THE JOINTS AND THE MULTIJOINTS THEOREM

RUIXIANG ZHANG

ABSTRACT. The following are notes (taken by Po-Lam Yung) of a mini-course by Ruixi-
ang Zhang on the joints theorem and the multijoints theorem. The note taker has since
supplemented these notes with more references to the existing literature.

Let L be a set of N straight lines in R%. A joint formed by these lines is a point in R?
that belongs to at least d of these lines, whose directions form a linearly independent set in
R?. The main theorem about joints is the following.

Theorem 1. The number of joints formed by N lines in R? is at most CuN¥@=V  for some
dimensional constant Cy.

This was first proved by Katz and Guth [4] in dimension d = 3, and by Quilodran [14] and
Kaplan, Sharir and Shustin [13| in higher dimensions. We refer to the introduction in the
notes of Carbery and Iliopoulou [2], and also the introduction of Iliopoulou |11], for some
prior partial results such as [5], [15], [16], [7] and [1] (see also [6] for an alternative proof in
3 dimensions).

Proof. We use the polynomial method. Let L be a set of N lines in R?, and J be the set of
joints formed by L. We assume that .J is non-empty, for otherwise there is nothing to prove.

We claim that there exists a line £ € L that contains at most Ag|J|*/¢ joints, where A4 is
some dimensional constant. Indeed, let Q(z) be a non-zero polynomial in Rz, ..., z4], of
minimal total degree, that vanishes at all points in .J. Then the degree of () is at most

deg(Q) < AglJ|M*

for some dimensional constant A,. If all lines in L contains more than Ag4|.J|'/¢ points in J,
then @ restricted to any line in L would have more than deg(Q) roots, so  would vanish
identically on all lines in L. This shows that the gradient V() vanishes at all joints formed by
L, i.e. V@ vanishes at all points in J. But one of 9,,0Q, ..., 0,,Q is non-zero (for otherwise
@ is zero, contradicting our choice of ()). Hence one of them a non-zero polynomial of degree
< deg(Q), that vanishes at all points of J. This contradicts the minimality of the degree of
(), and we obtain our claim.

1/d

Now we may finish in two ways. One is to use induction on the number of lines in L. Let
¢ € L be a line that contains at most Ag|.J|'/¢ points in .J. Then the number of elements of .J
is bounded by A4|.J|"/? plus the number of elements of .J that are not on £. Now any element
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of J that is not on ¢ is a joint of L \ {¢}, which contains only N — 1 lines. So induction
hypothesis applies, and we get
(1) |J| < Agl IV + Ca(N — 1)¥E=D,

We claim that if C; were chosen large enough initially, then this implies |J| < Cy;N¥/(@=1 ag
well. Indeed, if not, then |J| > Cy4N%(@=1 5o using the fact that t +— t — A4t'/? is a strictly
increasing function for ¢ > a4 for some dimensional constant a4, we have

|J‘ . Ad|J‘1/d > Cde/(dfl) . Ad(Cde/(d71)>1/d'

(we just choose Cy large enough so that Cy > a4, so that CyN 4/(d=1) > q, for all positive
integers V). It follows that

]| — Ad’J‘l/d — Cy(N — 1)d/(d71) > Cd(Nd/(cH) — (N - 1)d/(d71)) _ Adci/le/(dfl)
dCy
>
d—1
>0

(N — )Y@ _94,00/4(N — 1)@=

if we had chosen the dimensional constant Cy sufficiently large, so that
dCy
d—1
This contradicts , so |J| < OgN¥@=1) as well, as desired.

— 24,05/ > 0.

Alternatively, let j(N) be the maximum number of joints formed by N lines in R?. Then
the previous argument shows that
JN) < AN+ 5(N —1).
[terating, we get
FIN) < Aglj(NIYE 4+ Ag[i(N = DY 4 Agli(d)] Y
(note j(d — 1) =0). Since j(N —i) < j(V) for all 1 <7 < N, we have
J(N) < AaN[j(N)]V4,
ie.
J(N) < (AgN)¥e=Y
for all N € N. U

The above proof uses a few properties of polynomials over the reals: for instance, we used
that the gradient of a polynomial is a limit of difference quotients, and we used that the
gradient of a non-zero polynomial is non-zero unless it is constant. This is no longer true
over a general field (e.g. over a field of characteristic p, the polynomial z” differentiates to
zero while z? is not identically zero). Nevertheless, Theorem |[I| holds if one replaces R by
any general field F: indeed one can fix the above proof so that it works without too many
changes. This result was a folklore for a while, and is recorded in the notes of Carbery and
Iliopoulou [2].

