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In this note, we present a more geometric construction of some special isomor-
phisms between Lie algebras in low dimensions. For simplicity our Lie algebras will
be defined over C; the statements and the proofs will all go through if C is replaced
by an algebraically closed field k with char k 6= 2.

First we recall the definitions of some standard matrix Lie algebras:

sln = {x ∈ gln : trx = 0}

son = {x ∈ gln : x+ xt = 0}

sp2n = {x ∈ gl2n : xJ2n + J2nx
t = 0}

where

J2n =

(
0 In
−In 0

)
and In is the n× n identity matrix. It follows that

sp2n =

{(
a b
c d

)
: a, b, c, d ∈ gln, a = −dt, b = bt, c = ct

}
.

Next, let V be a finite dimensional vector space over C. A symmetric bilinear
form 〈·, ·〉 : V × V → C is said to be non-degenerate, if for every non-zero v ∈ V ,
there exists some w ∈ V such that 〈v, w〉 6= 0. It is known that all non-degenerate
symmetric bilinear forms on V are equivalent: if 〈·, ·〉1 and 〈·, ·〉2 are two non-
degenerate symmetric bilinear forms on V , then there exists a linear isomorphism
T : V → V such that 〈v, w〉1 = 〈Tv, Tw〉2 for all v, w ∈ V . In particular, if
〈·, ·〉 : V × V → C is a non-degenerate symmetric bilinear form on V , then there
exists a basis {e1, . . . , en} of V such that 〈·, ·〉 becomes diagonal in this basis, i.e.
〈ej , ek〉 = δjk.

Now suppose g is a complex Lie algebra, and V is a complex vector space with
a non-degenerate symmetric bilinear form 〈·, ·〉 : V ×V → C. Suppose we also have
a representation ρ : g→ gl(V ) of g preserving 〈·, ·〉, i.e.

〈ρ(x)v, w〉+ 〈v, ρ(x)w〉 = 0 for all x ∈ g and all v, w ∈ V .

Then picking a special basis {e1, . . . , en} as above, so that 〈·, ·〉 becomes diagonal in
this basis, one can identify V with Cn, and identify ρ as a representation ρ : g→ son.
We will make repeated use of this fact below.

Theorem 1. sl2 = sp2 ' so3.

Proof. From definition of sl2 and sp2, it is clear that the two are identical.
Now let V = sl2. On V there is a non-degenerate symmetric bilinear form

〈y, z〉 = tr (yz).
1
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(This is a multiple of the Killing form of sl2.) The adjoint action ad: sl2 → gl(sl2)
preserves this non-degenerate symmetric bilinear form:

〈ad(x)y, z〉+ 〈y, ad(x)z〉 = 0 for all x, y, z ∈ sl2.

In fact,

〈ad(x)y, z〉+ 〈y, ad(x)z〉 = tr ((xy − yx)z + y(xz − zx)) = tr (x(yz)− (yz)x) = 0

for all x, y, z ∈ sl2. It follows that the adjoint action ad induces a Lie homomorphism
of sl2 into so3. This is an injective homomorphism, since its kernel is a proper ideal
of sl2, and sl2 is simple; since both sl2 and so3 are 3-dimensional, it follows that
this is an isomorphism of Lie algebras. �

Theorem 2. sl4 ' so6.

Proof. Let V = Λ2C4 be the vector space of skew-symmetric 2-tensors on C4. In
other words, V is the span of z∧w over all z, w ∈ C4, where z∧w := z⊗w−w⊗z.
Then V is 6-dimensional. Furthermore, there is a natural non-degenerate symmetric
bilinear form on V : if ι : Λ4C4 → C is an isomorphism of the vector space of
alternating 4-tensors on C4 with C, then one can define a non-degenerate symmetric
bilinear form on V by

〈u, v〉 = ι(u ∧ v) for u, v ∈ V .

(Both symmetry and non-degeneracy of the bilinear form can be checked by hand
easily.) Now the vector representation of sl4 on C4 naturally induces a represen-
tation ρ : sl4 → gl(V ). Moreover, this representation preserves the non-degenerate
symmetric bilinear form 〈·, ·〉:

〈ρ(x)u, v〉+ 〈u, ρ(x)v〉 = 0 for all x ∈ sl4 and all u, v ∈ V .

In fact, by linearity, it suffices to check this when u = z1∧z2 and v = z3∧z4, where
each zi is one of the standard basis vectors e1, e2, e3, e4 of C4. Then

〈ρ(x)u, v〉+ 〈u, ρ(x)v〉
=ι [(xz1) ∧ z2 ∧ z3 ∧ z4 + z1 ∧ (xz2) ∧ z3 ∧ z4 + z1 ∧ z2 ∧ (xz3) ∧ z4 + z1 ∧ z2 ∧ z3 ∧ (xz4)] ;

Here xzi is the natural action of x ∈ sl4 on zi ∈ C4. Hence by skew-symmetry, this
is zero unless {z1, z2, z3, z4} is a re-ordering of {e1, e2, e3, e4}. By relabelling the
basis {e1, e2, e3, e4}, we may assume that zi = ei for i = 1, . . . , 4. In that case,

〈ρ(x)u, v〉+ 〈u, ρ(x)v〉 = ι [(trx)e1 ∧ e2 ∧ e3 ∧ e4] = 0

as desired as well. Hence ρ induces a representation of sl4 into so6. By simplicity
of sl4, the latter is an injective Lie homomorphism; since both sl4 and so6 are 15
dimensional, it follows that they are isomorphic. �

Theorem 3. sp4 ' so5.

