2j |Pjf |)2
n/2


1/n

≤ C2σ(n−1)/n‖∇f‖Ln ,

the second-to-last inequality holding because n ≥ 2.
Finally, from (24) again,

ωj(x) ≤ C
∑
r∈Zn

|Pjf | ∗ tj(x− 2−jr)e−|r1|−2−σ |r′|.

Hence taking square function in j and Ln norm in space,∥∥∥∥∥∥∥
∑

j

(2jωj)2

 1
2

∥∥∥∥∥∥∥
Ln

≤C
∑
r∈Zn

e−|r1|−2−σ |r′|

∥∥∥∥∥∥∥
∑

j

(2j |Pjf | ∗ tj(x− 2−jr))2

 1
2

∥∥∥∥∥∥∥
Ln
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But the kernel tj(· − 2−jr) has a radial decreasing majorant of integral |r|n,
and dominating by the maximal function, we get that the above is bounded
by

∑
r∈Zn

e−|r1|−2−σ |r′||r|n

∥∥∥∥∥∥∥
∑

j

(2jM(Pjf)(x))2

 1
2

∥∥∥∥∥∥∥
Ln

≤C2σn

∫
y∈Rn

e−|y1|−2−σ |y′|(|y1|+ 2−σ|y′|)ndy

∥∥∥∥∥∥∥
∑

j

|2jPjf(x)|2
 1

2

∥∥∥∥∥∥∥
Ln

≤C2σ(2n−1) ‖∇f‖Ln .

This proves (20).

4. Attempt 1: Leibniz rule

We now describe two model constructions that illustrates some of the
techniques we shall use. In the first one, we take fj = Pjf and approximate
f =

∑
j fj by F constructed in (3) where Gj := ωj . We shall assume

that ‖∇f‖Ln is sufficiently small as in the statement of Lemma 2, so that
‖Pjf‖L∞ ≤ 1 for all j by Bernstein’s inequality, from which it follows that
both |fj | and Gj = ωj are bounded by 1 in L∞ by (17).

In that case, F is automatically bounded by 1, since (4) is satisfied. To
estimate ‖∂i(f − F )‖Ln , where i = 2, . . . , n, we use (9), noting that in our
case

|∂ifj | ≤ C2jM(Pjf) and |∂iGj | ≤ 2j−σωj .

(The first inequality follows because ∂ifj = ∂i(fj ∗ Kj) = 2jfj ∗ (∂iK)j

where Kj is the reproducing kernel introduced above, the second inequality
is (18).) It follows that both of them are bounded by C2j‖∇f‖Ln , and thus

|∂i(f − F )| ≤
∑

j

2j−σωj +
∑

j

ωj

∑
j′<j

C2j′‖∇f‖Ln

= 2−σ
∑

j

2jωj + C
∑

j

2jωj‖∇f‖Ln .

Note the small factor 2−σ one gains in the first term, and the extra ‖∇f‖Ln

in the second term which will contribute to the quadratic nature of the
desired estimate. Now one has trouble estimating

∑
j 2jωj in Ln, because

even the smaller sum
∑

j 2j |Pjf | cannot be estimated in Ln. Nevertheless,
the kind of splitting as in (14) (or more precisely, a smoothed out version of
that) will allow us to replace any Ln norm of

∑
j 2jωj by∥∥∥∥∥∥

∑
j

2jωjχ{2jωj>C
P

k<j 2kωk}

∥∥∥∥∥∥
Ln

,
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which could then be bounded by

(C + 1)‖ sup
j

2jωj‖Ln . 2σ(n−1)/n‖∇f‖Ln

using (19) since pointwisely
∑

j 2jωjχ{2jωj>C
P

k<j 2kωk} ≤ (C + 1) supj 2jωj

as in the derivation of (12). If we are allowed to make such a cheat here,
we would then have ‖∂i(f − F )‖Ln ≤ C2−σ/n‖∇f‖Ln + C‖∇f‖2

Ln (note
the count of the powers of 2σ here), which would be the form of inequality
we would want to prove in Lemma 2, since the power of 2σ we get here is
negative, and σ can be taken to be big.