Following ideas from [19], we provide another proof of the joints theorem, that works
equally well for all fields, and that generalizes easily to the study of multijoints later on.
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Alternative proof of Theorem [l Let L be a set of N lines in R? and J be the set of joints
formed by L. Let Q € R[zy,...,2,4] be a non-zero polynomial of degree < Agy|J|"/¢, that
vanishes at all points of J; we denote its zero set by Z(Q). Given a line ¢ and a point p € ¢,
we will define what we call the residual multiplicity of ¢ at p with respect to @) as follows.

Let’s begin with some intuition. If Z(Q) is just a hyperplane and ¢ C Z(@Q), then all
points on ¢ have the same “multiplicity” with respect to @), so the “residual multiplicity” of
¢ at any point p on ¢ should be set to zero. If on the other hand, Z(Q) is the union of two
hyperplanes and ¢ is contained in one of them, then ¢ may intersect the other hyperplane
transversely at a point p, so p have one higher “multiplicity” with respect to () than nearby
points on ¢, and in this case we would declare the “residual multiplicity” of ¢ at p to be 1.

More precisely, suppose for the moment that ¢ is the x4 axis, and p = 0 € £. We Taylor

expand Q(z) as
Q(z) = ¥ qu(a)

where the sum is over all multiindices o/ = (ay,...,aq1), 2 = ... 257", and qu is
a polynomial of x4 only. We let ap = min{|c/|: qu(z4) is not identically zero}. Then the
residual multiplicity of £ at p with respect to () is defined to be the minimum order of
vanishing of g, (z4) at x4 = 0 among all multiindices o/ with |o/| = ay. More generally,
given any line ¢ and any point p € £, let T be an invertible affine map on R? that maps £ to
the x4 axis, and the point p to the point 0. Taylor expand

QT 'z) =) 1% qu(xa),

and let ag = min{|a/|: g (z4) is not identically zero}. Then the residual multiplicity of ¢ at
p with respect to @ is defined to be the minimum order of vanishing of ¢,/ (z4) at s = 0
among all multiindices o/ with |o/| = ao.

Since the polynomial @ is fixed in this argument, and since we will only discuss residual
multiplicities, instead of the residual multiplicity of £ at p with respect to ), and we will
simply say the multiplicity of ¢ at p.

One can show that this notion of multiplicity is well-defined, independent of the choice of
the affine map T on R?. Indeed, if 7" and S are both invertible affine maps on R? such that
T(p) = S(p) = 0 and T(¢) = S(¢) = the x4 axis, then S o T~! is an invertible linear map on
R? that fixes the z4 axis. If y = (S o 1)z, then there exists an invertible linear map U on
R?! and a vector v = (v',v4) on R? whose last component v, is non-zero, such that

y =Ux, and yg=v -1 =uv40q+0 2.
Hence if Q(S~9) = S5 4" G (ya), then
QT 'z) = Z(UﬁL‘/)/B/(jg/ (vgzq + 0" - ).
ﬁ/
We can collect terms and write this as Q(7T'z) = Y., 7% qu(x4). Then

min{|/|: qu(24) is not identically zero} = min{|5'|: ¢z (ya) is not identically zero}
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Let ag be this common minimum, and A be the number of multiindices of (d — 1) variables

of length ag. Then U induces an invertible linear map U = (U, f,l ) on R*, such that for every
o with |o/| = ag, we have

Gor(2a) = Y Uiy (vaza).
|8'|=ao
It follows that

min{ order of vanishing of ¢, at 0 : |&/| = ap}
=min{ order of vanishing of gg at 0 : |8'| = ap}.

Thus the multiplicity of ¢ at p is well-defined, independent of the choice of the affine map T’
on RY,

In the proof of the current theorem, we will only concern ourselves whether the multiplicity
of ¢ at p is positive or zero. If the multiplicity of £ at p is positive, we call p a special point
of ¢; if the multiplicity is zero, we call p an ordinary point of /.

The key is to show that for every joint p € J, there is some line ¢ € L passing through p,
so that p is a special point of /. Indeed, since p is a joint formed by L, one can find d lines in
L that passes through p, whose directions are linearly independent. Let 7" be an invertible
affine map on R? that maps p to 0, and maps these d lines from L to the d coordinate axes.
We expand

(2) QT 'z) = car®,

(0%
and let & be a multiindex of minimal length, such that c5; # 0. By renaming the coordinate
axes, we may assume that & = (ay,...,qq), with a; < as < --- < a4. Let ¢y € L be the
image of the x4 axis under 7. We claim that p is a special point on /.

Indeed, we may recollect the terms in the expression for Q(7'z), and write it as
QTa) = 3 o qu(a)

for some polynomials g,/ (z4) for each multiindex o of the first (d — 1) variables. Let ag =
min{|c’|: qu (z4) is not identically zero}. Then ay < |@/|. Suppose now o is a multiindex of
(d — 1) variables with |o/| = ag. If gu(z4) has a zero of order ay at 0, then a := (¢, ay) is a
multiindex, for which the coefficient of x* in is non-zero. So by the choice of &, we have
la| > |@|. Since we also have |o/| = ay < |@/|, this shows ag > @,4, which is positive: indeed,
since @y < ap < -+ < @y, if ag were 0, then |a@| = 0, which says Q(7~10) # 0, contradicting
our choice of (). This shows that ¢, (x4) vanishes at 0 to a positive order. Since this is true
for all multiindices o with |o/| = ag, we conclude that the multiplicity of ¢ at p is positive,
and hence p is a special point on ;.

