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FEEDBACK ON PROBLEM SET 10

This problem set seems to be more di�cult than the previous ones. Below is a
discussion of the common misconceptions, and full solutions to the problems from
Spivak.

1. Common errors.

Exercises from Folland.

5.7.2: Make sure you point out what the region S is when you use Stokes' theorem.
Usually there are many possible choices of S, and some are more convenient
than others. The art here is in making the correct choices.

Also, some of you projected S down and calculated x2+y2+(a−y)2 = a2

in the description of S. Note that the equation just describes the projection
of S onto the x, y plane, not the region S itself. The region S should be a
disk in the plane y + z = a, of radius a/

√
2.

Exercises from Spivak.

4-29: Given a 1-form ω on [0, 1], the question asked you to show that there exists
a unique number λ such that there exists a function g for which

ω = λdx + dg

and

g(0) = g(1).

In other words, after choosing λ, you still need to construct g such that the
two equations above hold. Almost all of you didn't show the existence of
g, nor explain why g(0) = g(1). See solution below.

Also, as some of you correctly pointed out, the assumption f(0) = f(1)
in the question is irrelevant.

4-30: Again, one needs to construct also the function g here, and this is a bit more
di�cult than the corresponding construction in 4.29. See solution below.
(I think the hint in the book here is a bit misleading, and there is an easier
way of solving the problem without using the hint. I shall, however, also
point out below how the hint could be used to solve the problem, as some
of you may be interested.)

4-34: Some of you didn't use the de�nition of the boundary operator ∂ in solving
part (a). I know the de�nition looks complicated to use, but it is indeed
the easiest and cleanest way of solving the problem. (Spivak actually made
a point about `good de�nitions' being easily applicable towards the end of
Chapter 4, and this is one instance of that.)

Further problems.

1: Be careful about the signs of the integrals. This involves choosing the
correct orientations for the di�erent faces. See the solution to the further
problems in problem set 9.
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2: Remember when you integrate φ on ∂A1, you actually need parametrize
∂A1 and integrate the pull-back of φ via this parametrization on the space
of parameters. In other words, say c(t) = (1, t, 0) is a parametrization of
part of ∂A1, when you integrate φ over this part of ∂A1 you actually need
to do ∫ 1

0

c∗(φ) =
∫ 1

0

tdt

rather than
∫ 1

0
1dx1 + x2dx2 as some of you incorrectly stated.

2. Solution to selected exercises.

Exercises from Spivak.

4-29: Let ω be a 1-form on [0, 1].
Existence. Let λ =

∫ 1

0
ω. Let

g(x) =
∫ x

0

(ω − λdt).

Then

dg =
∂g

∂x
dx = ω − λdx

by fundamental theorem of calculus. Also,

g(1) =
∫ 1

0

ω − λ = 0 = g(0)

by our choice of λ. This completes the proof of existence of λ and g.
Uniqueness. Suppose λ is a real number such that

ω = λdx + dg

for some function with g(0) = g(1). Then integrating both sides from 0 to
1, we get ∫ 1

0

ω = λ +
∫ 1

0

dg = λ + g(1)− g(0) = λ.

This determines λ uniquely.
Remark. Actually g is also unique up to an additive constant. Why?
(Hint: is there a motivation why we constructed g as we did above?)

4-30: Let ω be a 1-form on the punctured plane R2 \ {0} with dω = 0.
Method 1.

Let γ be any curve homologous to the unit circle in R2 \ {0}. Then
1
2π

∫
γ

ω

is independent of the choice of γ, because if γ1 and γ2 are two such curves,
then by Stokes' theorem∫

γ1

ω −
∫

γ2

ω =
∫

∂S

ω =
∫

S

dω = 0

where S is a region in R2 \ {0} whose boundary is γ1 − γ2. Let λ be this
number. It follows that ∫

η

(ω − λdθ) = 0
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for all piecewise smooth closed curves η. (Why?) Hence if p is a point in
R2 \ {0}, which we �x from now on, the path integral∫ q

p

(ω − λdθ)

is independent of the path that joins p to q in R2 \ {0}. Let g(q) be the
above path integral. It then follows that

dg = ω − λdθ.

Remark. Be careful and do NOT conclude that if γ is the unit circle and
D is the unit disk then

∫
γ

ω =
∫

D
dω = 0. Why is this not true under our

current hypothesis? Can you give an example when this is not true?
Method 2.

Here is a solution that makes use of the hint in the book. Let cR,1 be
the map cR,1(t) = (R cos 2πt,R sin 2πt) where t runs from 0 to 1. Then
by Problem 4-29 above, for each R > 0 there exists a number λR and a
function gR(t) of one variable such that the pullback of ω under this map
satis�es

c∗R,1ω = λRdt + d(gR),

with gR(0) = gR(1). Note that here d(gR) means dgR

dt dt.
Now note that λR is independent of R > 0. This is because

λR1 − λR2 =
∫ 1

0

λR1dt−
∫ 1

0

λR2dt

=
∫

γR1

ω −
∫

γR2

ω

=
∫

AR1,R2

dω = 0

where γR is the circle of radius R centered at the origin and AR1,R2 is the
annulus whose boundary is γR1 − γR2 . Call this common value 2πλ. Then
for each R > 0 there exists a function gR(t) of one variable such that

(1) c∗R,1ω = 2πλdt +
dgR

dt
dt.

Let now (R, θ) be the polar coordinates on R2 \ {0} where θ runs from
0 to 2π. De�ne a function g on R2 \ {0} by

g(R, θ) = gR

(
θ

2π

)
using this polar coordinates. Equation (1) now says

c∗R,1

(
ω − λdθ − ∂g

∂θ
dθ

)
= 0.

This doesn't say that ω−λdθ− ∂g
∂θ dθ is 0; it says that it is a multiple of dr

at each point in the punctured plane. Hence there exists a function h(r, θ)
on R2 \ {0} such that

ω = λdθ +
∂g

∂θ
dθ + h(r, θ)dr.

Then since dω = 0, we have

∂h

∂θ
=

∂2g

∂r∂θ
.
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Hence

h(r, θ) =
∂g

∂r
+ k(r)

for some function k of r only. Replacing g(r, θ) by g(r, θ) +
∫ r

1
k(r)dr, we

have

h(r, θ) =
∂g

∂r
without modifying any other properties of g we alluded to above, and it
follows that

ω = λdθ +
∂g

∂θ
dθ +

∂g

∂r
dr = λdθ + dg.

4.34(a):

∂CF,G =
3∑

i=1

∑
α=0,1

(−1)i+αCF,G ◦ I1
(i,α)

= −CF,G(0, x, y) + CF,G(1, x, y)

+ CF,G(x, 0, y)− CF,G(x, 1, y)− CF,G(x, y, 0) + CF,G(x, y, 1).

Since Fs and Gs are closed curves for all s, the last four terms in the above
equation vanishes. It follows that

∂CF,G = −cF0,G0 + cF1,G1 .