5. Attempt 2: Littlewood-Paley theory

Let’s take another naive attempt, in which we make estimates using
Littlewood-Paley theory. We still take f =

∑
j fj where fj = Pjf , and

to approximate this we let F be defined by (3), where Gj := 3n|Pjf | ∗ Fj

and Fj are the Fejer kernels introduced above. This time we do not expect
to gain in the good directions, since there is no distinction between different
directions; nevertheless it is intructive to see how the frequency localization
in fj and Gj (note the convolution with the Fejer kernel in Gj) will help one
make estimates using Littlewood-Paley theory.

First, we still assume that ‖∇f‖Ln is sufficiently small, so that ‖Gj‖∞ ≤ 1
still holds by Bernstein’s inequality. Now observe that fj = Pjf = Pjf ∗Kj ,
from which it follows that |fj | ≤ |Pjf | ∗ (3nFj) = Gj . As a result, (4) holds,
and thus ‖F‖L∞ ≤ 1.

Now we bound ‖∂i(f −F )‖Ln using Littlewood-Paley theory. Recall from
(5) and (6) that f−F =

∑
j GjHj , where Hj =

∑
j′<j fj′

∏
j′<j′′<j(1−Gj′′).

Since both fj and Gj are supported in frequency in a ball of radius 2j , Hj

is also supported on a ball of frequency ∼ 2j ; in fact

Pk(GjHj) = 0 whenever k > j + 2.

(Note how the frequency support of the non-negative kernel Fj comes into
play here.) As a result,

‖∇(f − F )‖Ln '

∥∥∥∥∥∥
(∑

k

|∇Pk(f − F )|2
) 1

2

∥∥∥∥∥∥
Ln

=

∥∥∥∥∥∥∥∥
∑

k

∣∣∣∣∣∣
∑

s≥−2

∇Pk(Gk+sHk+s)

∣∣∣∣∣∣
2

1
2

∥∥∥∥∥∥∥∥
Ln

≤
∑

s≥−2

∥∥∥∥∥∥
(∑

k

|∇Pk(Gk+sHk+s)|2
) 1

2

∥∥∥∥∥∥
Ln
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There are now two ways to proceed: the first one is to differentiateGk+sHk+s

and make the estimate∥∥∥∥∥∥
(∑

k

|∇Pk(Gk+sHk+s)|2
) 1

2

∥∥∥∥∥∥
Ln

≤ C

∥∥∥∥∥∥
(∑

k

|∇(Gk+sHk+s)|2
) 1

2

∥∥∥∥∥∥
Ln

;

the other is to differentiate the Littlewood-Paley projections and make the
estimate∥∥∥∥∥∥
(∑

k

|∇Pk(Gk+sHk+s)|2
) 1

2

∥∥∥∥∥∥
Ln

≤ C

∥∥∥∥∥∥
(∑

k

∣∣∣2kPk(Gk+sHk+s)
∣∣∣2) 1

2

∥∥∥∥∥∥
Ln

.

The first approach gives us in general a factor of 2k+s that goes with GkHk,
while the second approach gives us the better factor of 2k. Hence we adopt
the second approach, and arrive at

‖∇(f − F )‖Ln ≤
∑

s≥−2

∥∥∥∥∥∥
(∑

k

∣∣∣2kPk(Gk+sHk+s)
∣∣∣2) 1

2

∥∥∥∥∥∥
Ln

≤
∑

s≥−2

2−s

∥∥∥∥∥∥
(∑

k

∣∣∣2k+sGk+sHk+s

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

=

∥∥∥∥∥∥
(∑

k

∣∣∣2kGkHk

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

.

Now ‖Hk‖L∞ ≤ 1 by (7), and |Gk| = 3n|Pkf | ∗ Fk ≤ 3nM(Pkf). Hence

‖∇(f − F )‖Ln ≤ 3n

∥∥∥∥∥∥
(∑

k

(
2kM(Pkf)

