OPTIMALITY OF ℓ^p DECOUPLING FOR THE LIGHT CONE IN \mathbb{R}^{n+1}

PO-LAM YUNG

Let S_R be the truncated light cone in \mathbb{R}^{n+1} given by

$$S_R := \{ (\xi, |\xi|) \in \mathbb{R}^{n+1} \colon |\xi| \simeq R \}.$$

Let \mathcal{B}_R be a covering of S_R by finitely overlapping rectangular boxes in \mathbb{R}^{n+1} , of dimensions comparable to $1 \times \mathbb{R}^{1/2} \times \cdots \times \mathbb{R}^{1/2} \times \mathbb{R}$, such that for every $\Theta \in \mathcal{B}_R$, the center c_{Θ} of Θ lies on S_R , and the longest side of Θ is parallel to the line connecting the origin to c_{Θ} , whereas the shortest side of Θ is parallel to the normal to S_R at c_{Θ} . Let $D_p(\mathbb{R})$ be the best constant so that the inequality

$$\left\|\sum_{\Theta\in\mathcal{B}_R}F_{\Theta}\right\|_{L^p(\mathbb{R}^{n+1})} \le D_p(R)\left(\sum_{\Theta\in\mathcal{B}_R}\|F_{\Theta}\|_{L^p(\mathbb{R}^{n+1})}^p\right)^{1/p} \tag{1}$$

holds for all family of functions $\{F_{\Theta}\}_{\Theta \in \mathcal{B}_R}$ on \mathbb{R}^{n+1} so that the Fourier support of F_{Θ} is contained in Θ for every $\Theta \in \mathcal{B}_R$. Below are examples showing that

$$D_p(R) \gtrsim \max\{R^{(n-1)\left(\frac{1}{2} - \frac{1}{p}\right) - \frac{1}{p}}, R^{\frac{n-1}{2}\left(\frac{1}{2} - \frac{1}{p}\right)}\}.$$
(2)

Hence the ℓ^p decoupling inequality of Bourgain and Demeter is optimal up to R^{ε} loss, for $2 \leq p \leq \infty$.

We begin with some preparation.

Let \mathcal{P}_R be a covering of the annulus $\{|\xi| \simeq R\}$ by finitely overlapping rectangles in \mathbb{R}^n , of dimensions $R^{1/2} \times \cdots \times R^{1/2} \times R$, such that for every $\theta \in \mathcal{P}_R$, the center c_{θ} of θ lies in the annulus $\{|\xi| \simeq R\}$, and the longest side of θ is parallel to the line connecting the origin to c_{θ} . We write $e_{\theta} := \frac{c_{\theta}}{|c_{\theta}|}$.

Let $\phi(x)$ be a non-negative Schwartz function on \mathbb{R}^n , with $\widehat{\phi}(\xi)$ compactly supported on $[-1/2, 1/2]^n$, so that $\phi(x) \ge 1$ for $|x| \le 1$. Let $\eta(t)$ be a Schwartz function on \mathbb{R} whose Fourier transform is supported on [-c, c] for some small absolute constant c > 0, and for which $|\eta(t)| \ge 1$ for all $t \in [-1, 1]$.

Step 1. We prove

$$D_p(R) \gtrsim R^{(n-1)\left(\frac{1}{2} - \frac{1}{p}\right) - \frac{1}{p}}.$$
 (3)

Let δ_R be the dilation $\delta_R(x) = (Rx_1, R^{1/2}x')$. For $\theta \in \mathcal{P}_R$, let L_θ be the rotation that rotates the long side of θ to $(1, 0, \ldots, 0)$, and rotates the short sides of θ to the remaining coordinate directions in \mathbb{R}^n . Define

$$f_{\theta}(x) := e^{2\pi i c_{\theta} \cdot x} \phi(\delta_R L_{\theta} x)$$

The Fourier transform of f_{θ} is

$$\det(\delta_R)^{-1}\widehat{\phi}(\delta_R^{-1}L_\theta(\xi-c_\theta))$$

which is supported on $c_{\theta} + L_{\theta}^{-1} \delta_R [-1/2, 1/2]^n \simeq \theta$. The (space-time) Fourier transform of $\eta(t) e^{it\sqrt{-\Delta}} f_{\theta}(x)$

is supported in a rectangular box Θ of dimensions $1 \times R^{1/2} \times \cdots \times R^{1/2} \times R$ like one of those in \mathcal{B}_R , so if (1) were to hold at an exponent p, then

$$\left\|\eta(t)\sum_{\theta\in\mathcal{P}_R}e^{it\sqrt{-\Delta}}f_{\theta}(x)\right\|_{L^p(\mathbb{R}^{n+1})} \le D_p(R)\left(\sum_{\theta\in\mathcal{P}_R}\|\eta(t)e^{it\sqrt{-\Delta}}f_{\theta}(x)\|_{L^p(\mathbb{R}^{n+1})}^p\right)^{1/p}.$$
 (4)

