SOME SPECIAL ISOMORPHISMS OF LIE ALGEBRAS
IN LOW DIMENSIONS

PO-LAM YUNG

In this note, we present a more geometric construction of some special isomorphisms
between Lie algebras in low dimensions. For simplicity our Lie algebras will be defined over
C; the statements and the proofs will all go through if C is replaced by an algebraically
closed field k£ with char k # 2.

First we recall the definitions of some standard matrix Lie algebras:
sl, ={z egl,: trx =0}
s0, = {z €gl,: v +2' =0}
spy, = {7 € gly,: 2oy + Jopz' =0}

0o I,

and I, is the n X n identity matrix. It follows that

5p2n: {(i Z) :a7b>c7d€g[naa:_dt,b:bt,C:Ct}.

Next, let V' be a finite dimensional vector space over C. A symmetric bilinear form
(-,-): VxV — Cis said to be non-degenerate, if for every non-zero v € V', there exists some
w € V such that (v,w) # 0. It is known that all non-degenerate symmetric bilinear forms
on V are equivalent: if (-,-); and (-, )9 are two non-degenerate symmetric bilinear forms on
V', then there exists a linear isomorphism 7': V' — V such that (v, w); = (T'v, Tw), for all
v,w € V. In particular, if (-,-): V x V' — C is a non-degenerate symmetric bilinear form
on V, then there exists a basis {e1,...,e,} of V such that (-,-) becomes diagonal in this
basis, i.e. (e;,eg) = 0 (for example, if {vy,...,v,} is any basis of V, and A is the invertible
symmetric matrix given by Aj, = (v, vy), then e; == > 1 (A™Y2) 0, for j = 1,..., n gives
the desired basis. The square root of A exists since one can write A in Jordan normal form,
noting C is algebraically closed; each Jordan block has a square root since it is a non-zero
multiple of the identity plus a nilpotent matrix).

Now suppose g is a complex Lie algebra, and V is a complex vector space with a non-
degenerate symmetric bilinear form (-,-): V' xV — C. Suppose we also have a representation
p: g — gl(V) of g preserving (-, ), i.e.

where

(p(x)v,w) + (v, p(z)w) =0 for all z € g and all v,w € V.

Then picking a special basis {e1, ..., e,} as above, so that (-, -) becomes diagonal in this basis,
one can identify V' with C", and identify p as a representation p: g — so0,,. More precisely, we
define a linear map 7': V. — C" by T(3_7_, aje;) = (a1,...,a,). Then (v,w) = (Tv)"(Tw).
The linear map p: g — so0,,, defined by
p(#) = T o pla) o T
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is then a representation of g induced from p: we have

plle,y]) =Top([z,y]) o T7" = [p(2), py)]
for all z,y € g (since conjugation commutes with Lie brackets), and since p preserves (-, ),
one has
(Tp(x)T2)'w + 2"(Tp(x)T'w) =0 for all x € g and z,w € C",
which implies p(x) € s0,,. We will make repeated use of this fact below.

Theorem 1. sly = sp, ~ s03.

Proof. From definition of sly and sp,, it is clear that the two are identical.
Now let V = sl,. On V there is a non-degenerate symmetric bilinear form

(Y, 2) = tr (y2).
(This is a multiple of the Killing form of sl;.) The adjoint action ad: sly — gl(sly) preserves
this non-degenerate symmetric bilinear form:
(ad(x)y, z) + (y,ad(z)z) =0 for all x,y, z € sl,.
In fact,
(ad(2)y, ) + (y, ad(x)z) = tr ((zy — yz)z + y(rz — 22)) = tr (2(yz) — (yz)z) =0

for all z,y, z € sly. It follows that the adjoint action ad induces a Lie homomorphism of sl
into so03. This is an injective homomorphism, since its kernel is a proper ideal of sly, and sl

is simple; since both sl and so3 are 3-dimensional, it follows that this is an isomorphism of
Lie algebras. 0

Theorem 2. sl; ~ sog.

Proof. Let V. = A2C* be the vector space of skew-symmetric 2-tensors on C*. In other
words, V is the span of z A w over all z,w € C*, where z Aw:=2®@ w —w ® z. Then V is
6-dimensional. Furthermore, there is a natural non-degenerate symmetric bilinear form on
V:if 1: A*C* — C is an isomorphism of the vector space of alternating 4-tensors on C* with
C, then one can define a non-degenerate symmetric bilinear form on V' by

(u,v) = t(u Av) foru,veV.
(Both symmetry and non-degeneracy of the bilinear form can be checked by hand easily.)

Now the vector representation of sly on C* naturally induces a representation p: sly — gl(V).
Moreover, this representation preserves the non-degenerate symmetric bilinear form (-, -):

(p(z)u,v) + (u, p(x)v) =0 for all z € sly and all u,v € V.

