OPTIMALITY OF ¢ DECOUPLING FOR THE LIGHT CONE IN R"*!

PO-LAM YUNG

Let Sy be the truncated light cone in R*™! given by

Sr = {(& 1¢]) € R™: [ ~ R}

Let Bg be a covering of Sy by finitely overlapping rectangular boxes in R"*!, of dimensions
comparable to 1 x R/2 x .- x R? x R, such that for every © € Bp, the center cg of © lies
on Sk, and the longest side of © is parallel to the line connecting the origin to cg, whereas
the shortest side of © is parallel to the normal to Sg at cg. Let D,(R) be the best constant
so that the inequality
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holds for all family of functions {Fe}ecs, on R™! so that the Fourier support of Fg is
contained in © for every © € Bg. Below are examples showing that

Dy(R) = max{R" VG3)5 R 3. 2)

Hence the /P decoupling inequality of Bourgain and Demeter is optimal up to R® loss, for
2<p< 0.

We begin with some preparation.

Let Pg be a covering of the annulus {|¢| ~ R} by finitely overlapping rectangles in R™, of
dimensions R'/? x --- x RY? x R, such that for every 6 € Pg, the center ¢ of 6 lies in the
annulus {|¢| ~ R}, and the longest side of 6 is parallel to the line connecting the origin to
co. We write eg := \i_ZI

Let ¢(z) be a non-negative Schwartz function on R", with g/b\(f) compactly supported on
[—1/2,1/2]", so that ¢(z) > 1 for |z|] < 1. Let n(t) be a Schwartz function on R whose
Fourier transform is supported on [—c, c] for some small absolute constant ¢ > 0, and for
which |n(t)] > 1 for all t € [—1,1].

Step 1. We prove



Let 0g be the dilation 6z(x) = (Rxy, RY/?2'). For 6 € Pg, let Ly be the rotation that
rotates the long side of 6 to (1,0,...,0), and rotates the short sides of 6 to the remaining
coordinate directions in R™. Define

fo(z) =™ $(6pLoz).
The Fourier transform of fy is
det(3r) ™ G(05" Lo(& — ¢9))
which is supported on ¢y + L, dg[—1/2,1/2]" ~ 6. The (space-time) Fourier transform of
n(t)e™ 2 fo(w)

is supported in a rectangular box © of dimensions 1 x RY/2 x - . x RY? x R like one of those
in Bg, so if (1) were to hold at an exponent p, then
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on the support of ¢, we see that
€itmf0(x) _ 627ri(x~09+t|09‘)¢(5RL9(1’ — teg)) + O(tR_l)

Hence there exists some ¢ € (0,1) so that

inf Ree™V=2 fy(2) >

|z|<cR~1L,|¢t|<cR-1
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It follows that
Re Z VA fo(z) = | Prl| ~ R"T  whenever lz] < eR7Y |t < eR7L
GEPR
Hence the left hand side of (4) is at least
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On the other hand, (5) shows that
€A fy(@)| Sn 1N (1 + Rlx - eg — t] + B[z - ez )N
for any unit vector e; orthogonal to ey and any positive integer N, because one can write
Age2mionLo(a—tes)€
) |0rLg(x — teg)|?
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and integrate by parts; note that
|0rLo(z — teg)| ~ R|Lg(x — teg) - (1,0,...,0)| + RY?|Lo(z — teg) - (0,1,0,...,0)| + ...
= R|(z — teg) - eg| + RY?|(x — teg) - L;*(0,1,0,...)| + ...
> Rl -ep—t| + RV |z - ef|

for any choice of e;. Thus
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and the right hand side of (4) is
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Combining the lower bound (6) and the upper bound (7), we see that
n—1__ ntl
DR > PR T g3

as was to be proved.

Remark. Sometimes such a n(t)e’™ =2 fy(z) (or translations thereof in physical space-time)
is called a wave packet. It has a designated compact support in the frequency space, and is
concentrated in the physical space-time to the extent possible by the uncertainty principle (in
this case, to a rectangular box in space-time of dimensions R™' x R™Y2 x ... x R™Y2 x 1.
In addition, in this example it is like a plane wave propagating with velocity cy inside the
rectangular boz.

Step 2. We prove

For 6 € Pg, let
f@(x) — 66627ri09-:17¢(x>

where €y is a random choice of £1 and ¢y is the center of 6 so that Suppj/; C 6. The
(space-time) Fourier transform of

ean(t)e™ ™2 fo()

is supported in a rectangular box © of dimensions 1 x RY/2 x --- x RY? x R like one of those
in Bg, so if (1) were to hold at an exponent p, then

n(t) Y eoc™ 2 fo(x)
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We evaluate the expectation of the p-th power of both sides as the sign ey varies. Then
Klintchine’s inequality gives
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By expanding the last exponential in the integral as 1+ error, we have
VTR fy(x) = gge®mi@eottlool g2 1 teg) + O(|t]).
Since ¢(x) > 1 for |z| < 1, we see that

WA fy()| =
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e
whenever |(x,t)] < ¢ for some small positive constant ¢ (which depends on ¢, but which
crucially is independent of R). The left hand side of (10) is thus

2 [Pr|"? =~ RS, (12)
To estimate the right hand side of (10), note that from (11), we have
€73 fo(@)| S [HY (1 + |+ teg]) N
for every non-negative integer N. As a result,
In()e™ =2 fo(@)|lp@nery < 1,

which shows that the right hand side of (10) is

< Dy(R)[Pr|'"” = Dy(R)R'S 7. (13)
The lower bound (12) and the upper bound (13) together implies (8), as desired.

Remark. Another way of seeing that (8) holds is to take Fg to be a tiling of B(0,1) x [0, 1]
with wave packets of sizes R~ x R™Y2 x --. x R™Y2 x 1 whose Fourier support fill up ©.
By randomizing the signs of Fg as above, we yield (8).



