
THE JOINTS AND THE MULTIJOINTS THEOREM

RUIXIANG ZHANG

Abstract. The following are notes (taken by Po-Lam Yung) of a mini-course by Ruixi-
ang Zhang on the joints theorem and the multijoints theorem. The note taker has since
supplemented these notes with more references to the existing literature.

Let L be a set of N straight lines in Rd. A joint formed by these lines is a point in Rd

that belongs to at least d of these lines, whose directions form a linearly independent set in
Rd. The main theorem about joints is the following.

Theorem 1. The number of joints formed by N lines in Rd is at most CdN
d/(d−1), for some

dimensional constant Cd.

This was first proved by Katz and Guth [4] in dimension d = 3, and by Quilodrán [14] and
Kaplan, Sharir and Shustin [13] in higher dimensions. We refer to the introduction in the
notes of Carbery and Iliopoulou [2], and also the introduction of Iliopoulou [11], for some
prior partial results such as [5], [15], [16], [7] and [1] (see also [6] for an alternative proof in
3 dimensions).

Proof. We use the polynomial method. Let L be a set of N lines in Rd, and J be the set of
joints formed by L. We assume that J is non-empty, for otherwise there is nothing to prove.

We claim that there exists a line ` ∈ L that contains at most Ad|J |1/d joints, where Ad is
some dimensional constant. Indeed, let Q(x) be a non-zero polynomial in R[x1, . . . , xd], of
minimal total degree, that vanishes at all points in J . Then the degree of Q is at most

deg(Q) ≤ Ad|J |1/d

for some dimensional constant Ad. If all lines in L contains more than Ad|J |1/d points in J ,
then Q restricted to any line in L would have more than deg(Q) roots, so Q would vanish
identically on all lines in L. This shows that the gradient ∇Q vanishes at all joints formed by
L, i.e. ∇Q vanishes at all points in J . But one of ∂x1Q, . . . , ∂xdQ is non-zero (for otherwise
Q is zero, contradicting our choice of Q). Hence one of them a non-zero polynomial of degree
< deg(Q), that vanishes at all points of J . This contradicts the minimality of the degree of
Q, and we obtain our claim.

Now we may finish in two ways. One is to use induction on the number of lines in L. Let
` ∈ L be a line that contains at most Ad|J |1/d points in J . Then the number of elements of J
is bounded by Ad|J |1/d plus the number of elements of J that are not on `. Now any element
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of J that is not on ` is a joint of L \ {`}, which contains only N − 1 lines. So induction
hypothesis applies, and we get

(1) |J | ≤ Ad|J |1/d + Cd(N − 1)d/(d−1).

We claim that if Cd were chosen large enough initially, then this implies |J | ≤ CdN
d/(d−1) as

well. Indeed, if not, then |J | > CdN
d/(d−1), so using the fact that t 7→ t−Adt1/d is a strictly

increasing function for t ≥ ad for some dimensional constant ad, we have

|J | − Ad|J |1/d > CdN
d/(d−1) − Ad(CdNd/(d−1))1/d.

(we just choose Cd large enough so that Cd ≥ ad, so that CdN
d/(d−1) ≥ ad for all positive

integers N). It follows that

|J | − Ad|J |1/d − Cd(N − 1)d/(d−1) > Cd(N
d/(d−1) − (N − 1)d/(d−1))− AdC1/d

d N1/(d−1)

>
dCd
d− 1

(N − 1)1/(d−1) − 2AdC
1/d
d (N − 1)1/(d−1)

> 0

if we had chosen the dimensional constant Cd sufficiently large, so that

dCd
d− 1

− 2AdC
1/d
d > 0.

This contradicts (1), so |J | ≤ CdN
d/(d−1) as well, as desired.

Alternatively, let j(N) be the maximum number of joints formed by N lines in Rd. Then
the previous argument shows that

j(N) ≤ Ad[j(N)]1/d + j(N − 1).

