MAT 102 SPRING 2008 FEEDBACK ON HOMEWORK 4

This time I shall focus only on mistakes that are absolutely essential to avoid, say in your mid-term.

1. Some common mistakes.

- Always remember to simplify your answer when you work on homework problems: answers like $-\frac{1}{2}+\frac{1}{3}-(-2)-\frac{8}{3}$ are certainly not acceptable!
- Q16 of §5.4. It seems that many of you have difficulty with this question. There are two difficulties: First, in evaluating the indefinite integral: some of you seemed to be trying to apply some sort of 'quotient rule', which is terribly wrong: there are no quotient rule for integrals. In particular,

$$
\int \frac{1+\cos 2 t}{2} d t \neq \frac{\int(1+\cos 2 t) d t}{\int 2 d t}!
$$

The correct way is to split the integral:

$$
\begin{aligned}
\int \frac{1+\cos 2 t}{2} d t & =\int \frac{1}{2} d t+\frac{1}{2} \int \cos 2 t d t \\
& =\frac{1}{2} t+\frac{1}{2}\left(\frac{\sin 2 t}{2}\right)+C \\
& =\frac{t}{2}+\frac{\sin 2 t}{4}+C
\end{aligned}
$$

Next one needs to plug in the upper and lower limits of the integral:

$$
\int_{-\pi / 3}^{\pi / 3} \frac{1+\cos 2 t}{2} d t=\left.\left(\frac{t}{2}+\frac{\sin 2 t}{4}\right)\right|_{-\pi / 3} ^{\pi / 3}
$$

One just needs to be careful and remember that $\sin (2 \pi / 3)=\frac{\sqrt{3}}{2}, \sin (-2 \pi / 3)=$ $-\frac{\sqrt{3}}{2}$. The answer is then $\frac{\pi}{3}-\frac{\sqrt{3}}{4}$.

- Q30 of §5.4. When this question appears in this section, they suppose you to solve it 'the clever way': namely they expect you to somehow cleverly guess that

$$
\int \frac{x d x}{\sqrt{1+x^{2}}}=\sqrt{1+x^{2}}+C
$$

However, now that you have learned substitution, there is a more standard way of doing it:

Let $u=1+x^{2}$. Then $d u=2 x d x$ (or in other words, $x d x=\frac{1}{2} d u$) so

$$
\begin{aligned}
\int \frac{x d x}{\sqrt{1+x^{2}}} & =\int \frac{1}{2} \frac{d u}{\sqrt{u}} \\
& =\frac{1}{2} \int u^{-\frac{1}{2}} d u \\
& =\frac{1}{2} \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C \\
& =\sqrt{u}+C \\
& =\sqrt{1+x^{2}}+C .
\end{aligned}
$$

Hence

$$
\int_{2}^{5} \frac{x d x}{\sqrt{1+x^{2}}}=\sqrt{1+5^{2}}-\sqrt{1+2^{2}}=\sqrt{26}-\sqrt{5}
$$

Make sure you understand how to do substitutions like this (or else, feel free to ask us) for questions about substitutions are bound to come up in the mid-term!

- Q37 of §5.4. Many of you still don’t understand how to use the chain rule to differentiate those integrals that has a complicated upper/lower limits. Such questions again undoubtedly will come up in the mid-term... Here is an illustration how you could solve it. (Try applying them to the other problems!)

To compute $\frac{d}{d x} \int_{1}^{\sin x} 3 t^{2} d t$, let $y=\int_{1}^{\sin x} 3 t^{2} d t$. We are going to compute $\frac{d y}{d x}$. Now let $u=\sin x$. Then $y=\int_{1}^{u} 3 t^{2} d t$, and by chain rule, we now have

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} .
$$

But

$$
\frac{d y}{d u}=3 u^{2}
$$

by the fundamental theorem of calculus, and $\frac{d u}{d x}=\frac{d}{d x} \sin x=\cos x$. Hence

$$
\frac{d y}{d x}=3 u^{2} \cos x=3(\sin x)^{2} \cos x=3 \sin ^{2} x \cos x
$$

Alternatively, if you like to write the chain rule using composition of functions, here is how you'd do it:

Let $f(u)=\int_{1}^{u} 3 t^{2} d t$ and $g(x)=\sin x$. Then $\int_{1}^{\sin x} 3 t^{2} d t=f(g(x))$ so

$$
\frac{d}{d x} \int_{1}^{\sin x} 3 t^{2} d t=f^{\prime}(g(x)) g^{\prime}(x)=3 g(x)^{2} g^{\prime}(x)=3 \sin ^{2} x \cos x
$$

- Q54 of §5.4. Many of you didn't realize that the curve sometimes lies above the x-axis and sometimes below it. Therefore, to calculate the total area bounded by the curve between -2 and 2 , one actually needs to figure out where the curve crosses the x-axis, i.e. one needs to solve $x^{3}-4 x=0$.

Now $x^{3}-4 x=0$ if and only if $x\left(x^{2}-4\right)=0$, i.e. if and only if $x(x+2)(x-2)=0$. This is the same as saying that $x=0,-2$ or 2 . So we need to split the interval of integration $[-2,2]$ into two halves (according to these zeroes), namely $[-2,0]$ and $[0,2]$. The area on the interval $[-2,0]$ is

$$
\left|\int_{-2}^{0}\left(x^{3}-4 x\right) d x\right|=|4|=4
$$

and the area on the interval $[0,2]$ is

$$
\left|\int_{0}^{2}\left(x^{3}-4 x\right) d x\right|=|-4|=4 .
$$

Hence the total area is $4+4=8$.