But

$$e^{it\sqrt{-\Delta}}f_{\theta}(x) = \int_{\mathbb{R}^{n}} \det(\delta_{R})^{-1}\widehat{\phi}(\delta_{R}^{-1}L_{\theta}(\xi - c_{\theta}))e^{2\pi i(t|\xi| + x \cdot \xi)}d\xi$$

$$= e^{2\pi i(x \cdot c_{\theta} + t|c_{\theta}|)} \int_{\mathbb{R}^{n}} \widehat{\phi}(\xi)e^{2\pi i\delta_{R}L_{\theta}(x - te_{\theta}) \cdot \xi}e^{2\pi it(|c_{\theta} + L_{\theta}^{-1}\delta_{R}\xi| - |c_{\theta}| - \delta_{R}L_{\theta}e_{\theta} \cdot \xi)}d\xi$$
(5)

Writing

$$e^{2\pi i t (|c_{\theta} + L_{\theta}^{-1} \delta_R \xi| - |c_{\theta}| - \delta_R L_{\theta} e_{\theta} \cdot \xi)} = 1 + O(tR^{-1})$$

on the support of ϕ , we see that

$$e^{it\sqrt{-\Delta}}f_{\theta}(x) = e^{2\pi i(x \cdot c_{\theta} + t|c_{\theta}|)}\phi(\delta_R L_{\theta}(x - te_{\theta})) + O(tR^{-1}).$$

Hence there exists some $c \in (0, 1)$ so that

$$\inf_{|x| \le cR^{-1}, |t| \le cR^{-1}} \operatorname{Re} e^{it\sqrt{-\Delta}} f_{\theta}(x) \ge \frac{1}{2}.$$

It follows that

Re
$$\sum_{\theta \in \mathcal{P}_R} e^{it\sqrt{-\Delta}} f_{\theta}(x) \gtrsim |\mathcal{P}_R| \simeq R^{\frac{n-1}{2}}$$
 whenever $|x| \leq cR^{-1}, |t| \leq cR^{-1}$.

Hence the left hand side of (4) is at least

$$\gtrsim R^{\frac{n-1}{2}} R^{-\frac{n+1}{p}}.$$
(6)

On the other hand, (5) shows that

$$e^{it\sqrt{-\Delta}}f_{\theta}(x)| \lesssim_{N} |t|^{N}(1+R|x\cdot e_{\theta}-t|+R^{1/2}|x\cdot e_{\theta}^{\perp}|)^{-N}$$

for any unit vector e_{θ}^{\perp} orthogonal to e_{θ} and any positive integer N, because one can write

$$e^{2\pi i \delta_R L_\theta(x-te_\theta) \cdot \xi} = \frac{\Delta_\xi e^{2\pi i \delta_R L_\theta(x-te_\theta) \cdot \xi}}{|\delta_R L_\theta(x-te_\theta)|^2}$$

and integrate by parts; note that

$$\begin{aligned} |\delta_R L_\theta(x - te_\theta)| &\simeq R |L_\theta(x - te_\theta) \cdot (1, 0, \dots, 0)| + R^{1/2} |L_\theta(x - te_\theta) \cdot (0, 1, 0, \dots, 0)| + \dots \\ &= R |(x - te_\theta) \cdot e_\theta| + R^{1/2} |(x - te_\theta) \cdot L_\theta^{-1}(0, 1, 0, \dots)| + \dots \\ &\geq R |x \cdot e_\theta - t| + R^{1/2} |x \cdot e_\theta^{\perp}| \end{aligned}$$

for any choice of e_{θ}^{\perp} . Thus

$$\|\eta(t)e^{it\sqrt{-\Delta}}f_{\theta}(x)\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim R^{-\frac{n+1}{2p}},$$

and the right hand side of (4) is

$$\lesssim D_p(R) \left(R^{\frac{n-1}{2}} \right)^{\frac{1}{p}} R^{-\frac{n+1}{2p}}.$$
(7)

Combining the lower bound (6) and the upper bound (7), we see that

$$D_p(R) \gtrsim \frac{R^{\frac{n-1}{2}} R^{-\frac{n+1}{p}}}{\left(R^{\frac{n-1}{2}}\right)^{\frac{1}{p}} R^{-\frac{n+1}{2p}}} = R^{(n-1)\left(\frac{1}{2} - \frac{1}{p}\right) - \frac{1}{p}},$$

as was to be proved.

Remark. Sometimes such a $\eta(t)e^{it\sqrt{-\Delta}}f_{\theta}(x)$ (or translations thereof in physical space-time) is called a wave packet. It has a designated compact support in the frequency space, and is concentrated in the physical space-time to the extent possible by the uncertainty principle (in this case, to a rectangular box in space-time of dimensions $R^{-1} \times R^{-1/2} \times \cdots \times R^{-1/2} \times 1$. In addition, in this example it is like a plane wave propagating with velocity c_{θ} inside the rectangular box.