Iterating, we get

j(N) ≤ Ad[j(N)]1/d + Ad[j(N − 1)]1/d + · · ·+ Ad[j(d)]1/d

(note j(d− 1) = 0). Since j(N − i) ≤ j(N) for all 1 ≤ i ≤ N , we have

j(N) ≤ AdN [j(N)]1/d,

i.e.
j(N) ≤ (AdN)d/(d−1)

for all N ∈ N. �

The above proof uses a few properties of polynomials over the reals: for instance, we used
that the gradient of a polynomial is a limit of difference quotients, and we used that the
gradient of a non-zero polynomial is non-zero unless it is constant. This is no longer true
over a general field (e.g. over a field of characteristic p, the polynomial xp differentiates to
zero while xp is not identically zero). Nevertheless, Theorem 1 holds if one replaces R by
any general field F: indeed one can fix the above proof so that it works without too many
changes. This result was a folklore for a while, and is recorded in the notes of Carbery and
Iliopoulou [2].

Following ideas from [19], we provide another proof of the joints theorem, that works
equally well for all fields, and that generalizes easily to the study of multijoints later on.
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Alternative proof of Theorem 1. Let L be a set of N lines in Rd, and J be the set of joints
formed by L. Let Q ∈ R[x1, . . . , xd] be a non-zero polynomial of degree ≤ Ad|J |1/d, that
vanishes at all points of J ; we denote its zero set by Z(Q). Given a line ` and a point p ∈ `,
we will define what we call the residual multiplicity of ` at p with respect to Q as follows.

Let’s begin with some intuition. If Z(Q) is just a hyperplane and ` ⊂ Z(Q), then all
points on ` have the same “multiplicity” with respect to Q, so the “residual multiplicity” of
` at any point p on ` should be set to zero. If on the other hand, Z(Q) is the union of two
hyperplanes and ` is contained in one of them, then ` may intersect the other hyperplane
transversely at a point p, so p have one higher “multiplicity” with respect to Q than nearby
points on `, and in this case we would declare the “residual multiplicity” of ` at p to be 1.

More precisely, suppose for the moment that ` is the xd axis, and p = 0 ∈ `. We Taylor
expand Q(x) as

Q(x) =
∑
α′

xα
′
qα′(xd)

where the sum is over all multiindices α′ = (α1, . . . , αd−1), xα
′

:= xα1
1 . . . x

αd−1

d−1 , and qα′ is
a polynomial of xd only. We let a0 = min{|α′| : qα′(xd) is not identically zero}. Then the
residual multiplicity of ` at p with respect to Q is defined to be the minimum order of
vanishing of qα′(xd) at xd = 0 among all multiindices α′ with |α′| = a0. More generally,
given any line ` and any point p ∈ `, let T be an invertible affine map on Rd that maps ` to
the xd axis, and the point p to the point 0. Taylor expand

Q(T−1x) =
∑
α′

xα
′
qα′(xd),

and let a0 = min{|α′| : qα′(xd) is not identically zero}. Then the residual multiplicity of ` at
p with respect to Q is defined to be the minimum order of vanishing of qα′(xd) at xd = 0
among all multiindices α′ with |α′| = a0.

Since the polynomial Q is fixed in this argument, and since we will only discuss residual
multiplicities, instead of the residual multiplicity of ` at p with respect to Q, and we will
simply say the multiplicity of ` at p.

One can show that this notion of multiplicity is well-defined, independent of the choice of
the affine map T on Rd. Indeed, if T and S are both invertible affine maps on Rd such that
T (p) = S(p) = 0 and T (`) = S(`) = the xd axis, then S ◦ T−1 is an invertible linear map on
Rd that fixes the xd axis. If y = (S ◦ T−1)x, then there exists an invertible linear map U on
Rd−1, and a vector v = (v′, vd) on Rd whose last component vd is non-zero, such that

y′ = Ux′, and yd = v · x = vdxd + v′ · x′.
Hence if Q(S−1y) =

∑
β′ y

β′ q̃β′(yd), then

Q(T−1x) =
∑
β′

(Ux′)β
′
q̃β′(vdxd + v′ · x′).