Proof. The isomorphism between sp4 and so5 is obtained by restricting the iso-
morphism in the previous theorem. In fact, sp4 ⊂ sl4, so if V = Λ2C4, 〈·, ·〉 and
ρ : sl4 → gl(V ) is as in the previous theorem, then it induces a representation
ρ0 : sp4 → gl(V ) preserving 〈·, ·〉. Now let

v0 = e1 ∧ e3 + e2 ∧ e4.
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If x ∈ sp4, then ρ0(x)v0 is a multiple of v0. Hence ifW is the orthogonal complement
of v0 in V , i.e.

W = {w ∈ V : 〈w, v0〉 = 0},
then ρ0(x) restricts to a map from W into W for all x ∈ sp4. It follows that
ρ0 induces a representation ρ1 : sp4 → gl(W ). Furthermore, one can restrict 〈·, ·〉
to W , and the restriction gives a non-degenerate symmetric bilinear form 〈·, ·〉1
on the 5-dimensional vector space W . Since ρ1 preserves 〈·, ·〉1, it induces a Lie
homomorphism of sp4 into so5. Since sp4 is simple, the kernel of this map is trivial;
since sp4 and so5 are both 10-dimensional, it follows that they are isomorphic. �

Theorem 4. so4 ' sl2 ⊕ sl2.

Proof. Let V = gl2 be our 4-dimensional vector space. First, sl2 acts on V on the
left. In other words, there is a representation ρ1 : sl2 → gl(V ), given by

ρ1(x)v = xv for all x ∈ sl2 and all v ∈ V .
Similarly, sl2 acts on V on the right. In other words, there is a representation
ρ2 : sl2 → gl(V ), defined by

ρ2(y)v = −vy for all y ∈ sl2 and all v ∈ V .
Note [ρ1(x), ρ2(y)] = 0 for all x, y ∈ sl2. Thus one can define a representation
ρ : sl2 ⊕ sl2 → gl(V ), namely

ρ(x, y) = ρ1(x) + ρ2(y) for all (x, y) ∈ sl2 ⊕ sl2.

More explicitly,

(1) ρ(x, y)v = xv − vy for all (x, y) ∈ sl2 ⊕ sl2 and all v ∈ V .
Now let

J = J2 =

(
0 1
−1 0

)
,

and define a bilinear form on V by1

(2) 〈v, w〉 = tr (vJwtJ).

This bilinear form is symmetric, since

〈v, w〉 = tr (vJwtJ) = tr (vJwtJ)t = tr (JwJvt) = tr (wJvtJ) = 〈w, v〉.
Furthermore, this bilinear form is non-degenerate on V , because the bilinear form
(v, w) := tr (vw) is non-degenerate, and the map w 7→ JwtJ is a linear isomorphism
of V onto itself. We claim that ρ preserves this non-degenerate symmetric bilinear
form 〈·, ·〉. In fact, by definition of ρ, it suffices to show that both ρ1 and ρ2
preserves 〈·, ·〉. To see the latter, note that for any x ∈ sl2 and any v, w ∈ V , we
have

〈ρ1(x)v, w〉 = tr (xvJwtJ) = tr (vJwtJx),

and
〈v, ρ1(x)w〉 = tr (vJ(xw)tJ) = tr (vJwtxtJ).

1More explicitly, if

v =

(
a b
c d

)
, w =

(
A B
C D

)
,

then this bilinear form is given by

〈v, w〉 = −aD + bC + cB − dA.
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But from x ∈ sl2 = sp2, we have xJ + Jxt = 0. Hence

〈ρ1(x)v, w〉+ 〈v, ρ1(x)w〉 = tr (vJwt(xtJ + Jx)) = 0

as desired. Similarly, for any y ∈ sl2 and any v, w ∈ V , we have

〈ρ2(y)v, w〉+ 〈v, ρ2(y)w〉 = −tr (vyJwtJ)− tr (vJ(wy)tJ)

= −tr (v(yJ + Jyt)wtJ) = 0.

Thus ρ preserves 〈·, ·〉, and induces a map sl2 ⊕ sl2 → so4. The kernel of this map
is an ideal of sl2⊕ sl2, and by simplicity of sl2 can only be {0}, sl2⊕{0}, {0}⊕ sl2,
or sl2 ⊕ sl2. It is then clear that the kernel of this map is trivial, and since both
sl2 ⊕ sl2 and so4 are 6-dimensional, it follows that they are isomorphic.

We remark that one could rephrase the above proof by identifying V = gl2
naturally as C2 ⊗ (C2)∗. In fact, from the vector representation of sl2 on C2,
one can induce naturally an action of sl2 ⊕ sl2 on C2 ⊗ (C2)∗, and that induced
representation agrees with the representation ρ we defined in (1). Furthermore, the
bilinear form on V defined by (2) is just the one defined by

〈v1 ⊗ w1, v2 ⊗ w2〉 = −ω(v1, v2)ω(w1, w2)

for all v1, v2 ∈ C2 and all w1, w2 ∈ (C2)∗, where ω is the symplectic form on C2

(and on (C2)∗ by abuse of notation). Now 〈·, ·〉 is symmetric on V since ω is anti-
symmetric on C2, and 〈·, ·〉 is non-degenerate on V since ω is non-degenerate on C2.
Furthermore, 〈·, ·〉 is preserved by the action of sl2⊕sl2, since ω is preserved by sl2 =
sp2. This gives us a more conceptual way of presenting the above argument. �


