OPTIMALITY OF ℓ^{p} DECOUPLING FOR THE LIGHT CONE IN \mathbb{R}^{n+1}

PO-LAM YUNG

Let S_{R} be the truncated light cone in \mathbb{R}^{n+1} given by

$$
S_{R}:=\left\{(\xi,|\xi|) \in \mathbb{R}^{n+1}:|\xi| \simeq R\right\} .
$$

Let \mathcal{B}_{R} be a covering of S_{R} by finitely overlapping rectangular boxes in \mathbb{R}^{n+1}, of dimensions comparable to $1 \times R^{1 / 2} \times \cdots \times R^{1 / 2} \times R$, such that for every $\Theta \in \mathcal{B}_{R}$, the center c_{Θ} of Θ lies on S_{R}, and the longest side of Θ is parallel to the line connecting the origin to c_{Θ}, whereas the shortest side of Θ is parallel to the normal to S_{R} at c_{Θ}. Let $D_{p}(R)$ be the best constant so that the inequality

$$
\begin{equation*}
\left\|\sum_{\Theta \in \mathcal{B}_{R}} F_{\Theta}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq D_{p}(R)\left(\sum_{\Theta \in \mathcal{B}_{R}}\left\|F_{\Theta}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)}^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

holds for all family of functions $\left\{F_{\Theta}\right\}_{\Theta \in \mathcal{B}_{R}}$ on \mathbb{R}^{n+1} so that the Fourier support of F_{Θ} is contained in Θ for every $\Theta \in \mathcal{B}_{R}$. Below are examples showing that

$$
\begin{equation*}
D_{p}(R) \gtrsim \max \left\{R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}}, R^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)}\right\} . \tag{2}
\end{equation*}
$$

Hence the ℓ^{p} decoupling inequality of Bourgain and Demeter is optimal up to R^{ε} loss, for $2 \leq p \leq \infty$.

We begin with some preparation.
Let \mathcal{P}_{R} be a covering of the annulus $\{|\xi| \simeq R\}$ by finitely overlapping rectangles in \mathbb{R}^{n}, of dimensions $R^{1 / 2} \times \cdots \times R^{1 / 2} \times R$, such that for every $\theta \in \mathcal{P}_{R}$, the center c_{θ} of θ lies in the annulus $\{|\xi| \simeq R\}$, and the longest side of θ is parallel to the line connecting the origin to c_{θ}. We write $e_{\theta}:=\frac{c_{\theta}}{\left|c_{\theta}\right|}$.

Let $\phi(x)$ be a non-negative Schwartz function on \mathbb{R}^{n}, with $\widehat{\phi}(\xi)$ compactly supported on $[-1 / 2,1 / 2]^{n}$, so that $\phi(x) \geq 1$ for $|x| \leq 1$. Let $\eta(t)$ be a Schwartz function on \mathbb{R} whose Fourier transform is supported on $[-c, c]$ for some small absolute constant $c>0$, and for which $|\eta(t)| \geq 1$ for all $t \in[-1,1]$.

Step 1. We prove

$$
\begin{equation*}
D_{p}(R) \gtrsim R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}} . \tag{3}
\end{equation*}
$$

Let δ_{R} be the dilation $\delta_{R}(x)=\left(R x_{1}, R^{1 / 2} x^{\prime}\right)$. For $\theta \in \mathcal{P}_{R}$, let L_{θ} be the rotation that rotates the long side of θ to $(1,0, \ldots, 0)$, and rotates the short sides of θ to the remaining coordinate directions in \mathbb{R}^{n}. Define

$$
f_{\theta}(x):=e^{2 \pi i c_{\theta} \cdot x} \phi\left(\delta_{R} L_{\theta} x\right) .
$$

The Fourier transform of f_{θ} is

$$
\operatorname{det}\left(\delta_{R}\right)^{-1} \widehat{\phi}\left(\delta_{R}^{-1} L_{\theta}\left(\xi-c_{\theta}\right)\right)
$$

which is supported on $c_{\theta}+L_{\theta}^{-1} \delta_{R}[-1 / 2,1 / 2]^{n} \simeq \theta$. The (space-time) Fourier transform of

$$
\eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)
$$

is supported in a rectangular box Θ of dimensions $1 \times R^{1 / 2} \times \cdots \times R^{1 / 2} \times R$ like one of those in \mathcal{B}_{R}, so if (1) were to hold at an exponent p, then

$$
\begin{equation*}
\left\|\eta(t) \sum_{\theta \in \mathcal{P}_{R}} e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq D_{p}(R)\left(\sum_{\theta \in \mathcal{P}_{R}}\left\|\eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)}^{p}\right)^{1 / p} \tag{4}
\end{equation*}
$$

But

$$
\begin{align*}
e^{i t \sqrt{-\Delta}} f_{\theta}(x) & =\int_{\mathbb{R}^{n}} \operatorname{det}\left(\delta_{R}\right)^{-1} \widehat{\phi}\left(\delta_{R}^{-1} L_{\theta}\left(\xi-c_{\theta}\right)\right) e^{2 \pi i(t|\xi|+x \cdot \xi)} d \xi \\
& =e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|\right)} \int_{\mathbb{R}^{n}} \widehat{\phi}(\xi) e^{2 \pi i \delta_{R} L_{\theta}\left(x-t e_{\theta}\right) \cdot \xi} e^{2 \pi i t\left(\left|c_{\theta}+L_{\theta}^{-1} \delta_{R} \xi\right|-\left|c_{\theta}\right|-\delta_{R} L_{\theta} e_{\theta} \cdot \xi\right)} d \xi \tag{5}
\end{align*}
$$

Writing

$$
e^{2 \pi i t\left(\left|c_{\theta}+L_{\theta}^{-1} \delta_{R} \xi\right|-\left|c_{\theta}\right|-\delta_{R} L_{\theta} e_{\theta} \cdot \xi\right)}=1+O\left(t R^{-1}\right)
$$

on the support of ϕ, we see that

$$
e^{i t \sqrt{-\Delta}} f_{\theta}(x)=e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|\right)} \phi\left(\delta_{R} L_{\theta}\left(x-t e_{\theta}\right)\right)+O\left(t R^{-1}\right) .
$$

Hence there exists some $c \in(0,1)$ so that

$$
\inf _{|x| \leq c R^{-1},|t| \leq c R^{-1}} \operatorname{Re} e^{i t \sqrt{-\Delta}} f_{\theta}(x) \geq \frac{1}{2}
$$

It follows that

$$
\operatorname{Re} \sum_{\theta \in \mathcal{P}_{R}} e^{i t \sqrt{-\Delta}} f_{\theta}(x) \gtrsim\left|\mathcal{P}_{R}\right| \simeq R^{\frac{n-1}{2}} \quad \text { whenever }|x| \leq c R^{-1},|t| \leq c R^{-1}
$$

Hence the left hand side of (4) is at least

$$
\begin{equation*}
\gtrsim R^{\frac{n-1}{2}} R^{-\frac{n+1}{p}} . \tag{6}
\end{equation*}
$$

On the other hand, (5) shows that

$$
\left|e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right| \lesssim_{N}|t|^{N}\left(1+R\left|x \cdot e_{\theta}-t\right|+R^{1 / 2}\left|x \cdot e_{\theta}^{\perp}\right|\right)^{-N}
$$

for any unit vector e_{θ}^{\perp} orthogonal to e_{θ} and any positive integer N, because one can write

$$
e^{2 \pi i \delta_{R} L_{\theta}\left(x-t e_{\theta}\right) \cdot \xi}=\frac{\Delta_{\xi} e^{2 \pi i \delta_{R} L_{\theta}\left(x-t e_{\theta}\right) \cdot \xi}}{\left|\delta_{R} L_{\theta}\left(x-t e_{\theta}\right)\right|^{2}}
$$

and integrate by parts; note that

$$
\begin{aligned}
\left|\delta_{R} L_{\theta}\left(x-t e_{\theta}\right)\right| & \simeq R\left|L_{\theta}\left(x-t e_{\theta}\right) \cdot(1,0, \ldots, 0)\right|+R^{1 / 2}\left|L_{\theta}\left(x-t e_{\theta}\right) \cdot(0,1,0, \ldots, 0)\right|+\ldots \\
& =R\left|\left(x-t e_{\theta}\right) \cdot e_{\theta}\right|+R^{1 / 2}\left|\left(x-t e_{\theta}\right) \cdot L_{\theta}^{-1}(0,1,0, \ldots)\right|+\ldots \\
& \geq R\left|x \cdot e_{\theta}-t\right|+R^{1 / 2}\left|x \cdot e_{\theta}^{\perp}\right|
\end{aligned}
$$

for any choice of e_{θ}^{\perp}. Thus

$$
\left\|\eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \lesssim R^{-\frac{n+1}{2 p}},
$$

and the right hand side of (4) is

$$
\begin{equation*}
\lesssim D_{p}(R)\left(R^{\frac{n-1}{2}}\right)^{\frac{1}{p}} R^{-\frac{n+1}{2 p}} \tag{7}
\end{equation*}
$$

Combining the lower bound (6) and the upper bound (7), we see that

$$
D_{p}(R) \gtrsim \frac{R^{\frac{n-1}{2}} R^{-\frac{n+1}{p}}}{\left(R^{\frac{n-1}{2}}\right)^{\frac{1}{p}} R^{-\frac{n+1}{2 p}}}=R^{(n-1)\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}},
$$

as was to be proved.
Remark. Sometimes such a $\eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)$ (or translations thereof in physical space-time) is called a wave packet. It has a designated compact support in the frequency space, and is concentrated in the physical space-time to the extent possible by the uncertainty principle (in this case, to a rectangular box in space-time of dimensions $R^{-1} \times R^{-1 / 2} \times \cdots \times R^{-1 / 2} \times 1$. In addition, in this example it is like a plane wave propagating with velocity c_{θ} inside the rectangular box.