Finally, note that for every ¢ € L, there are at most deg(Q) special points on ¢. This is
because each ¢,/ (z4) has at most deg(Q) zeroes (being polynomials of one variable of degree
< deg(Q®)). Since there are only N lines in L, it follows that

|J] < Ndeg(Q) < AgN|J|V4,
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which shows
|J| < (AgN)¥/ @1,
O

Let now Ly,...,Lq be d family of straight lines in R%. If p € R?, and there exists a line
from each of these d families, all of which containing p, such that the directions of these d
lines are linearly independent, then p is called a multijoint of Ly, ..., Ly. We then have the
following multijoints theorem:

Theorem 2. The number of multijoints formed by Ly, ..., Ly is at most Cq(|Lq| . .. |Ld|)ﬁ,
for some dimensional constant Cy.

This was first proved by Iliopoulou in [12], who also established the same result when R?
is replaced by F? for an arbitrary field F (see also [11] for an earlier result in R?). Carbery
and Valdimarsson [3] considered colorings of multijoints. Finally, Zhang [19] gave a proof of
this theorem that works for arbitrary fields F and arbitrary dimensions d. We present his
proof below, which is a refinement of the second proof we gave above of Theorem

Proof. (Taken from [19]) Let J be the set of all multijoints formed by L4, ..., Ls. For each
p € J, choose lines ¢, , € Ly,...,¢4, € Lq such that p lies on all of ¢, ,,...,¢q,, and such
that the directions of ¢y ,,...,¢q, are all linearly independent. Choose also an invertible
affine map 7, on R? that maps p to 0, and that maps £;, to the z; axis for all i = 1,...,d.
We choose a polynomial Q on R? such that for all p € J, when we expand Q(T pflx) in

monomials in x, the coefficients of 2 is zero whenever «; < |L;| for all i = 1,...,d. This is
putting |Lq| . ..|L4| conditions at each of the |J| points in J, and one can find a polynomial
@ of degree

deg(Q) S Aa(|J||L4|. .. |La|)**

that achieves this, where A, is some dimensional constant. We define the residual multiplicity
of a line ¢ at a point p with respect to this () as in the previous proof; we will denote this as
m(¥¢, p), suppressing in the notation the dependence on @ since @) will be fixed throughout
our proof.

Now for any line ¢, we clearly have

(3) > m(t,p) < deg(Q).

pel
Furthermore, for each p € J, there exists i = i(p) € {1,...,d} such that
(4) m(lip,p) > |Lil.

Indeed, given p € J, we Taylor expand
QT 'z) = can®,

and let @ be a multiindex of minimal length, such that ¢z # 0. By following the argument
in the previous proof, one sees that m(¢;,,p) > &; for all i = 1,...,d. But by our choice of
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Q, there exists ¢ = i(p) € {1,...,d} such that &; > |L;|. It follows that for this ¢, we have
m(¥;p, p) > |L;| as desired.

We can now finish the proof in a few strokes. First, by pigeonhole principle, there exists
ip € {1,...,d} for which the number of points p in J with i(p) = iy is at least |J|/d; in other
words, there are at least |J|/d points in J, for which m(¢;, ,, p) > |L;,|. Let J;, be the set of
all such points p € J. Then

7 () 2 Tyl La = 111L3 |/

pEJiy

But if we sum over all lines in L;,, we get

Z m(gio,mp) < Z Zm(gio,pap) < ’Lio| deg(Q).

pEJZ'O ZGLZ'O pel
Combining the two inequalities, we see that
|J] < ddeg(Q).
Since deg(Q) < Ag(|J||L1] . .. |La|)*?, we see that

|| < (dAQ)TT(|Ly| ... | La]) 7T,
as desired. 0

We close by mentioning that Carbery considered the problem of counting joints and mul-
tijoints with multiplicities. See Iliopoulou [9] and [10] for positive results in R3, Hablicsek |[§]
for results about generic joints, Yang [18] for some almost sharp results, and finally Zhang
[19] for the resolution of Carbery’s conjecture. The problem of counting multijoints with
multiplicities can be seen as a discrete analog of the multilinear Kakeya problem (see Il-
iopoulou [11], |12]). The problem of counting joints is also connected to the (linear) Kakeya
problem, albeit less directly; see some heuristic observations by Schlag and Wolff in the
Further Remark 3.4 of [17].
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