
SOME SPECIAL ISOMORPHISMS OF LIE ALGEBRAS
IN LOW DIMENSIONS

PO-LAM YUNG

In this note, we present a more geometric construction of some special isomorphisms
between Lie algebras in low dimensions. For simplicity our Lie algebras will be defined over
C; the statements and the proofs will all go through if C is replaced by an algebraically
closed field k with char k ̸= 2.

First we recall the definitions of some standard matrix Lie algebras:

sln = {x ∈ gln : tr x = 0}
son = {x ∈ gln : x+ xt = 0}

sp2n = {x ∈ gl2n : xJ2n + J2nx
t = 0}

where

J2n =

(
0 In

−In 0

)
and In is the n× n identity matrix. It follows that

sp2n =

{(
a b
c d

)
: a, b, c, d ∈ gln, a = −dt, b = bt, c = ct

}
.

Next, let V be a finite dimensional vector space over C. A symmetric bilinear form
⟨·, ·⟩ : V ×V → C is said to be non-degenerate, if for every non-zero v ∈ V , there exists some
w ∈ V such that ⟨v, w⟩ ≠ 0. It is known that all non-degenerate symmetric bilinear forms
on V are equivalent: if ⟨·, ·⟩1 and ⟨·, ·⟩2 are two non-degenerate symmetric bilinear forms on
V , then there exists a linear isomorphism T : V → V such that ⟨v, w⟩1 = ⟨Tv, Tw⟩2 for all
v, w ∈ V . In particular, if ⟨·, ·⟩ : V × V → C is a non-degenerate symmetric bilinear form
on V , then there exists a basis {e1, . . . , en} of V such that ⟨·, ·⟩ becomes diagonal in this
basis, i.e. ⟨ej, ek⟩ = δjk (for example, if {v1, . . . , vn} is any basis of V , and A is the invertible
symmetric matrix given by Ajk = ⟨vj, vk⟩, then ej :=

∑n
k=1(A

−1/2)jkvk for j = 1, . . . , n gives
the desired basis. The square root of A exists since one can write A in Jordan normal form,
noting C is algebraically closed; each Jordan block has a square root since it is a non-zero
multiple of the identity plus a nilpotent matrix).

Now suppose g is a complex Lie algebra, and V is a complex vector space with a non-
degenerate symmetric bilinear form ⟨·, ·⟩ : V ×V → C. Suppose we also have a representation
ρ : g → gl(V ) of g preserving ⟨·, ·⟩, i.e.

⟨ρ(x)v, w⟩+ ⟨v, ρ(x)w⟩ = 0 for all x ∈ g and all v, w ∈ V .

Then picking a special basis {e1, . . . , en} as above, so that ⟨·, ·⟩ becomes diagonal in this basis,
one can identify V with Cn, and identify ρ as a representation ρ : g → son. More precisely, we
define a linear map T : V → Cn by T (

∑n
j=1 ajej) = (a1, . . . , an). Then ⟨v, w⟩ = (Tv)t(Tw).

The linear map ρ̃ : g → son, defined by

ρ̃(x) = T ◦ ρ(x) ◦ T−1
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is then a representation of g induced from ρ: we have

ρ̃([x, y]) = T ◦ ρ([x, y]) ◦ T−1 = [ρ̃(x), ρ̃(y)]

for all x, y ∈ g (since conjugation commutes with Lie brackets), and since ρ preserves ⟨·, ·⟩,
one has

(Tρ(x)T−1z)tw + zt(Tρ(x)T−1w) = 0 for all x ∈ g and z, w ∈ Cn,

which implies ρ̃(x) ∈ son. We will make repeated use of this fact below.

Theorem 1. sl2 = sp2 ≃ so3.

Proof. From definition of sl2 and sp2, it is clear that the two are identical.
Now let V = sl2. On V there is a non-degenerate symmetric bilinear form

⟨y, z⟩ = tr (yz).

(This is a multiple of the Killing form of sl2.) The adjoint action ad: sl2 → gl(sl2) preserves
this non-degenerate symmetric bilinear form:

⟨ad(x)y, z⟩+ ⟨y, ad(x)z⟩ = 0 for all x, y, z ∈ sl2.