Step 2. We prove

$$
\begin{equation*}
D_{p}(R) \gtrsim R^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)} . \tag{8}
\end{equation*}
$$

For $\theta \in \mathcal{P}_{R}$, let

$$
f_{\theta}(x):=\varepsilon_{\theta} e^{2 \pi i c_{\theta} \cdot x} \phi(x)
$$

where ε_{θ} is a random choice of ± 1 and c_{θ} is the center of θ so that $\operatorname{supp} \widehat{f}_{\theta} \subset \theta$. The (space-time) Fourier transform of

$$
\varepsilon_{\theta} \eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)
$$

is supported in a rectangular box Θ of dimensions $1 \times R^{1 / 2} \times \cdots \times R^{1 / 2} \times R$ like one of those in \mathcal{B}_{R}, so if (1) were to hold at an exponent p, then

$$
\begin{equation*}
\left\|\eta(t) \sum_{\theta \in \mathcal{P}_{R}} \varepsilon_{\theta} e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq D_{p}(R)\left(\sum_{\theta \in \mathcal{P}_{R}}\left\|\eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)}^{p}\right)^{1 / p} . \tag{9}
\end{equation*}
$$

We evaluate the expectation of the p-th power of both sides as the sign ε_{θ} varies. Then Klintchine's inequality gives

$$
\begin{equation*}
\left\|\eta(t)\left(\sum_{\theta \in \mathcal{P}_{R}}\left|e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq D_{p}(R)\left(\sum_{\theta \in \mathcal{P}_{R}}\left\|\eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)}^{p}\right)^{1 / p} \tag{10}
\end{equation*}
$$

But

$$
\begin{align*}
e^{i t \sqrt{-\Delta}} f_{\theta}(x) & =\varepsilon_{\theta} \int_{\mathbb{R}^{n}} \widehat{\phi}(\xi) e^{2 \pi i\left[\left(\xi+c_{\theta}\right) \cdot x+t\left|\xi+c_{\theta}\right|\right]} d \xi \tag{11}\\
& =\varepsilon_{\theta} e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|\right)} \int_{\mathbb{R}^{n}} \widehat{\phi}(\xi) e^{2 \pi i\left[\xi \cdot\left(x+t e_{\theta}\right)\right]} e^{2 \pi i t\left(\left|\xi+c_{\theta}\right|-\left|c_{\theta}\right|-\xi \cdot e_{\theta}\right)} d \xi
\end{align*}
$$

By expanding the last exponential in the integral as $1+$ error, we have

$$
e^{i t \sqrt{-\Delta}} f_{\theta}(x)=\varepsilon_{\theta} e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|\right)} \phi\left(x+t e_{\theta}\right)+O(|t|)
$$

Since $\phi(x) \geq 1$ for $|x| \leq 1$, we see that

$$
\left|e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right| \geq \frac{1}{2}
$$

whenever $|(x, t)| \leq c$ for some small positive constant c (which depends on ϕ, but which crucially is independent of R). The left hand side of (10) is thus

$$
\begin{equation*}
\gtrsim\left|\mathcal{P}_{R}\right|^{1 / 2} \simeq R^{\frac{n-1}{2} \cdot \frac{1}{2}} \tag{12}
\end{equation*}
$$

To estimate the right hand side of (10), note that from (11), we have

$$
\left|e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right| \lesssim_{N}|t|^{N}\left(1+\left|x+t e_{\theta}\right|\right)^{-N}
$$

for every non-negative integer N. As a result,

$$
\left\|\eta(t) e^{i t \sqrt{-\Delta}} f_{\theta}(x)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \lesssim 1
$$

which shows that the right hand side of (10) is

$$
\begin{equation*}
\lesssim D_{p}(R)\left|\mathcal{P}_{R}\right|^{1 / p} \simeq D_{p}(R) R^{\frac{n-1}{2} \cdot \frac{1}{p}} \tag{13}
\end{equation*}
$$

The lower bound (12) and the upper bound (13) together implies (8), as desired.
Remark. Another way of seeing that (8) holds is to take F_{Θ} to be a tiling of $B(0,1) \times[0,1]$ with wave packets of sizes $R^{-1} \times R^{-1 / 2} \times \cdots \times R^{-1 / 2} \times 1$ whose Fourier support fill up Θ. By randomizing the signs of F_{Θ} as above, we yield (8).

