SOME SPECIAL ISOMORPHISMS OF LIE ALGEBRAS IN LOW DIMENSIONS

PO-LAM YUNG

In this note, we present a more geometric construction of some special isomorphisms between Lie algebras in low dimensions. For simplicity our Lie algebras will be defined over \mathbb{C}; the statements and the proofs will all go through if \mathbb{C} is replaced by an algebraically closed field k with char $k \neq 2$.

First we recall the definitions of some standard matrix Lie algebras:

$$
\begin{gathered}
\mathfrak{s l}_{n}=\left\{x \in \mathfrak{g l}_{n}: \operatorname{tr} x=0\right\} \\
\mathfrak{s o}_{n}=\left\{x \in \mathfrak{g l}_{n}: x+x^{t}=0\right\} \\
\mathfrak{s p}_{2 n}=\left\{x \in \mathfrak{g l}_{2 n}: x J_{2 n}+J_{2 n} x^{t}=0\right\}
\end{gathered}
$$

where

$$
J_{2 n}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

and I_{n} is the $n \times n$ identity matrix. It follows that

$$
\mathfrak{s p}_{2 n}=\left\{\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathfrak{g l}_{n}, a=-d^{t}, b=b^{t}, c=c^{t}\right\} .
$$

Next, let V be a finite dimensional vector space over \mathbb{C}. A symmetric bilinear form $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ is said to be non-degenerate, if for every non-zero $v \in V$, there exists some $w \in V$ such that $\langle v, w\rangle \neq 0$. It is known that all non-degenerate symmetric bilinear forms on V are equivalent: if $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$ are two nondegenerate symmetric bilinear forms on V, then there exists a linear isomorphism $T: V \rightarrow V$ such that $\langle v, w\rangle_{1}=\langle T v, T w\rangle_{2}$ for all $v, w \in V$. In particular, if $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ is a non-degenerate symmetric bilinear form on V, then there exists a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V such that $\langle\cdot, \cdot\rangle$ becomes diagonal in this basis, i.e. $\left\langle e_{j}, e_{k}\right\rangle=\delta_{j k}$.

Now suppose \mathfrak{g} is a complex Lie algebra, and V is a complex vector space with a non-degenerate symmetric bilinear form $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$. Suppose we also have a representation $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ of \mathfrak{g} preserving $\langle\cdot, \cdot\rangle$, i.e.

$$
\langle\rho(x) v, w\rangle+\langle v, \rho(x) w\rangle=0 \quad \text { for all } x \in \mathfrak{g} \text { and all } v, w \in V
$$

Then picking a special basis $\left\{e_{1}, \ldots, e_{n}\right\}$ as above, so that $\langle\cdot, \cdot\rangle$ becomes diagonal in this basis, one can identify V with \mathbb{C}^{n}, and identify ρ as a representation $\rho: \mathfrak{g} \rightarrow \mathfrak{s o}_{n}$. We will make repeated use of this fact below.
Theorem 1. $\mathfrak{s l}_{2}=\mathfrak{s p}_{2} \simeq \mathfrak{s o}_{3}$.
Proof. From definition of $\mathfrak{s l}_{2}$ and $\mathfrak{s p}_{2}$, it is clear that the two are identical.
Now let $V=\mathfrak{s l}_{2}$. On V there is a non-degenerate symmetric bilinear form

$$
\langle y, z\rangle=\operatorname{tr}(y z)
$$

(This is a multiple of the Killing form of $\mathfrak{s l}_{2}$.) The adjoint action ad: $\mathfrak{s l}_{2} \rightarrow \mathfrak{g l}^{\text {(}} \mathfrak{s l}_{2}$) preserves this non-degenerate symmetric bilinear form:

$$
\langle\operatorname{ad}(x) y, z\rangle+\langle y, \operatorname{ad}(x) z\rangle=0 \quad \text { for all } x, y, z \in \mathfrak{s l}_{2} .
$$

In fact,

$$
\langle\operatorname{ad}(x) y, z\rangle+\langle y, \operatorname{ad}(x) z\rangle=\operatorname{tr}((x y-y x) z+y(x z-z x))=\operatorname{tr}(x(y z)-(y z) x)=0
$$

for all $x, y, z \in \mathfrak{s l}_{2}$. It follows that the adjoint action ad induces a Lie homomorphism of $\mathfrak{s l}_{2}$ into $\mathfrak{s o}_{3}$. This is an injective homomorphism, since its kernel is a proper ideal of $\mathfrak{s l}_{2}$, and $\mathfrak{s l}_{2}$ is simple; since both $\mathfrak{s l}_{2}$ and $\mathfrak{s o}_{3}$ are 3 -dimensional, it follows that this is an isomorphism of Lie algebras.