We can collect terms and write this as Q(T−1x) =
∑

α′ x
α′qα′(xd). Then

min{|α′| : qα′(xd) is not identically zero} = min{|β′| : q̃β′(yd) is not identically zero}
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Let a0 be this common minimum, and λ be the number of multiindices of (d− 1) variables

of length a0. Then U induces an invertible linear map Ū = (Ūβ′

α′ ) on Rλ, such that for every
α′ with |α′| = a0, we have

qα′(xd) =
∑
|β′|=a0

Uβ′

α′ q̃β′(vdxd).

It follows that

min{ order of vanishing of qα′ at 0 : |α′| = a0}
= min{ order of vanishing of q̃β′ at 0 : |β′| = a0}.

Thus the multiplicity of ` at p is well-defined, independent of the choice of the affine map T
on Rd.

In the proof of the current theorem, we will only concern ourselves whether the multiplicity
of ` at p is positive or zero. If the multiplicity of ` at p is positive, we call p a special point
of `; if the multiplicity is zero, we call p an ordinary point of `.

The key is to show that for every joint p ∈ J , there is some line ` ∈ L passing through p,
so that p is a special point of `. Indeed, since p is a joint formed by L, one can find d lines in
L that passes through p, whose directions are linearly independent. Let T be an invertible
affine map on Rd that maps p to 0, and maps these d lines from L to the d coordinate axes.
We expand

(2) Q(T−1x) =
∑
α

cαx
α,

and let ᾱ be a multiindex of minimal length, such that cᾱ 6= 0. By renaming the coordinate
axes, we may assume that ᾱ = (ᾱ1, . . . , ᾱd), with ᾱ1 ≤ ᾱ2 ≤ · · · ≤ ᾱd. Let `0 ∈ L be the
image of the xd axis under T−1. We claim that p is a special point on `0.

Indeed, we may recollect the terms in the expression for Q(T−1x), and write it as

Q(T−1x) =
∑
α′

xα
′
qα′(xd)

for some polynomials qα′(xd) for each multiindex α′ of the first (d − 1) variables. Let a0 =
min{|α′| : qα′(xd) is not identically zero}. Then a0 ≤ |ᾱ′|. Suppose now α′ is a multiindex of
(d− 1) variables with |α′| = a0. If qα′(xd) has a zero of order αd at 0, then α := (α′, αd) is a
multiindex, for which the coefficient of xα in (2) is non-zero. So by the choice of ᾱ, we have
|α| ≥ |ᾱ|. Since we also have |α′| = a0 ≤ |ᾱ′|, this shows αd ≥ ᾱd, which is positive: indeed,
since ᾱ1 ≤ ᾱ2 ≤ · · · ≤ ᾱd, if ᾱd were 0, then |ᾱ| = 0, which says Q(T−10) 6= 0, contradicting
our choice of Q. This shows that qα′(xd) vanishes at 0 to a positive order. Since this is true
for all multiindices α′ with |α′| = a0, we conclude that the multiplicity of ` at p is positive,
and hence p is a special point on `0.

Finally, note that for every ` ∈ L, there are at most deg(Q) special points on `. This is
because each qα′(xd) has at most deg(Q) zeroes (being polynomials of one variable of degree
≤ deg(Q)). Since there are only N lines in L, it follows that

|J | ≤ N deg(Q) ≤ AdN |J |1/d,
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which shows

|J | ≤ (AdN)d/(d−1).

�

Let now L1, . . . , Ld be d family of straight lines in Rd. If p ∈ Rd, and there exists a line
from each of these d families, all of which containing p, such that the directions of these d
lines are linearly independent, then p is called a multijoint of L1, . . . , Ld. We then have the
following multijoints theorem:

Theorem 2. The number of multijoints formed by L1, . . . , Ld is at most Cd(|L1| . . . |Ld|)
1

d−1 ,
for some dimensional constant Cd.