)2
) 1

2

∥∥∥∥∥∥
Ln

≤ C

∥∥∥∥∥∥
(∑

k

(
2k|Pkf |

)2
) 1

2

∥∥∥∥∥∥
Ln

≤ C‖∇f‖Ln

as desired.
In reality, to gain a small factor like δ in estimates like this, we can only

sum over large values of s, say s ≥ R where R is another very big positive
integer. In that case one gains powers of 2−R. One will then need to figure
out some other way in which the sum over small s can be dealt with. To do
that one need to replace Gj by something whose derivatives are small; in fact
we need something like |∇Gj | to be of the order 2j−R. Approximations of
this kind will be used to deal with the second sum in (a smoothed out version
of) (14), where intuitively speaking the high frequencies are dominated by
the sum of lower frequencies. In effect Littlewood-Paley theory will allow one
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to shift the derivatives on the high frequency components to low frequency
ones, thereby gaining the desired factors of 2−R where R is as above. The
additional complication, on the other hand, is that we will need to take Gj

to be an infinite sum (with the terms corresponding to the frequencies lower
than 2j), and one need to gain an additional convergence factor to account
for the convergence of this additional summation when making estimates.

6. The actual proof

We have finally most of the ingredients to prove Lemma 2. Below we
begin afresh; the notations in the previous sections should not be confused
with the ones defined below.

Proof of Lemma 2. Let f ∈ Ẇ 1,n(Rn) be such that ‖∇f‖Ln ≤ cn. If cn is
a sufficiently small dimensional constant, then by Bernstein’s inequality, we
have ‖Pjf‖L∞ ≤ 3−n for all j. Fix such a cn from now on. Suppose in ad-
dition that Pjf is identically equal to zero unless j belongs to an arithmetic
progression of length R, where R is a very large integer to be determined.
This assumption can be easily removed at the end of the argument, since a
general function f is the sum of R such functions.

Now let σ = R/4n, and define ωj by (22), so that (17), (18), (19), (20)
and (21) are all satisfied. We split f into a sum,

f = g + h,

where
g =

∑
j

gj , h =
∑

j

hj ,

gj = (Pjf · χ{2jωj≤
P

k<j 2kωk}) ∗Kj ,

and
hj = (Pjf · χ{2jωj>

P
k<j 2kωk}) ∗Kj .

Here Kj are the reproducing kernels defined by (15) and χ denotes the
characteristic function of a set. The extra convolutions with Kj does not
affect the fact that gj + hj = Pjf , because Kj are reproducing. But the
extra convolutions smoothes out the product of Pjf with the characteristic
functions, and at the same time localizes such in frequency. This will turn
out be very handy for us, as was hinted in the discussions in the previous
two sections.

Note that ωj , gj , hj are all identically zero unless j belongs to the special
arithmetic progression of common difference R that we had at the beginning.

We first approximate h =
∑

j hj , using the paradigm we introduced in
Section 1. More precisely, we will find functions Uj such that

(25) |hj | ≤ Uj ≤ 1 pointwisely for all j,
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and approximate h by

(26) h̃ :=
∑

j

hj

∏
j′<j

(1− Uj′).

Note that such an h̃ must be in L∞; in fact

(27) ‖h̃‖L∞ ≤ 1

by Lemma 4 and (25). We shall prove that

(28) ‖∂i(h−h̃)‖Ln ≤ C2−σ/n‖∇f‖Ln +C2σ(n−1)/n‖∇f‖2
Ln if i = 2, . . . , n,

and

(29) ‖∇(h− h̃)‖Ln ≤ C2σ(n−1)/n‖∇f‖Ln

upon a suitable choice of Uj . These estimates will be established using
Leibniz rule, in a similar spirit as what we did in Section 4. The key here is
that the coefficient of the linear factor in ‖∇f‖Ln in (28) is small when R
(and hence σ) is big.

First observe that

|hj | ≤ 3n(ωjχ{2jωj>
P

k<j 2kωk}) ∗ Fj ,

and Fj are the Fejer kernels defined by (16). Hence one is tempted to take
Uj as the right hand side above and run the paradigm we introduced in
Section 1. However, one would then need to estimate ‖

∑
j ∂iUj‖Ln , and for

that one needs to have some control on the support of Uj (or its constituents).
To do that, we introduce smooth cut-off functions ψj on R such that

0 ≤ ψj ≤ 1, ψj = 0 outside [−2−j , 2−j ], ψj(0) = 1, |ψ′j | ≤ 2j .