In fact,

⟨ad(x)y, z⟩+ ⟨y, ad(x)z⟩ = tr ((xy − yx)z + y(xz − zx)) = tr (x(yz)− (yz)x) = 0

for all x, y, z ∈ sl2. It follows that the adjoint action ad induces a Lie homomorphism of sl2
into so3. This is an injective homomorphism, since its kernel is a proper ideal of sl2, and sl2
is simple; since both sl2 and so3 are 3-dimensional, it follows that this is an isomorphism of
Lie algebras. □

Theorem 2. sl4 ≃ so6.

Proof. Let V = Λ2C4 be the vector space of skew-symmetric 2-tensors on C4. In other
words, V is the span of z ∧ w over all z, w ∈ C4, where z ∧ w := z ⊗ w − w ⊗ z. Then V is
6-dimensional. Furthermore, there is a natural non-degenerate symmetric bilinear form on
V : if ι : Λ4C4 → C is an isomorphism of the vector space of alternating 4-tensors on C4 with
C, then one can define a non-degenerate symmetric bilinear form on V by

⟨u, v⟩ = ι(u ∧ v) for u, v ∈ V .

(Both symmetry and non-degeneracy of the bilinear form can be checked by hand easily.)
Now the vector representation of sl4 on C4 naturally induces a representation ρ : sl4 → gl(V ).
Moreover, this representation preserves the non-degenerate symmetric bilinear form ⟨·, ·⟩:

⟨ρ(x)u, v⟩+ ⟨u, ρ(x)v⟩ = 0 for all x ∈ sl4 and all u, v ∈ V .

In fact, by linearity, it suffices to check this when u = z1 ∧ z2 and v = z3 ∧ z4, where each zi
is one of the standard basis vectors e1, e2, e3, e4 of C4. Then

⟨ρ(x)u, v⟩+ ⟨u, ρ(x)v⟩
=ι [(xz1) ∧ z2 ∧ z3 ∧ z4 + z1 ∧ (xz2) ∧ z3 ∧ z4 + z1 ∧ z2 ∧ (xz3) ∧ z4 + z1 ∧ z2 ∧ z3 ∧ (xz4)] ;

Here xzi is the natural action of x ∈ sl4 on zi ∈ C4. Hence by skew-symmetry, this is zero
unless {z1, z2, z3, z4} is a re-ordering of {e1, e2, e3, e4}. By relabelling the basis {e1, e2, e3, e4},
we may assume that zi = ei for i = 1, . . . , 4. In that case,

⟨ρ(x)u, v⟩+ ⟨u, ρ(x)v⟩ = ι [(trx)e1 ∧ e2 ∧ e3 ∧ e4] = 0
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as desired as well. Hence ρ induces a representation of sl4 into so6. By simplicity of sl4, the
latter is an injective Lie homomorphism; since both sl4 and so6 are 15 dimensional, it follows
that they are isomorphic. □

Theorem 3. sp4 ≃ so5.

Proof. The isomorphism between sp4 and so5 is obtained by restricting the isomorphism in
the previous theorem. In fact, sp4 ⊂ sl4, so if V = Λ2C4, ⟨·, ·⟩ and ρ : sl4 → gl(V ) is as in the
previous theorem, then it induces a representation ρ0 : sp4 → gl(V ) preserving ⟨·, ·⟩. Now let

v0 = e1 ∧ e3 + e2 ∧ e4.

If x ∈ sp4, then ρ0(x)v0 is a multiple of v0. Hence if W is the orthogonal complement of v0
in V , i.e.

W = {w ∈ V : ⟨w, v0⟩ = 0},
then ρ0(x) restricts to a map from W into W for all x ∈ sp4. It follows that ρ0 induces a
representation ρ1 : sp4 → gl(W ). Furthermore, one can restrict ⟨·, ·⟩ toW , and the restriction
gives a non-degenerate symmetric bilinear form ⟨·, ·⟩1 on the 5-dimensional vector space W .
Since ρ1 preserves ⟨·, ·⟩1, it induces a Lie homomorphism of sp4 into so5. Since sp4 is simple,
the kernel of this map is trivial; since sp4 and so5 are both 10-dimensional, it follows that
they are isomorphic. □

Theorem 4. so4 ≃ sl2 ⊕ sl2.

