SOME SPECIAL ISOMORPHISMS OF LIE ALGEBRAS IN LOW DIMENSIONS

PO-LAM YUNG

In this note, we present a more geometric construction of some special isomorphisms between Lie algebras in low dimensions. For simplicity our Lie algebras will be defined over \mathbb{C} ; the statements and the proofs will all go through if \mathbb{C} is replaced by an algebraically closed field k with char $k \neq 2$.

First we recall the definitions of some standard matrix Lie algebras:

$$\mathfrak{sl}_n = \{ x \in \mathfrak{gl}_n \colon \operatorname{tr} x = 0 \}$$

$$\mathfrak{so}_n = \{ x \in \mathfrak{gl}_n \colon x + x^t = 0 \}$$

$$\mathfrak{sp}_{2n} = \{ x \in \mathfrak{gl}_{2n} \colon xJ_{2n} + J_{2n}x^t = 0 \}$$

where

$$J_{2n} = \left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array}\right)$$

and I_n is the $n \times n$ identity matrix. It follows that

$$\mathfrak{sp}_{2n} = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a,b,c,d \in \mathfrak{gl}_n, a = -d^t, b = b^t, c = c^t \right\}.$$

Next, let V be a finite dimensional vector space over \mathbb{C} . A symmetric bilinear form $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ is said to be non-degenerate, if for every non-zero $v \in V$, there exists some $w \in V$ such that $\langle v, w \rangle \neq 0$. It is known that all non-degenerate symmetric bilinear forms on V are equivalent: if $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ are two non-degenerate symmetric bilinear forms on V, then there exists a linear isomorphism $T \colon V \to V$ such that $\langle v, w \rangle_1 = \langle Tv, Tw \rangle_2$ for all $v, w \in V$. In particular, if $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ is a non-degenerate symmetric bilinear form on V, then there exists a basis $\{e_1, \ldots, e_n\}$ of V such that $\langle \cdot, \cdot \rangle$ becomes diagonal in this basis, i.e. $\langle e_j, e_k \rangle = \delta_{jk}$ (for example, if $\{v_1, \ldots, v_n\}$ is any basis of V, and A is the invertible symmetric matrix given by $A_{jk} = \langle v_j, v_k \rangle$, then $e_j := \sum_{k=1}^n (A^{-1/2})_{jk} v_k$ for $j = 1, \ldots, n$ gives the desired basis. The square root of A exists since one can write A in Jordan normal form, noting \mathbb{C} is algebraically closed; each Jordan block has a square root since it is a non-zero multiple of the identity plus a nilpotent matrix).

Now suppose \mathfrak{g} is a complex Lie algebra, and V is a complex vector space with a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$. Suppose we also have a representation $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V)$ of \mathfrak{g} preserving $\langle \cdot, \cdot \rangle$, i.e.

$$\langle \rho(x)v,w\rangle + \langle v,\rho(x)w\rangle = 0$$
 for all $x\in\mathfrak{g}$ and all $v,w\in V.$

Then picking a special basis $\{e_1, \ldots, e_n\}$ as above, so that $\langle \cdot, \cdot \rangle$ becomes diagonal in this basis, one can identify V with \mathbb{C}^n , and identify ρ as a representation $\rho \colon \mathfrak{g} \to \mathfrak{so}_n$. More precisely, we define a linear map $T \colon V \to \mathbb{C}^n$ by $T(\sum_{j=1}^n a_j e_j) = (a_1, \ldots, a_n)$. Then $\langle v, w \rangle = (Tv)^t(Tw)$. The linear map $\tilde{\rho} \colon \mathfrak{g} \to \mathfrak{so}_n$, defined by

$$\tilde{\rho}(x) = T \circ \rho(x) \circ T^{-1}$$

is then a representation of \mathfrak{g} induced from ρ : we have

$$\tilde{\rho}([x,y]) = T \circ \rho([x,y]) \circ T^{-1} = [\tilde{\rho}(x), \tilde{\rho}(y)]$$

for all $x, y \in \mathfrak{g}$ (since conjugation commutes with Lie brackets), and since ρ preserves $\langle \cdot, \cdot \rangle$, one has

$$(T\rho(x)T^{-1}z)^t w + z^t (T\rho(x)T^{-1}w) = 0$$
 for all $x \in \mathfrak{g}$ and $z, w \in \mathbb{C}^n$,

which implies $\tilde{\rho}(x) \in \mathfrak{so}_n$. We will make repeated use of this fact below.