Then define a second auxillary function

uj(x) = sup
y∈Rn

(
ωjχ{2jωj>

P
k<j 2kωk}

)
(x− y)ψj(y1)ψj−σ(y2) . . . ψj−σ(yn),

smoothing out ωjχ{2jωj>
P

k<j 2kωk}. Note the similarity with the construc-
tion of ωj . The advantage of doing that is that one now has control on the
support of the derivative of uj : in fact since ψj has compact support, u(x)
depends only on the values of ωj near x. Now by (21),

uj(x) ≤ enωj(x).

Indeed a more precise estimate is possible: if

2jωj(x) ≤ e−2n
∑
k<j

2kωk(x)
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then for all y with |y1| < 2−j and |y2|, . . . , |yn| < 2−(j−σ), we have

2jωj(x+ y) ≤ en2jωj(x)

≤ ene−2n
∑
k<j

2kωk(x)

≤ ene−2n
∑
k<j

2kωk(x+ y)en

≤
∑
k<j

2kωk(x+ y)

and hence uj(x) = 0. It follows that

uj(x) ≤ en(ωjχ{2jωj>e−2n
P

k<j 2kωk})(x)

improving our previous estimate. Similarly, the derivatives can be estimated:
for i 6= 1,

|∂iuj(x)|
≤ sup

y
(ωjχ{2jωj>

P
k<j 2kωk})(y)|∂iψj(x1 − y1)ψj−σ(x2 − y2) . . . ψj−σ(xn − yn)|

≤C2j−σ sup
|y1|<2−j ,|y2|,...,|yn|<2−(j−σ)

(ωjχ{2jωj>
P

k<j 2kωk})(x− y)

≤C2j−σen(ωjχ{2jωj>e−2n
P

k<j 2kωk})(x),

and
|∇uj(x)| ≤ C2jen(ωjχ{2jωj>e−2n

P
k<j 2kωk})(x).

Notice how we obtained control on the support of these derivatives.
Now observe that

|hj(x)| ≤ 3n(ωjχ{2jωj>
P

k<j 2kωk}) ∗ Fj(x) ≤ 3nuj ∗ Fj(x)

and that

‖3nuj ∗ Fj(x)‖L∞ ≤ 3n‖uj‖L∞ ≤ 3n‖ωj‖L∞ ≤ 3n‖Pjf‖Ln ≤ 1.

Hence we define
Uj = 3nuj ∗ Fj

and this completes the definition of h̃ by (26). Note (25) and hence (27) is
satisfied. Now by the same paradigm that leads to the proof of (9), we get

|∂i(h− h̃)| ≤
∑

j

|∂iUj |+
∑

j

Uj

∑
j′<j

(
|∇hj′ |+ |∇Uj′ |

)
.

But
|∇hj |+ |∇Uj | ≤ C2j‖∇f‖Ln ,

since
|∇hj | ≤ C2jM(Pjf) ≤ C2j‖Pjf‖L∞ ,

|∇Uj | ≤ C2jM(uj) ≤ C2j‖uj‖L∞ ≤ C2j‖ωj‖L∞ ≤ C2j‖Pjf‖L∞ ,
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and ‖Pjf‖L∞ ≤ C‖∇f‖Ln by Bernstein. Also, for i 6= 1,

|∂iUj | ≤ C|∂iuj | ∗ Fj ≤ C2j−σ(ωjχ{2jωj>e−2n
P

k<j 2kωk}) ∗ Fj .

Hence for i 6= 1,

|∂i(h− h̃)| ≤C2−σ
∑

j

2j(ωjχ{2jωj>e−2n
P

k<j 2kωk}) ∗ Fj

+ C‖∇f‖Ln

∑
j

2j(ωjχ{2jωj>e−2n
P

k<j 2kωk}) ∗ Fj .

We need to estimate

(30)

∥∥∥∥∥∥
∑

j

2j(ωjχ2jωj>e−2n
P

k<j 2kωk
) ∗ Fj

∥∥∥∥∥∥
Ln

.

Here we need a lemma that says the frequency localization by convolution
against Fj is harmless here3:

Lemma 5. If Φj is a sequence of non-negative functions, then for 1 ≤ p ≤
∞, ∥∥∥∥∥∥

∑
j

Φj ∗ Fj

∥∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥
∑

j

Φj

∥∥∥∥∥∥
Lp

.