Theorem 2. $\mathfrak{s l}_{4} \simeq \mathfrak{s o}_{6}$.
Proof. Let $V=\Lambda^{2} \mathbb{C}^{4}$ be the vector space of skew-symmetric 2 -tensors on \mathbb{C}^{4}. In other words, V is the span of $z \wedge w$ over all $z, w \in \mathbb{C}^{4}$, where $z \wedge w:=z \otimes w-w \otimes z$. Then V is 6 -dimensional. Furthermore, there is a natural non-degenerate symmetric bilinear form on V : if $\iota: \Lambda^{4} \mathbb{C}^{4} \rightarrow \mathbb{C}$ is an isomorphism of the vector space of alternating 4 -tensors on \mathbb{C}^{4} with \mathbb{C}, then one can define a non-degenerate symmetric bilinear form on V by

$$
\langle u, v\rangle=\iota(u \wedge v) \quad \text { for } u, v \in V
$$

(Both symmetry and non-degeneracy of the bilinear form can be checked by hand easily.) Now the vector representation of $\mathfrak{s l}_{4}$ on \mathbb{C}^{4} naturally induces a representation $\rho: \mathfrak{s l}_{4} \rightarrow \mathfrak{g l}(V)$. Moreover, this representation preserves the non-degenerate symmetric bilinear form $\langle\cdot, \cdot\rangle$:

$$
\langle\rho(x) u, v\rangle+\langle u, \rho(x) v\rangle=0 \quad \text { for all } x \in \mathfrak{s l}_{4} \text { and all } u, v \in V
$$

In fact, by linearity, it suffices to check this when $u=z_{1} \wedge z_{2}$ and $v=z_{3} \wedge z_{4}$, where each z_{i} is one of the standard basis vectors $e_{1}, e_{2}, e_{3}, e_{4}$ of \mathbb{C}^{4}. Then

$$
\begin{aligned}
& \langle\rho(x) u, v\rangle+\langle u, \rho(x) v\rangle \\
= & \iota\left[\left(x z_{1}\right) \wedge z_{2} \wedge z_{3} \wedge z_{4}+z_{1} \wedge\left(x z_{2}\right) \wedge z_{3} \wedge z_{4}+z_{1} \wedge z_{2} \wedge\left(x z_{3}\right) \wedge z_{4}+z_{1} \wedge z_{2} \wedge z_{3} \wedge\left(x z_{4}\right)\right] ;
\end{aligned}
$$

Here $x z_{i}$ is the natural action of $x \in \mathfrak{s l}_{4}$ on $z_{i} \in \mathbb{C}^{4}$. Hence by skew-symmetry, this is zero unless $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ is a re-ordering of $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. By relabelling the basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, we may assume that $z_{i}=e_{i}$ for $i=1, \ldots, 4$. In that case,

$$
\langle\rho(x) u, v\rangle+\langle u, \rho(x) v\rangle=\iota\left[(\operatorname{tr} x) e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right]=0
$$

as desired as well. Hence ρ induces a representation of $\mathfrak{s l}_{4}$ into $\mathfrak{s o}_{6}$. By simplicity of $\mathfrak{s l}_{4}$, the latter is an injective Lie homomorphism; since both $\mathfrak{s l}_{4}$ and $\mathfrak{s o}_{6}$ are 15 dimensional, it follows that they are isomorphic.

