MAT 102 SPRING 2008 HINTS ON HOMEWORK 6

§7.4.

- Q73. Make a substitution first and apply the formula on p.530.

§8.1.

- Q4. Can you write $\csc ^{2} y d y$ as d of something? (This basically amounts to finding the anti-derivative of $\csc ^{2} y$.)
- Q8.

$$
\frac{d x}{x-\sqrt{x}}=\frac{1}{\sqrt{x}-1} \cdot \frac{d x}{\sqrt{x}} .
$$

- Q30.

$$
\frac{2 d x}{x \sqrt{1-4 \ln ^{2} x}}=\frac{1}{\sqrt{1-4 \ln ^{2} x}} \cdot \frac{2 d x}{x} .
$$

- Q32. Let $r=3 \sec x$. (Of course, if you remember the formula you can also use it directly...)
- Q43-45. List of useful trigonometric identities:

$$
\begin{aligned}
\tan x & =\frac{\sin x}{\cos x} \\
\sin ^{2} x+\cos ^{2} x & =1 \\
1+\tan ^{2} x & =\sec ^{2} x \\
1+\cot ^{2} x & =\csc ^{2} x \\
\sin (2 x) & =2 \sin x \cos x \\
\cos (2 x) & =2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
\sin (3 x) & =3 \sin x-4 \sin ^{3} x
\end{aligned}
$$

(These are basically all the trigonometric identities that you will need for the course. The first two are essential; the third and the fourth are easy consequences of the first two and the definitions. I am afraid there is no easy way to remember the last three though, unless you learn something called 'the complex numbers'. We may touch upon that at a certain point, but not for now. By the way, these are just the identities without differentiation or integration; you will of course need to know the derivatives of these trigonometric functions.)