Theorem 1. $\mathfrak{sl}_2 = \mathfrak{sp}_2 \simeq \mathfrak{so}_3$.

Proof. From definition of \mathfrak{sl}_2 and \mathfrak{sp}_2 , it is clear that the two are identical. Now let $V = \mathfrak{sl}_2$. On V there is a non-degenerate symmetric bilinear form

$$\langle y, z \rangle = \operatorname{tr}(yz).$$

(This is a multiple of the Killing form of \mathfrak{sl}_2 .) The adjoint action ad: $\mathfrak{sl}_2 \to \mathfrak{gl}(\mathfrak{sl}_2)$ preserves this non-degenerate symmetric bilinear form:

$$\langle \operatorname{ad}(x)y, z \rangle + \langle y, \operatorname{ad}(x)z \rangle = 0$$
 for all $x, y, z \in \mathfrak{sl}_2$.

In fact,

$$\langle \operatorname{ad}(x)y, z \rangle + \langle y, \operatorname{ad}(x)z \rangle = \operatorname{tr}((xy - yx)z + y(xz - zx)) = \operatorname{tr}(x(yz) - (yz)x) = 0$$

for all $x, y, z \in \mathfrak{sl}_2$. It follows that the adjoint action ad induces a Lie homomorphism of \mathfrak{sl}_2 into \mathfrak{so}_3 . This is an injective homomorphism, since its kernel is a proper ideal of \mathfrak{sl}_2 , and \mathfrak{sl}_2 is simple; since both \mathfrak{sl}_2 and \mathfrak{so}_3 are 3-dimensional, it follows that this is an isomorphism of Lie algebras.

Theorem 2. $\mathfrak{sl}_4 \simeq \mathfrak{so}_6$.

Proof. Let $V = \Lambda^2 \mathbb{C}^4$ be the vector space of skew-symmetric 2-tensors on \mathbb{C}^4 . In other words, V is the span of $z \wedge w$ over all $z, w \in \mathbb{C}^4$, where $z \wedge w := z \otimes w - w \otimes z$. Then V is 6-dimensional. Furthermore, there is a natural non-degenerate symmetric bilinear form on V: if $\iota: \Lambda^4\mathbb{C}^4 \to \mathbb{C}$ is an isomorphism of the vector space of alternating 4-tensors on \mathbb{C}^4 with \mathbb{C} , then one can define a non-degenerate symmetric bilinear form on V by

$$\langle u, v \rangle = \iota(u \wedge v)$$
 for $u, v \in V$.

(Both symmetry and non-degeneracy of the bilinear form can be checked by hand easily.) Now the vector representation of \mathfrak{sl}_4 on \mathbb{C}^4 naturally induces a representation $\rho \colon \mathfrak{sl}_4 \to \mathfrak{gl}(V)$. Moreover, this representation preserves the non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle$:

$$\langle \rho(x)u,v\rangle + \langle u,\rho(x)v\rangle = 0$$
 for all $x \in \mathfrak{sl}_4$ and all $u,v \in V$.

In fact, by linearity, it suffices to check this when $u = z_1 \wedge z_2$ and $v = z_3 \wedge z_4$, where each z_i is one of the standard basis vectors e_1, e_2, e_3, e_4 of \mathbb{C}^4 . Then

$$\langle \rho(x)u,v\rangle + \langle u,\rho(x)v\rangle$$

$$= \iota \left[(xz_1) \land z_2 \land z_3 \land z_4 + z_1 \land (xz_2) \land z_3 \land z_4 + z_1 \land z_2 \land (xz_3) \land z_4 + z_1 \land z_2 \land z_3 \land (xz_4) \right];$$