Proof of Lemma 5. This is because when Φj ≥ 0,∣∣∣∣∣∣
∑

j

Φj ∗ Fj

∣∣∣∣∣∣ ≤
∑

j

M(Φj) = M

∑
j

Φj


and the maximal function is bounded on Lp if 1 < p ≤ ∞. By duality we
can extend the estimate to p = 1. �

Hence (30) is bounded by

(31) C

∥∥∥∥∥∥
∑

j

2jωjχ{2jωj>e−2n
P

k<j 2kωk}

∥∥∥∥∥∥
Ln

.

Now pointwisely,∑
j

2jωjχ{2jωj>e−2n
P

k<j 2kωk} ≤ C sup
j

2jωj .

This can be proved in the same way that (12) is proved. Hence (31) is
bounded by

C

∥∥∥∥∥sup
j

2jωj

∥∥∥∥∥
Ln

≤ C2σ(n−1)/n‖∇f‖Ln

3We state it also for p = 1 for interest only; we only need to use it for p = n, for which
the argument is easy.
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by (19). Putting these together, we see that for i 6= 1, (28) holds. Note how
we squeezed a small factor 2−σ/n in front of the linear term in ‖∇f‖Ln in
this estimate. In general, if we differentiate in the bad (i.e. ∂1) direction,
the above arguments give

‖∇(h− h̃)‖Ln ≤ C2σ(n−1)/n‖∇f‖Ln + C2σ(n−1)/n‖∇f‖2
Ln

which implies (29) since ‖∇f‖Ln was assumed to be bounded by a dimen-
sional constant. This completes our approximation for h.

Next we first approximate g =
∑

j gj , again using the paradigm we intro-
duced in Section 1. More precisely, we will find functions Gj such that

(32) |gj | ≤ Gj ≤ 1 pointwisely for all j,

and approximate g by

(33) g̃ :=
∑

j

gj

∏
j′<j

(1−Gj′).

Note that such an g̃ must be in L∞; in fact

(34) ‖g̃‖L∞ ≤ 1

by Lemma 4 and (32). We shall prove that

(35) ‖∇(g − g̃)‖Ln ≤ CR2−R2σ(2n−1)‖∇f‖Ln + CR2σ(2n−1)‖∇f‖2
Ln .

upon a suitable choice of Gj . These estimates will be established using
Littlewood-Paley theory, in a similar spirit as what we did in Section 5.
Note we do not need to distinguish between the good and bad derivatives;
all of them will be controlled in the same way. Note also that the coefficient
of the linear factor in ‖∇f‖Ln in (35) is small when R is big, since σ = R/4n
and thus R2−R2σ(2n−1) ≤ R2−R/2.

First there is a pointwise domination of gj , given by

|gj | ≤ (ωjχ{2jωj≤
P

k<j 2kωk}) ∗ 3nFj

≤ 3n
∑
k<j

2k−jωk ∗ Fj .

Remember gj and ωj are both identically zero unless j is in a certain arith-
metic progression of common difference R. Hence we could have also written

|gj | ≤ 3n
∑
t≥R

2−tωj−t ∗ Fj

and we define Gj to be the right hand side of the above inequality. Note
that

‖Gj‖L∞ ≤ 3n
∑
t≥R

2−t‖ωj−t ∗ Fj‖L∞ ≤ 3n‖Pjf‖L∞ ≤ 1.

Now we estimate ‖∇(g − g̃)‖Ln : note that

g − g̃ =
∑

j

GjHj
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where
Hj =

∑
j′<j

gj′
∏

j′<j′′<j

(1−Gj′′).