In fact, by linearity, it suffices to check this when u = z; A 29 and v = 23 A 24, where each z;
is one of the standard basis vectors ej, es, e3, e4 of C*. Then

{p(z)u, v) + (u, p(x)v)
=t[(zz1)) Nza Nzs ANzg+ 21 A(x20) N2g A zg+21 Azo A (x23) Az + 21 AN 2o A z3 A (224)] 5
Here zz; is the natural action of z € sl on z; € C*. Hence by skew-symmetry, this is zero

unless {z1, 29, 23, 24} is a re-ordering of {e;, es, €3, e4}. By relabelling the basis {e1, ez, €3, €4},
we may assume that z; = e; for i = 1,...,4. In that case,

(p(x)u,v) + (u, p(x)v) = L2[(tr x)ep Neg ANeg ANey) =0



as desired as well. Hence p induces a representation of sl; into sog. By simplicity of sly, the
latter is an injective Lie homomorphism; since both sl and sog are 15 dimensional, it follows
that they are isomorphic. 0

Theorem 3. sp, >~ so;.

Proof. The isomorphism between sp, and so; is obtained by restricting the isomorphism in

the previous theorem. In fact, sp, C sly, so if V.= A?C*, (-,-) and p: sly — gl(V) is as in the

previous theorem, then it induces a representation pg: sp, — gl(V') preserving (-, -). Now let
Vg = e1 N\ eg+ ex N\ ey.

If x € sp,, then pg(x)vy is a multiple of vg. Hence if W is the orthogonal complement of vy
inV, ie.
W =A{w e V: (w,vy) =0},

then po(z) restricts to a map from W into W for all € sp,. It follows that py induces a
representation p; : sp, — gl(W). Furthermore, one can restrict (-, -) to W, and the restriction
gives a non-degenerate symmetric bilinear form (-, -); on the 5-dimensional vector space W.
Since p; preserves (-, )1, it induces a Lie homomorphism of sp, into so5. Since sp, is simple,
the kernel of this map is trivial; since sp, and so5 are both 10-dimensional, it follows that
they are isomorphic. O

Theorem 4. so, ~ sly @ sl5.

Proof. Let V' = gl, be our 4-dimensional vector space. First, sly acts on V' on the left. In
other words, there is a representation p;: sly — gl(V), given by

pr(x)v=av forall x € sly and all v € V.

Similarly, sl acts on V' on the right. In other words, there is a representation py: sl — gl(V'),
defined by
p2(y)v = —vy forall y € sly and all v € V.

Note [p1(x), p2(y)] = 0 for all z,y € sly. Thus one can define a representation p: sly @ sly —
gl(V'), namely

p(z,y) = pr(x) + po(y) for all (z,y) € sly @ sly.
More explicitly,

(1) plx,y)v =2v—vy forall (z,y) € sly ®sly and all v € V.

Now let
0 1
JJQ(_l 0),

and define a bilinear form on V by!
(2) (v, w) = tr (vJw"J).

[ a b _AB
"“\e¢ea) YT\ bp)

then this bilinear form is given by
(v,w) = —aD + bC + cB — dA.

More explicitly, if
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This bilinear form is symmetric, since
(v,w) = tr (vJw'J) = tr (vJw'J)" = tr (JwJv') = tr (wJv'J) = (w,v).

Furthermore, this bilinear form is non-degenerate on V', because the bilinear form (v, w) :=
tr (vw) is non-degenerate, and the map w — Jw'J is a linear isomorphism of V' onto itself.
We claim that p preserves this non-degenerate symmetric bilinear form (-,-). In fact, by
definition of p, it suffices to show that both p; and p, preserves (-,-). To see the latter, note
that for any = € sl, and any v,w € V, we have

{p1(x)v, w) = tr (zvJw' ) = tr (vJw' Jz),
and
(v, p1(x)w) = tr (vJ(zw)'J) = tr (vJw'a'J).

But from z € sl, = sp,, we have xJ + Jz' = 0. Hence

(p1(z)v,w) + (v, p1(z)w) = tr (vJw' (2" J + Jz)) =0
as desired. Similarly, for any y € sly and any v, w € V, we have

(p2(y)v,w) + (v, pa(y)w) = —tr (vyJw"J) — tr (0] (wy)"J)
= —tr (v(yJ + Jy")w'J) = 0.

Thus p preserves (-,-), and induces a map sly @ sly — so4. The kernel of this map is an
ideal of sly @ sly, and by simplicity of sl can only be {0}, sl @ {0}, {0} @ sly, or sl @ sl,.
It is then clear that the kernel of this map is trivial, and since both sly & sl, and so4 are
6-dimensional, it follows that they are isomorphic.

We remark that one could rephrase the above proof by identifying V' = gl, naturally as C2®
(C*)*. In fact, from the vector representation of sl, on C?, one can induce naturally an action
of sly @ sl, on C* ® (C?)*, and that induced representation agrees with the representation
p we defined in (?77). Furthermore, the bilinear form on V' defined by (?7) is just the one
defined by

(V1 ®@ wy, vy ® wy) = —w(vy, vo)w(wy, we)
for all v, v, € C? and all wy,ws € (C?)*, where w is the symplectic form on C? (and on (C?)*
by abuse of notation). Now (-,-) is symmetric on V since w is anti-symmetric on C? and
(-,-) is non-degenerate on V since w is non-degenerate on C?. Furthermore, (-, ) is preserved
by the action of sly & sl,, since w is preserved by sly = sp,. This gives us a more conceptual
way of presenting the above argument. 0