Theorem 3. $\mathfrak{s p}_{4} \simeq \mathfrak{s o}_{5}$.
Proof. The isomorphism between $\mathfrak{s p}_{4}$ and $\mathfrak{s o}_{5}$ is obtained by restricting the isomorphism in the previous theorem. In fact, $\mathfrak{s p}_{4} \subset \mathfrak{s l}_{4}$, so if $V=\Lambda^{2} \mathbb{C}^{4},\langle\cdot, \cdot\rangle$ and $\rho: \mathfrak{s l}_{4} \rightarrow \mathfrak{g l}(V)$ is as in the previous theorem, then it induces a representation $\rho_{0}: \mathfrak{s p}_{4} \rightarrow \mathfrak{g l}(V)$ preserving $\langle\cdot, \cdot\rangle$. Now let

$$
v_{0}=e_{1} \wedge e_{3}+e_{2} \wedge e_{4}
$$

If $x \in \mathfrak{s p}_{4}$, then $\rho_{0}(x) v_{0}$ is a multiple of v_{0}. Hence if W is the orthogonal complement of v_{0} in V, i.e.

$$
W=\left\{w \in V:\left\langle w, v_{0}\right\rangle=0\right\}
$$

then $\rho_{0}(x)$ restricts to a map from W into W for all $x \in \mathfrak{s p}_{4}$. It follows that ρ_{0} induces a representation $\rho_{1}: \mathfrak{s p}_{4} \rightarrow \mathfrak{g l}(W)$. Furthermore, one can restrict $\langle\cdot, \cdot\rangle$ to W, and the restriction gives a non-degenerate symmetric bilinear form $\langle\cdot, \cdot\rangle_{1}$ on the 5 -dimensional vector space W. Since ρ_{1} preserves $\langle\cdot, \cdot\rangle_{1}$, it induces a Lie homomorphism of $\mathfrak{s p}_{4}$ into $\mathfrak{s o}_{5}$. Since $\mathfrak{s p}_{4}$ is simple, the kernel of this map is trivial; since $\mathfrak{s p}_{4}$ and $\mathfrak{s o}_{5}$ are both 10-dimensional, it follows that they are isomorphic.

Theorem 4. $\mathfrak{s o}_{4} \simeq \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$.
Proof. Let $V=\mathfrak{g l}_{2}$ be our 4-dimensional vector space. First, $\mathfrak{s l}_{2}$ acts on V on the left. In other words, there is a representation $\rho_{1}: \mathfrak{s l}_{2} \rightarrow \mathfrak{g l}(V)$, given by

$$
\rho_{1}(x) v=x v \quad \text { for all } x \in \mathfrak{s l}_{2} \text { and all } v \in V .
$$

Similarly, $\mathfrak{s l}_{2}$ acts on V on the right. In other words, there is a representation $\rho_{2}: \mathfrak{s l}_{2} \rightarrow \mathfrak{g l}(V)$, defined by

$$
\rho_{2}(y) v=-v y \quad \text { for all } y \in \mathfrak{s l}_{2} \text { and all } v \in V .
$$

Note $\left[\rho_{1}(x), \rho_{2}(y)\right]=0$ for all $x, y \in \mathfrak{s l}_{2}$. Thus one can define a representation $\rho: \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2} \rightarrow \mathfrak{g l}(V)$, namely

$$
\rho(x, y)=\rho_{1}(x)+\rho_{2}(y) \quad \text { for all }(x, y) \in \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2} .
$$

More explicitly,

$$
\begin{equation*}
\rho(x, y) v=x v-v y \quad \text { for all }(x, y) \in \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2} \text { and all } v \in V . \tag{1}
\end{equation*}
$$

Now let

$$
J=J_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and define a bilinear form on V by ${ }^{1}$

$$
\begin{equation*}
\langle v, w\rangle=\operatorname{tr}\left(v J w^{t} J\right) \tag{2}
\end{equation*}
$$

This bilinear form is symmetric, since

$$
\langle v, w\rangle=\operatorname{tr}\left(v J w^{t} J\right)=\operatorname{tr}\left(v J w^{t} J\right)^{t}=\operatorname{tr}\left(J w J v^{t}\right)=\operatorname{tr}\left(w J v^{t} J\right)=\langle w, v\rangle
$$