For future reference, we remark that

|Hj | ≤ 1

which follows from Lemma 4 and (32),

|∇Gj | ≤ 3n
∑
t≥R

2−t|∇ωj−t| ∗ Fj ≤ C
∑
t>0

2−t2j−tωj−t ∗ Fj ,

and

|∇Hk| ≤
∑
l>0

(|∇gk−l|+ |∇Gk−l|)

≤ C
∑
l>0

2k−lMωk−l + C
∑
l>0

∑
t>0

2−t2k−l−tMωk−l−t

≤ C
∑
l>0

2k−lMωk−l.(36)

Since Gj and Hj are both compactly supported in frequency, Pk(GjHj) = 0
if k > j + 2. Hence

‖∇(g − g̃)‖Ln '

∥∥∥∥∥∥∥∥
∑

k

∣∣∣∣∣∣∇Pk

∑
j

GjHj

∣∣∣∣∣∣
2

1
2

∥∥∥∥∥∥∥∥
Ln

≤
∑

s≥−2

∥∥∥∥∥∥
(∑

k

|∇Pk(Gk+sHk+s)|2
) 1

2

∥∥∥∥∥∥
Ln

There are now two ways to proceed: we can differentiate Gk+sHk+s, or we
can differentiate the Littlewood-Paley projections. But Gk+s is a sum of
components whose derivatives get smaller and smaller: indeed

Gk+s = 3n
∑
t≥R

2−tωk+s−t ∗ Fk+s

and if one differentiate ωk+s−t in the sum, one gets a factor 2k+s−t which is
better than the factor 2k that one gets from differentiating the Littlewood-
Paley projections. Hence it is natural to split Gj into two parts and deal
with them differently.

Let now s be fixed, and consider

(37)

∥∥∥∥∥∥
(∑

k

|∇Pk(Gk+sHk+s)|2
) 1

2

∥∥∥∥∥∥
Ln

.
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Let s̄ be a non-negative function of s to be determined, and let

G
(1)
j = 3n

∑
R≤t<s̄

2−tωj−t ∗ Fj ,

G
(2)
j = 3n

∑
t≥max{s̄,R}

2−tωj−t ∗ Fj .

Then (37) is bounded by∥∥∥∥∥∥
(∑

k

∣∣∣∇Pk(G
(1)
k+sHk+s)

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

+

∥∥∥∥∥∥
(∑

k

∣∣∣∇Pk(G
(2)
k+sHk+s)

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

(38)

According to the heuristics above, we estimate the first term by

C

∥∥∥∥∥∥
(∑

k

∣∣∣2kPk(G
(1)
k+sHk+s)

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

≤ C2−s

∥∥∥∥∥∥
(∑

k

∣∣∣2kG
(1)
k Hk

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

and from

|G(1)
k Hk| ≤ |G(1)

k | ≤ 3n
∑

R≤t<s̄

2−tωk−t ∗ Fk ≤ 3n
∑

R≤t<s̄

2−tMωk−t,

we conclude that the first term of (38) is bounded by

C2−s
∑

R≤t<s̄

∥∥∥∥∥∥
(∑

k

(2k−tMωk−t)2
) 1

2

∥∥∥∥∥∥
Ln

≤ C2−ss̄

∥∥∥∥∥∥
(∑

k

(2kωk)2
) 1

2

∥∥∥∥∥∥
Ln

,

which is then bounded by

(39) C2−ss̄2σ(2n−1)‖∇f‖Ln

by (20).
To estimate the second term in (38) involving G(2)

j , we use∥∥∥∥∥∥
(∑

k

∣∣∣∇Pk(G
(2)
k+sHk+s)

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

≤ C

∥∥∥∥∥∥
(∑

k

∣∣∣∇(G(2)
k Hk)

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

.

Now

|∇(G(2)
k Hk)| ≤ |∇G(2)

k |+ |G(2)
k ||∇Hk|,
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and∥∥∥∥∥∥
(∑

k

∣∣∣∇G(2)
k

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

≤
∑

t>max{s̄,R}

2−t

∥∥∥∥∥∥
(∑

k

|(∇ωk−t) ∗ Fk|2
) 1

2

∥∥∥∥∥∥
Ln

≤C
∑

t>max{s̄,R}

2−t

∥∥∥∥∥∥
(∑

k

(
2k−tωk−t ∗ Fk

)2
) 1

2

∥∥∥∥∥∥
Ln

≤C
∑

t>max{s̄,R}

2−t

∥∥∥∥∥∥
(∑

k

(
2k−tMωk−t

)2
) 1

2

∥∥∥∥∥∥
Ln

≤C2−max{s̄,R}

∥∥∥∥∥∥
(∑

k

(2kωk)2
) 1

2

∥∥∥∥∥∥
Ln

≤C2−max{s̄,R}2σ(2n−1)‖∇f‖Ln(40)

