MAT 102 SPRING 2008 REVIEW FOR THE FINAL - SOLUTIONS

1. Errata in the review exercises

- In Q6, the line $y=x-5$ should be $y=x-2$ instead.
- In Q11(j), the integral should be from $\frac{\pi}{2}$ to π (instead of from 0 to π).

Sorry for the typos!

2. Outline of solutions

Please kindly let me know of any typos. Thanks!

1. Let x miles be the distance you walk on the other side of the river. The total time you need to reach the campsite is

$$
f(x)=\frac{1}{2} \sqrt{5^{2}+(10-x)^{2}}+\frac{x}{3} .
$$

Minimize this, get $x=10-2 \sqrt{5}$.
2. Note that to show that $f(t)$ is increasing it suffices to show that $\ln f(t)$ is increasing. So one just needs to show $\frac{d}{d t} \ln f(t)>0$. Next to compute $\lim _{t \rightarrow \infty} f(t)$, first compute

$$
\lim _{t \rightarrow \infty} \ln f(t)=2
$$

using L'Hospitals, then exponentiate to get

$$
\lim _{t \rightarrow \infty} f(t)=e^{2}
$$

3. The product is maximized when you multiply the square of 6 with 3 .
4. Observe that the function is odd. Find the critical points, see where the function is increasing, etc.
5. The maximum occurs at $x=e^{-1 / 2}$, with value $f\left(e^{-1 / 2}\right)=-\frac{1}{2 e}$.
6. First solve for the intersection of the two graphs: they intersect when

$$
-x^{2}=x-2,
$$

i.e. $x=-2$ or $x=1$. Next, observe that the graph $y=-x^{2}$ lies above that of $y=x-2$ when $-2 \leq x \leq 1$. Hence the area enclosed between them is

$$
\int_{-2}^{1}\left(\left(-x^{2}\right)-(x-2)\right) d x=\frac{9}{2} .
$$

7. (a) $-1 / 6$
(b) $-1 / 2$
(c) 1
(d) $1 / 3$
8. The area is

$$
2 \int_{0}^{1}\left(x^{3}-x^{5}\right) d x=\frac{1}{6}
$$

9. The area is

$$
\int_{0}^{\pi} \cos ^{2} 2 x \sin ^{4} 2 x d x=\frac{\pi}{16}
$$

10. (a) $y=\cosh x-2$
(b) $y=x \sinh x-\cosh x+1$
(c) $y=-t \cos t+2 \sin t-t+1$
(d) $y=\frac{1}{6} \sin ^{3} 2 x-\frac{1}{10} \sin ^{5} 2 x+1$
(e) $y=2 x-\frac{5}{2} \ln \left(x^{2}+4 x+5\right)+\frac{5}{2} \ln 5$
(f) $y=\frac{1}{4} \sin \left(2 \sin ^{-1}(2 x)\right)+\frac{1}{4} \sin ^{-1}(2 x)+1$
(or $\left.y=\frac{1}{2} x \sqrt{1-4 x^{2}}+\frac{1}{4} \sin ^{-1}(2 x)+1\right)$
(g) $y=\tan x \sec ^{2} x-\frac{2}{3} \tan ^{3} x+1$
11. (a) 1
(b) $\frac{12}{5}$
$\begin{array}{ll}\text { (c) } \ln 2 & \text { (d) } \ln (1+\sqrt{2})\end{array}$
(e) $\frac{2}{3}+2 \ln 3-5 \ln 2$
(f) $\frac{e \cos 2}{5}+\frac{2 e \sin 2}{5}-\frac{1}{5}$
(g) $-3+24 \ln 2-12 \ln 3$
(h) $\frac{40}{3}-4 \ln 3$
(i) $\frac{3}{2} \ln 3-\frac{2}{3} \ln 2$
(j) $\frac{\pi}{20}-\frac{\ln 2}{10}$
12. $f^{\prime}(x)=\sin x \cos 2 x$, so

$$
f(x)=\frac{1}{2} \cos x-\frac{1}{6} \cos 3 x+C
$$

for some constant C, and any constant C will do because no initial condition is specified here.
13. Differentiate the identity with respect to x, get $f(x)=\frac{d}{d x}\left(x e^{x}\right)=(x+1) e^{x}$. Hence $f(1)=2 e$.
14.

$$
\begin{aligned}
\frac{d}{d x} \int_{0}^{\sin ^{2} x} \sin \left(e^{t}(1-t)\right) d t & =\sin \left(e^{\sin ^{2} x}\left(1-\sin ^{2} x\right)\right) \frac{d}{d x} \sin ^{2} x \\
& =2 \sin \left(e^{\sin ^{2} x} \cos ^{2} x\right) \sin x \cos x
\end{aligned}
$$

15. $A(t)$ is increasing precisely when $A^{\prime}(t) \geq 0$ for all t. However, by the fundamental theorem of calculus, $A^{\prime}(t)=f(t)$. Hence $A(t)$ is increasing precisely when $f(t) \geq 0$ for all t (which is the same as saying $f(x) \geq 0$ for all x).
