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Let SR be the truncated light cone in Rn+1 given by

SR := {(ξ, |ξ|) ∈ Rn+1 : |ξ| ' R}.

Let BR be a covering of SR by finitely overlapping rectangular boxes in Rn+1, of dimensions

comparable to 1×R1/2× · · · ×R1/2×R, such that for every Θ ∈ BR, the center cΘ of Θ lies

on SR, and the longest side of Θ is parallel to the line connecting the origin to cΘ, whereas

the shortest side of Θ is parallel to the normal to SR at cΘ. Let Dp(R) be the best constant

so that the inequality

∥∥∥ ∑
Θ∈BR

FΘ

∥∥∥
Lp(Rn+1)

≤ Dp(R)

(∑
Θ∈BR

‖FΘ‖pLp(Rn+1)

)1/p

(1)

holds for all family of functions {FΘ}Θ∈BR on Rn+1 so that the Fourier support of FΘ is

contained in Θ for every Θ ∈ BR. Below are examples showing that

Dp(R) & max{R(n−1)( 1
2
− 1
p)−

1
p , R

n−1
2 ( 1

2
− 1
p)}. (2)

Hence the `p decoupling inequality of Bourgain and Demeter is optimal up to Rε loss, for

2 ≤ p ≤ ∞.

We begin with some preparation.

Let PR be a covering of the annulus {|ξ| ' R} by finitely overlapping rectangles in Rn, of

dimensions R1/2 × · · · × R1/2 × R, such that for every θ ∈ PR, the center cθ of θ lies in the

annulus {|ξ| ' R}, and the longest side of θ is parallel to the line connecting the origin to

cθ. We write eθ := cθ
|cθ|

.

Let φ(x) be a non-negative Schwartz function on Rn, with φ̂(ξ) compactly supported on

[−1/2, 1/2]n, so that φ(x) ≥ 1 for |x| ≤ 1. Let η(t) be a Schwartz function on R whose

Fourier transform is supported on [−c, c] for some small absolute constant c > 0, and for

which |η(t)| ≥ 1 for all t ∈ [−1, 1].

Step 1. We prove

Dp(R) & R(n−1)( 1
2
− 1
p)−

1
p . (3)
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Let δR be the dilation δR(x) = (Rx1, R
1/2x′). For θ ∈ PR, let Lθ be the rotation that

rotates the long side of θ to (1, 0, . . . , 0), and rotates the short sides of θ to the remaining

coordinate directions in Rn. Define

fθ(x) := e2πicθ·xφ(δRLθx).

The Fourier transform of fθ is

det(δR)−1φ̂(δ−1
R Lθ(ξ − cθ))

which is supported on cθ + L−1
θ δR[−1/2, 1/2]n ' θ. The (space-time) Fourier transform of

η(t)eit
√
−∆fθ(x)

is supported in a rectangular box Θ of dimensions 1×R1/2×· · ·×R1/2×R like one of those

in BR, so if (1) were to hold at an exponent p, then∥∥∥η(t)
∑
θ∈PR

eit
√
−∆fθ(x)

∥∥∥
Lp(Rn+1)

≤ Dp(R)

(∑
θ∈PR

‖η(t)eit
√
−∆fθ(x)‖pLp(Rn+1)

)1/p

. (4)

But

eit
√
−∆fθ(x) =

∫
Rn

det(δR)−1φ̂(δ−1
R Lθ(ξ − cθ))e2πi(t|ξ|+x·ξ)dξ

= e2πi(x·cθ+t|cθ|)
∫
Rn
φ̂(ξ)e2πiδRLθ(x−teθ)·ξe2πit(|cθ+L−1

θ δRξ|−|cθ|−δRLθeθ·ξ)dξ

(5)

Writing

e2πit(|cθ+L−1
θ δRξ|−|cθ|−δRLθeθ·ξ) = 1 +O(tR−1)

on the support of φ, we see that

eit
√
−∆fθ(x) = e2πi(x·cθ+t|cθ|)φ(δRLθ(x− teθ)) +O(tR−1).

Hence there exists some c ∈ (0, 1) so that

inf
|x|≤cR−1,|t|≤cR−1

Re eit
√
−∆fθ(x) ≥ 1

2
.

It follows that

Re
∑
θ∈PR

eit
√
−∆fθ(x) & |PR| ' R

n−1
2 whenever |x| ≤ cR−1, |t| ≤ cR−1.