Also, by (36),∥∥∥∥∥∥
(∑

k

∣∣∣G(2)
k ∇Hk

∣∣∣2) 1
2

∥∥∥∥∥∥
Ln

≤
∑
l≥0

∥∥∥∥∥∥
(∑

k

(2k−lMωk−lG
(2)
k )2

) 1
2

∥∥∥∥∥∥
Ln

≤
∑
l≥0

∑
t>s̄

2−t−l

∥∥∥∥∥∥
(∑

k

(2kMωk−lMωk−t)2
) 1

2

∥∥∥∥∥∥
Ln

.

Now we split this sum into two parts, one where t > l, and another where
t ≤ l. In the first sum we estimate Mωk−t by C‖∇f‖Ln , and in the second
sum we estimate Mωk−l by C‖∇f‖Ln . Then the two sums are bounded by

C‖∇f‖Ln

∑
l≥0

∑
t>max{l,s̄}

2−t

∥∥∥∥∥∥
(∑

k

(2k−lMωk−l)2
) 1

2

∥∥∥∥∥∥
Ln

+ C‖∇f‖Ln

∑
t>s̄

∑
l≥t

2−l

∥∥∥∥∥∥
(∑

k

(2k−tMωk−t)2
) 1

2

∥∥∥∥∥∥
Ln

≤C(1 + s̄)2−s̄‖∇f‖Ln

∥∥∥∥∥∥
(∑

k

(2kωk)2
) 1

2

∥∥∥∥∥∥
Ln

≤C(1 + s̄)2−s̄2σ(2n−1)‖∇f‖2
Ln .(41)

Putting the estimates (39), (40) and (41) together, we get

‖∇(g − g̃)‖Ln

≤C
∑

s≥−2

(
(2−ss̄+ 2−max{s̄,R})2σ(2n−1)‖∇f‖Ln + (1 + s̄)2−s̄2σ(2n−1)‖∇f‖2

Ln

)
.
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Recall s̄ was a non-negative function of s to be determined. If we now pick
s̄ = 0 if s ≤ R and s̄ = s if s > R, then summing the above we get (35).

Altogether, if we now set
F = g̃ + h̃

then
‖F‖L∞ ≤ ‖g̃‖L∞ + ‖h̃‖L∞ ≤ 2

and we have now for i 6= 1,

‖∂i(f − F )‖Ln ≤ ‖∇(g − g̃)‖Ln + ‖∂i(h− h̃)‖Ln

≤ CR2−R2σ(2n−1)‖∇f‖Ln + CR2σ(2n−1)‖∇f‖2
Ln

+ C2−σ/n‖∇f‖Ln + C2σ(n−1)/n‖∇f‖2
Ln

≤ CR2−R/4n2‖∇f‖Ln + CR2R/2‖∇f‖2
Ln .

(The last inequality follows because σ = R/4n.) Also,

‖∇(f − F )‖Ln ≤ CR2−R2σ(2n−1)‖∇f‖Ln + CR2σ(2n−1)‖∇f‖2
Ln

+ C2σ(n−1)/n‖∇f‖Ln

≤ CR2R/2‖∇f‖Ln .

These are true whenever ‖∇f‖Ln ≤ cn, and Pjf vanishes identically except
for j in an arithmetic progression of common difference R. Now given a
general f with ‖∇f‖Ln ≤ cn, it can be written as the sum of R functions
with the previous property. Hence what we have proved implies that given
any general f with ‖∇f‖Ln ≤ cn, there exists a function F ∈ Ẇ 1,n ∩ L∞
satisfying

‖F‖L∞ ≤ 2R,

‖∂i(f − F )‖Ln ≤ CR2−R/4n2‖∇f‖Ln + CR2R/2‖∇f‖2
Ln for i = 2, . . . , n

and
‖∇(f − F )‖Ln ≤ CR2R/2‖∇f‖Ln .

(We just multiply each corresponding bound by R.) Since this is true for any
large R, by picking R big enough, we complete the proof of Lemma 2. �

References
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