Step 2. We prove

$$D_p(R) \gtrsim R^{\frac{n-1}{2}\left(\frac{1}{2} - \frac{1}{p}\right)}.$$
 (8)

For $\theta \in \mathcal{P}_R$, let

$$f_{\theta}(x) := \varepsilon_{\theta} e^{2\pi i c_{\theta} \cdot x} \phi(x)$$

where ε_{θ} is a random choice of ± 1 and c_{θ} is the center of θ so that $\operatorname{supp} \widehat{f}_{\theta} \subset \theta$. The (space-time) Fourier transform of

$$\varepsilon_{\theta}\eta(t)e^{it\sqrt{-\Delta}}f_{\theta}(x)$$

is supported in a rectangular box Θ of dimensions $1 \times R^{1/2} \times \cdots \times R^{1/2} \times R$ like one of those in \mathcal{B}_R , so if (1) were to hold at an exponent p, then

$$\left\|\eta(t)\sum_{\theta\in\mathcal{P}_R}\varepsilon_{\theta}e^{it\sqrt{-\Delta}}f_{\theta}(x)\right\|_{L^p(\mathbb{R}^{n+1})} \le D_p(R)\left(\sum_{\theta\in\mathcal{P}_R}\|\eta(t)e^{it\sqrt{-\Delta}}f_{\theta}(x)\|_{L^p(\mathbb{R}^{n+1})}^p\right)^{1/p}.$$
 (9)

We evaluate the expectation of the *p*-th power of both sides as the sign ε_{θ} varies. Then Klintchine's inequality gives

$$\left\|\eta(t)\left(\sum_{\theta\in\mathcal{P}_R}|e^{it\sqrt{-\Delta}}f_{\theta}(x)|^2\right)^{1/2}\right\|_{L^p(\mathbb{R}^{n+1})} \le D_p(R)\left(\sum_{\theta\in\mathcal{P}_R}\|\eta(t)e^{it\sqrt{-\Delta}}f_{\theta}(x)\|_{L^p(\mathbb{R}^{n+1})}^p\right)^{1/p}.$$
 (10)

But

$$e^{it\sqrt{-\Delta}}f_{\theta}(x) = \varepsilon_{\theta} \int_{\mathbb{R}^{n}} \widehat{\phi}(\xi) e^{2\pi i [(\xi+c_{\theta})\cdot x+t|\xi+c_{\theta}|]} d\xi$$

$$= \varepsilon_{\theta} e^{2\pi i (x\cdot c_{\theta}+t|c_{\theta}|)} \int_{\mathbb{R}^{n}} \widehat{\phi}(\xi) e^{2\pi i [\xi\cdot (x+te_{\theta})]} e^{2\pi i t (|\xi+c_{\theta}|-|c_{\theta}|-\xi\cdot e_{\theta})} d\xi.$$
 (11)

By expanding the last exponential in the integral as 1+ error, we have

$$e^{it\sqrt{-\Delta}}f_{\theta}(x) = \varepsilon_{\theta}e^{2\pi i(x\cdot c_{\theta}+t|c_{\theta}|)}\phi(x+te_{\theta}) + O(|t|)$$

Since $\phi(x) \ge 1$ for $|x| \le 1$, we see that

$$|e^{it\sqrt{-\Delta}}f_{\theta}(x)| \ge \frac{1}{2}$$

whenever $|(x,t)| \leq c$ for some small positive constant c (which depends on ϕ , but which crucially is independent of R). The left hand side of (10) is thus

$$\gtrsim |\mathcal{P}_R|^{1/2} \simeq R^{\frac{n-1}{2} \cdot \frac{1}{2}}.$$
 (12)

To estimate the right hand side of (10), note that from (11), we have

$$|e^{it\sqrt{-\Delta}}f_{\theta}(x)| \lesssim_N |t|^N (1+|x+te_{\theta}|)^{-N}$$

for every non-negative integer N. As a result,

$$\|\eta(t)e^{it\sqrt{-\Delta}}f_{\theta}(x)\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim 1,$$

which shows that the right hand side of (10) is

$$\lesssim D_p(R) |\mathcal{P}_R|^{1/p} \simeq D_p(R) R^{\frac{n-1}{2} \cdot \frac{1}{p}}.$$
(13)

The lower bound (12) and the upper bound (13) together implies (8), as desired.

Remark. Another way of seeing that (8) holds is to take F_{Θ} to be a tiling of $B(0,1) \times [0,1]$ with wave packets of sizes $R^{-1} \times R^{-1/2} \times \cdots \times R^{-1/2} \times 1$ whose Fourier support fill up Θ . By randomizing the signs of F_{Θ} as above, we yield (8).