This was first proved by Iliopoulou in [12], who also established the same result when Rd

is replaced by F3 for an arbitrary field F (see also [11] for an earlier result in R3). Carbery
and Valdimarsson [3] considered colorings of multijoints. Finally, Zhang [19] gave a proof of
this theorem that works for arbitrary fields F and arbitrary dimensions d. We present his
proof below, which is a refinement of the second proof we gave above of Theorem 1.

Proof. (Taken from [19]) Let J be the set of all multijoints formed by L1, . . . , Ld. For each
p ∈ J , choose lines `1,p ∈ L1, . . . , `d,p ∈ Ld such that p lies on all of `1,p, . . . , `d,p, and such
that the directions of `1,p, . . . , `d,p are all linearly independent. Choose also an invertible
affine map Tp on Rd that maps p to 0, and that maps `i,p to the xi axis for all i = 1, . . . , d.
We choose a polynomial Q on Rd, such that for all p ∈ J , when we expand Q(T−1

p x) in
monomials in x, the coefficients of xα is zero whenever αi < |Li| for all i = 1, . . . , d. This is
putting |L1| . . . |Ld| conditions at each of the |J | points in J , and one can find a polynomial
Q of degree

deg(Q) . Ad(|J ||L1| . . . |Ld|)1/d

that achieves this, where Ad is some dimensional constant. We define the residual multiplicity
of a line ` at a point p with respect to this Q as in the previous proof; we will denote this as
m(`, p), suppressing in the notation the dependence on Q since Q will be fixed throughout
our proof.

Now for any line `, we clearly have

(3)
∑
p∈`

m(`, p) ≤ deg(Q).

Furthermore, for each p ∈ J , there exists i = i(p) ∈ {1, . . . , d} such that

(4) m(`i,p, p) ≥ |Li|.
Indeed, given p ∈ J , we Taylor expand

Q(T−1
p x) =

∑
α

cαx
α,

and let ᾱ be a multiindex of minimal length, such that cᾱ 6= 0. By following the argument
in the previous proof, one sees that m(`i,p, p) ≥ ᾱi for all i = 1, . . . , d. But by our choice of
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Q, there exists i = i(p) ∈ {1, . . . , d} such that ᾱi ≥ |Li|. It follows that for this i, we have
m(`i,p, p) ≥ |Li| as desired.

We can now finish the proof in a few strokes. First, by pigeonhole principle, there exists
i0 ∈ {1, . . . , d} for which the number of points p in J with i(p) = i0 is at least |J |/d; in other
words, there are at least |J |/d points in J , for which m(`i0,p, p) ≥ |Li0|. Let Ji0 be the set of
all such points p ∈ J . Then∑

p∈Ji0

m(`i0,p, p) ≥ |Ji0 ||Li0| ≥ |J ||Li0|/d.

But if we sum (3) over all lines in Li0 , we get∑
p∈Ji0

m(`i0,p, p) ≤
∑
`∈Li0

∑
p∈`

m(`i0,p, p) ≤ |Li0| deg(Q).

Combining the two inequalities, we see that

|J | ≤ d deg(Q).

Since deg(Q) ≤ Ad(|J ||L1| . . . |Ld|)1/d, we see that

|J | ≤ (dAd)
d

d−1 (|L1| . . . |Ld|)
1

d−1 ,

as desired. �

We close by mentioning that Carbery considered the problem of counting joints and mul-
tijoints with multiplicities. See Iliopoulou [9] and [10] for positive results in R3, Hablicsek [8]
for results about generic joints, Yang [18] for some almost sharp results, and finally Zhang
[19] for the resolution of Carbery’s conjecture. The problem of counting multijoints with
multiplicities can be seen as a discrete analog of the multilinear Kakeya problem (see Il-
iopoulou [11], [12]). The problem of counting joints is also connected to the (linear) Kakeya
problem, albeit less directly; see some heuristic observations by Schlag and Wolff in the
Further Remark 3.4 of [17].
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