Hence the left hand side of (4) is at least

& R
n−1
2 R−

n+1
p . (6)

On the other hand, (5) shows that

|eit
√
−∆fθ(x)| .N |t|N(1 +R|x · eθ − t|+R1/2|x · e⊥θ |)−N

for any unit vector e⊥θ orthogonal to eθ and any positive integer N , because one can write

e2πiδRLθ(x−teθ)·ξ =
∆ξe

2πiδRLθ(x−teθ)·ξ

|δRLθ(x− teθ)|2
2



and integrate by parts; note that

|δRLθ(x− teθ)| ' R|Lθ(x− teθ) · (1, 0, . . . , 0)|+R1/2|Lθ(x− teθ) · (0, 1, 0, . . . , 0)|+ . . .

= R|(x− teθ) · eθ|+R1/2|(x− teθ) · L−1
θ (0, 1, 0, . . . )|+ . . .

≥ R|x · eθ − t|+R1/2|x · e⊥θ |

for any choice of e⊥θ . Thus

‖η(t)eit
√
−∆fθ(x)‖Lp(Rn+1) . R−

n+1
2p ,

and the right hand side of (4) is

. Dp(R)
(
R

n−1
2

) 1
p
R−

n+1
2p . (7)

Combining the lower bound (6) and the upper bound (7), we see that

Dp(R) &
R

n−1
2 R−

n+1
p(

R
n−1
2

) 1
p
R−

n+1
2p

= R(n−1)( 1
2
− 1
p)−

1
p ,

as was to be proved.

Remark. Sometimes such a η(t)eit
√
−∆fθ(x) (or translations thereof in physical space-time)

is called a wave packet. It has a designated compact support in the frequency space, and is

concentrated in the physical space-time to the extent possible by the uncertainty principle (in

this case, to a rectangular box in space-time of dimensions R−1 × R−1/2 × · · · × R−1/2 × 1.

In addition, in this example it is like a plane wave propagating with velocity cθ inside the

rectangular box.

Step 2. We prove

Dp(R) & R
n−1
2 ( 1

2
− 1
p). (8)

For θ ∈ PR, let

fθ(x) := εθe
2πicθ·xφ(x)

where εθ is a random choice of ±1 and cθ is the center of θ so that supp f̂θ ⊂ θ. The

(space-time) Fourier transform of

εθη(t)eit
√
−∆fθ(x)

is supported in a rectangular box Θ of dimensions 1×R1/2×· · ·×R1/2×R like one of those

in BR, so if (1) were to hold at an exponent p, then∥∥∥η(t)
∑
θ∈PR

εθe
it
√
−∆fθ(x)

∥∥∥
Lp(Rn+1)

≤ Dp(R)

(∑
θ∈PR

‖η(t)eit
√
−∆fθ(x)‖pLp(Rn+1)

)1/p

. (9)

3



We evaluate the expectation of the p-th power of both sides as the sign εθ varies. Then

Klintchine’s inequality gives∥∥∥η(t)
( ∑
θ∈PR

|eit
√
−∆fθ(x)|2

)1/2∥∥∥
Lp(Rn+1)

≤ Dp(R)

(∑
θ∈PR

‖η(t)eit
√
−∆fθ(x)‖pLp(Rn+1)

)1/p

. (10)

But

eit
√
−∆fθ(x) = εθ

∫
Rn
φ̂(ξ)e2πi[(ξ+cθ)·x+t|ξ+cθ|]dξ

= εθe
2πi(x·cθ+t|cθ|)

∫
Rn
φ̂(ξ)e2πi[ξ·(x+teθ)]e2πit(|ξ+cθ|−|cθ|−ξ·eθ)dξ.

(11)

By expanding the last exponential in the integral as 1+ error, we have

eit
√
−∆fθ(x) = εθe

2πi(x·cθ+t|cθ|)φ(x+ teθ) +O(|t|).

Since φ(x) ≥ 1 for |x| ≤ 1, we see that

|eit
√
−∆fθ(x)| ≥ 1

2

whenever |(x, t)| ≤ c for some small positive constant c (which depends on φ, but which

crucially is independent of R). The left hand side of (10) is thus

& |PR|1/2 ' R
n−1
2
· 1
2 . (12)

To estimate the right hand side of (10), note that from (11), we have

|eit
√
−∆fθ(x)| .N |t|N(1 + |x+ teθ|)−N

for every non-negative integer N . As a result,

‖η(t)eit
√
−∆fθ(x)‖Lp(Rn+1) . 1,

which shows that the right hand side of (10) is

. Dp(R)|PR|1/p ' Dp(R)R
n−1
2
· 1
p . (13)

The lower bound (12) and the upper bound (13) together implies (8), as desired.

Remark. Another way of seeing that (8) holds is to take FΘ to be a tiling of B(0, 1)× [0, 1]

with wave packets of sizes R−1 × R−1/2 × · · · × R−1/2 × 1 whose Fourier support fill up Θ.

By randomizing the signs of FΘ as above, we yield (8).
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