Furthermore, this bilinear form is non-degenerate on V, because the bilinear form $(v, w):=\operatorname{tr}(v w)$ is non-degenerate, and the map $w \mapsto J w^{t} J$ is a linear isomorphism of V onto itself. We claim that ρ preserves this non-degenerate symmetric bilinear form $\langle\cdot, \cdot\rangle$. In fact, by definition of ρ, it suffices to show that both ρ_{1} and ρ_{2} preserves $\langle\cdot, \cdot\rangle$. To see the latter, note that for any $x \in \mathfrak{s l}_{2}$ and any $v, w \in V$, we have

$$
\left\langle\rho_{1}(x) v, w\right\rangle=\operatorname{tr}\left(x v J w^{t} J\right)=\operatorname{tr}\left(v J w^{t} J x\right)
$$

and

$$
\left\langle v, \rho_{1}(x) w\right\rangle=\operatorname{tr}\left(v J(x w)^{t} J\right)=\operatorname{tr}\left(v J w^{t} x^{t} J\right)
$$

[^0]But from $x \in \mathfrak{s l}_{2}=\mathfrak{s p}_{2}$, we have $x J+J x^{t}=0$. Hence

$$
\left\langle\rho_{1}(x) v, w\right\rangle+\left\langle v, \rho_{1}(x) w\right\rangle=\operatorname{tr}\left(v J w^{t}\left(x^{t} J+J x\right)\right)=0
$$

as desired. Similarly, for any $y \in \mathfrak{s l}_{2}$ and any $v, w \in V$, we have

$$
\begin{aligned}
\left\langle\rho_{2}(y) v, w\right\rangle+\left\langle v, \rho_{2}(y) w\right\rangle & =-\operatorname{tr}\left(v y J w^{t} J\right)-\operatorname{tr}\left(v J(w y)^{t} J\right) \\
& =-\operatorname{tr}\left(v\left(y J+J y^{t}\right) w^{t} J\right)=0
\end{aligned}
$$

Thus ρ preserves $\langle\cdot, \cdot\rangle$, and induces a map $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2} \rightarrow \mathfrak{s o}_{4}$. The kernel of this map is an ideal of $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$, and by simplicity of $\mathfrak{s l}_{2}$ can only be $\{0\}, \mathfrak{s l}_{2} \oplus\{0\},\{0\} \oplus \mathfrak{s l}_{2}$, or $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$. It is then clear that the kernel of this map is trivial, and since both $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$ and $\mathfrak{s o}_{4}$ are 6-dimensional, it follows that they are isomorphic.

We remark that one could rephrase the above proof by identifying $V=\mathfrak{g l}_{2}$ naturally as $\mathbb{C}^{2} \otimes\left(\mathbb{C}^{2}\right)^{*}$. In fact, from the vector representation of $\mathfrak{s l}_{2}$ on \mathbb{C}^{2}, one can induce naturally an action of $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$ on $\mathbb{C}^{2} \otimes\left(\mathbb{C}^{2}\right)^{*}$, and that induced representation agrees with the representation ρ we defined in (1). Furthermore, the bilinear form on V defined by (2) is just the one defined by

$$
\left\langle v_{1} \otimes w_{1}, v_{2} \otimes w_{2}\right\rangle=-\omega\left(v_{1}, v_{2}\right) \omega\left(w_{1}, w_{2}\right)
$$

for all $v_{1}, v_{2} \in \mathbb{C}^{2}$ and all $w_{1}, w_{2} \in\left(\mathbb{C}^{2}\right)^{*}$, where ω is the symplectic form on \mathbb{C}^{2} (and on $\left(\mathbb{C}^{2}\right)^{*}$ by abuse of notation). Now $\langle\cdot, \cdot\rangle$ is symmetric on V since ω is antisymmetric on \mathbb{C}^{2}, and $\langle\cdot, \cdot\rangle$ is non-degenerate on V since ω is non-degenerate on \mathbb{C}^{2}. Furthermore, $\langle\cdot, \cdot\rangle$ is preserved by the action of $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$, since ω is preserved by $\mathfrak{s l}_{2}=$ $\mathfrak{s p}_{2}$. This gives us a more conceptual way of presenting the above argument.

[^0]: ${ }^{1}$ More explicitly, if

 $$
 v=\left(\begin{array}{ll}
 a & b \\
 c & d
 \end{array}\right), \quad w=\left(\begin{array}{ll}
 A & B \\
 C & D
 \end{array}\right)
 $$

 then this bilinear form is given by

 $$
 \langle v, w\rangle=-a D+b C+c B-d A
 $$