Here xz_i is the natural action of $x \in \mathfrak{sl}_4$ on $z_i \in \mathbb{C}^4$. Hence by skew-symmetry, this is zero unless $\{z_1, z_2, z_3, z_4\}$ is a re-ordering of $\{e_1, e_2, e_3, e_4\}$. By relabelling the basis $\{e_1, e_2, e_3, e_4\}$, we may assume that $z_i = e_i$ for i = 1, ..., 4. In that case,

$$\langle \rho(x)u, v \rangle + \langle u, \rho(x)v \rangle = \iota [(\operatorname{tr} x)e_1 \wedge e_2 \wedge e_3 \wedge e_4] = 0$$

as desired as well. Hence ρ induces a representation of \mathfrak{sl}_4 into \mathfrak{so}_6 . By simplicity of \mathfrak{sl}_4 , the latter is an injective Lie homomorphism; since both \mathfrak{sl}_4 and \mathfrak{so}_6 are 15 dimensional, it follows that they are isomorphic.

Theorem 3. $\mathfrak{sp}_4 \simeq \mathfrak{so}_5$.

Proof. The isomorphism between \mathfrak{sp}_4 and \mathfrak{so}_5 is obtained by restricting the isomorphism in the previous theorem. In fact, $\mathfrak{sp}_4 \subset \mathfrak{sl}_4$, so if $V = \Lambda^2 \mathbb{C}^4$, $\langle \cdot, \cdot \rangle$ and $\rho \colon \mathfrak{sl}_4 \to \mathfrak{gl}(V)$ is as in the previous theorem, then it induces a representation $\rho_0 \colon \mathfrak{sp}_4 \to \mathfrak{gl}(V)$ preserving $\langle \cdot, \cdot \rangle$. Now let

$$v_0 = e_1 \wedge e_3 + e_2 \wedge e_4.$$

If $x \in \mathfrak{sp}_4$, then $\rho_0(x)v_0$ is a multiple of v_0 . Hence if W is the orthogonal complement of v_0 in V, i.e.

$$W = \{ w \in V : \langle w, v_0 \rangle = 0 \},$$

then $\rho_0(x)$ restricts to a map from W into W for all $x \in \mathfrak{sp}_4$. It follows that ρ_0 induces a representation $\rho_1 : \mathfrak{sp}_4 \to \mathfrak{gl}(W)$. Furthermore, one can restrict $\langle \cdot, \cdot \rangle$ to W, and the restriction gives a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle_1$ on the 5-dimensional vector space W. Since ρ_1 preserves $\langle \cdot, \cdot \rangle_1$, it induces a Lie homomorphism of \mathfrak{sp}_4 into \mathfrak{so}_5 . Since \mathfrak{sp}_4 is simple, the kernel of this map is trivial; since \mathfrak{sp}_4 and \mathfrak{so}_5 are both 10-dimensional, it follows that they are isomorphic.

Theorem 4. $\mathfrak{so}_4 \simeq \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$.

Proof. Let $V = \mathfrak{gl}_2$ be our 4-dimensional vector space. First, \mathfrak{sl}_2 acts on V on the left. In other words, there is a representation $\rho_1 : \mathfrak{sl}_2 \to \mathfrak{gl}(V)$, given by

$$\rho_1(x)v = xv$$
 for all $x \in \mathfrak{sl}_2$ and all $v \in V$.

Similarly, \mathfrak{sl}_2 acts on V on the right. In other words, there is a representation $\rho_2 \colon \mathfrak{sl}_2 \to \mathfrak{gl}(V)$, defined by

$$\rho_2(y)v = -vy \quad \text{for all } y \in \mathfrak{sl}_2 \text{ and all } v \in V.$$

Note $[\rho_1(x), \rho_2(y)] = 0$ for all $x, y \in \mathfrak{sl}_2$. Thus one can define a representation $\rho \colon \mathfrak{sl}_2 \oplus \mathfrak{sl}_2 \to \mathfrak{gl}(V)$, namely

$$\rho(x,y) = \rho_1(x) + \rho_2(y)$$
 for all $(x,y) \in \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$.