Proof. Let V = gl2 be our 4-dimensional vector space. First, sl2 acts on V on the left. In
other words, there is a representation ρ1 : sl2 → gl(V ), given by

ρ1(x)v = xv for all x ∈ sl2 and all v ∈ V .

Similarly, sl2 acts on V on the right. In other words, there is a representation ρ2 : sl2 → gl(V ),
defined by

ρ2(y)v = −vy for all y ∈ sl2 and all v ∈ V .

Note [ρ1(x), ρ2(y)] = 0 for all x, y ∈ sl2. Thus one can define a representation ρ : sl2 ⊕ sl2 →
gl(V ), namely

ρ(x, y) = ρ1(x) + ρ2(y) for all (x, y) ∈ sl2 ⊕ sl2.

More explicitly,

(1) ρ(x, y)v = xv − vy for all (x, y) ∈ sl2 ⊕ sl2 and all v ∈ V .

Now let

J = J2 =

(
0 1
−1 0

)
,

and define a bilinear form on V by1

(2) ⟨v, w⟩ = tr (vJwtJ).

1More explicitly, if

v =

(
a b
c d

)
, w =

(
A B
C D

)
,

then this bilinear form is given by

⟨v, w⟩ = −aD + bC + cB − dA.
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This bilinear form is symmetric, since

⟨v, w⟩ = tr (vJwtJ) = tr (vJwtJ)t = tr (JwJvt) = tr (wJvtJ) = ⟨w, v⟩.
Furthermore, this bilinear form is non-degenerate on V , because the bilinear form (v, w) :=
tr (vw) is non-degenerate, and the map w 7→ JwtJ is a linear isomorphism of V onto itself.
We claim that ρ preserves this non-degenerate symmetric bilinear form ⟨·, ·⟩. In fact, by
definition of ρ, it suffices to show that both ρ1 and ρ2 preserves ⟨·, ·⟩. To see the latter, note
that for any x ∈ sl2 and any v, w ∈ V , we have

⟨ρ1(x)v, w⟩ = tr (xvJwtJ) = tr (vJwtJx),

and
⟨v, ρ1(x)w⟩ = tr (vJ(xw)tJ) = tr (vJwtxtJ).

But from x ∈ sl2 = sp2, we have xJ + Jxt = 0. Hence

⟨ρ1(x)v, w⟩+ ⟨v, ρ1(x)w⟩ = tr (vJwt(xtJ + Jx)) = 0

as desired. Similarly, for any y ∈ sl2 and any v, w ∈ V , we have

⟨ρ2(y)v, w⟩+ ⟨v, ρ2(y)w⟩ = −tr (vyJwtJ)− tr (vJ(wy)tJ)

= −tr (v(yJ + Jyt)wtJ) = 0.

Thus ρ preserves ⟨·, ·⟩, and induces a map sl2 ⊕ sl2 → so4. The kernel of this map is an
ideal of sl2 ⊕ sl2, and by simplicity of sl2 can only be {0}, sl2 ⊕ {0}, {0} ⊕ sl2, or sl2 ⊕ sl2.
It is then clear that the kernel of this map is trivial, and since both sl2 ⊕ sl2 and so4 are
6-dimensional, it follows that they are isomorphic.

We remark that one could rephrase the above proof by identifying V = gl2 naturally as C2⊗
(C2)∗. In fact, from the vector representation of sl2 on C2, one can induce naturally an action
of sl2 ⊕ sl2 on C2 ⊗ (C2)∗, and that induced representation agrees with the representation
ρ we defined in (??). Furthermore, the bilinear form on V defined by (??) is just the one
defined by

⟨v1 ⊗ w1, v2 ⊗ w2⟩ = −ω(v1, v2)ω(w1, w2)

for all v1, v2 ∈ C2 and all w1, w2 ∈ (C2)∗, where ω is the symplectic form on C2 (and on (C2)∗

by abuse of notation). Now ⟨·, ·⟩ is symmetric on V since ω is anti-symmetric on C2, and
⟨·, ·⟩ is non-degenerate on V since ω is non-degenerate on C2. Furthermore, ⟨·, ·⟩ is preserved
by the action of sl2 ⊕ sl2, since ω is preserved by sl2 = sp2. This gives us a more conceptual
way of presenting the above argument. □
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