More explicitly,

(1)
$$\rho(x,y)v = xv - vy \quad \text{for all } (x,y) \in \mathfrak{sl}_2 \oplus \mathfrak{sl}_2 \text{ and all } v \in V.$$

Now let

$$J = J_2 = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right),$$

and define a bilinear form on V by 1

(2)
$$\langle v, w \rangle = \operatorname{tr}(vJw^tJ).$$

$$v = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \quad w = \left(\begin{array}{cc} A & B \\ C & D \end{array} \right),$$

then this bilinear form is given by

$$\langle v, w \rangle = -aD + bC + cB - dA.$$

¹More explicitly, if

This bilinear form is symmetric, since

$$\langle v, w \rangle = \operatorname{tr}(vJw^tJ) = \operatorname{tr}(vJw^tJ)^t = \operatorname{tr}(JwJv^t) = \operatorname{tr}(wJv^tJ) = \langle w, v \rangle.$$

Furthermore, this bilinear form is non-degenerate on V, because the bilinear form $(v, w) := \operatorname{tr}(vw)$ is non-degenerate, and the map $w \mapsto Jw^t J$ is a linear isomorphism of V onto itself. We claim that ρ preserves this non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle$. In fact, by definition of ρ , it suffices to show that both ρ_1 and ρ_2 preserves $\langle \cdot, \cdot \rangle$. To see the latter, note that for any $x \in \mathfrak{sl}_2$ and any $v, w \in V$, we have

$$\langle \rho_1(x)v, w \rangle = \operatorname{tr}(xvJw^tJ) = \operatorname{tr}(vJw^tJx),$$

and

$$\langle v, \rho_1(x)w \rangle = \operatorname{tr}(vJ(xw)^tJ) = \operatorname{tr}(vJw^tx^tJ).$$

But from $x \in \mathfrak{sl}_2 = \mathfrak{sp}_2$, we have $xJ + Jx^t = 0$. Hence

$$\langle \rho_1(x)v, w \rangle + \langle v, \rho_1(x)w \rangle = \operatorname{tr}(vJw^t(x^tJ + Jx)) = 0$$

as desired. Similarly, for any $y \in \mathfrak{sl}_2$ and any $v, w \in V$, we have

$$\langle \rho_2(y)v, w \rangle + \langle v, \rho_2(y)w \rangle = -\operatorname{tr}(vyJw^tJ) - \operatorname{tr}(vJ(wy)^tJ)$$

= $-\operatorname{tr}(v(yJ + Jy^t)w^tJ) = 0.$

Thus ρ preserves $\langle \cdot, \cdot \rangle$, and induces a map $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2 \to \mathfrak{so}_4$. The kernel of this map is an ideal of $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, and by simplicity of \mathfrak{sl}_2 can only be $\{0\}$, $\mathfrak{sl}_2 \oplus \{0\}$, $\{0\} \oplus \mathfrak{sl}_2$, or $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$. It is then clear that the kernel of this map is trivial, and since both $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$ and \mathfrak{so}_4 are 6-dimensional, it follows that they are isomorphic.

We remark that one could rephrase the above proof by identifying $V = \mathfrak{gl}_2$ naturally as $\mathbb{C}^2 \otimes (\mathbb{C}^2)^*$. In fact, from the vector representation of \mathfrak{sl}_2 on \mathbb{C}^2 , one can induce naturally an action of $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$ on $\mathbb{C}^2 \otimes (\mathbb{C}^2)^*$, and that induced representation agrees with the representation ρ we defined in (??). Furthermore, the bilinear form on V defined by (??) is just the one defined by

$$\langle v_1 \otimes w_1, v_2 \otimes w_2 \rangle = -\omega(v_1, v_2)\omega(w_1, w_2)$$

for all $v_1, v_2 \in \mathbb{C}^2$ and all $w_1, w_2 \in (\mathbb{C}^2)^*$, where ω is the symplectic form on \mathbb{C}^2 (and on $(\mathbb{C}^2)^*$ by abuse of notation). Now $\langle \cdot, \cdot \rangle$ is symmetric on V since ω is anti-symmetric on \mathbb{C}^2 , and $\langle \cdot, \cdot \rangle$ is non-degenerate on V since ω is non-degenerate on \mathbb{C}^2 . Furthermore, $\langle \cdot, \cdot \rangle$ is preserved by the action of $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, since ω is preserved by $\mathfrak{sl}_2 = \mathfrak{sp}_2$. This gives us a more conceptual way of presenting the above argument.