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FEEDBACK ON PROBLEM SET 1

1. Some common mistakes.

Part 2 Q1: Many of you said something like `since the set {0} is closed, it is not open'.
But beware: sometimes a closed set could actually be open: for instance,
the empty set and the whole R.

�1.4, Q6: Some of you thought (and indeed tried to prove) that a is an accumulation
point of S if and only if there is a sequence {xk} in S that converges to
a. But this is not true. For example, if S = {0}, then there is certainly a
sequence in S that converges to 0 (namely the constant sequence xk = 0
for all k), but it is not an accumulation point, because any neighborhood
of 0 consists of just one single point (and not in�nitely many) in S, namely
0. The confusion might have arisen because some of you are so used to
thinking that di�erent terms in the sequence are automatically not equal
to one another. But this is not quite true; there is such a thing as a constant
sequence, and it is precisely our enemy in this situation.

�1.4, Q7: Some of you thought that any boundary point of a set S is an accumulation
point of that set as well. This is not quite true: for instance, if S = {0},
then 0 is a boundary point of S, but it is not an accumulation point of S,
because there couldn't be a sequence in S, all of which are not 0, which
converges to 0.

�1.5, Q10: Many of you didn't take the care to make sure that what you've constructed
is actually a subsequence of the original sequence; many just picked a subset

of the original sequence and showed that it converged to the limsup and the
liminf. Be careful here: by saying that {xnj

} is a subsequence we require
n1 < n2 < . . . . It takes a little pain to do this, but sometimes it is worth
the pain because there are too many things that are true for subsequences
and not for subsets.

2. Solution to selected exercises.

I'll present the solutions of some of the exercises that some of you had trouble with.

�1.4, Q6: Let a be an accumulation point of S. Then every neighborhood of a contains
in�nitely many points in S. In particular, a couldn't be the only point in
that neighborhood, so in every ball of radius 1/k, we can pick a point xk ∈ S
with xk 6= a. Hence we have picked a sequence in S, none of which is equal
to a, that converges to a.

Suppose now there exists a sequence {xk} in S, none of which is equal
to a, that converges to a. Then for any neighborhood U of a, there exists
K such that xk ∈ U for all k ≥ K. The set {xk : k ≥ K} must contain
in�nitely many (di�erent) elements of S: otherwise there would exist a
�nite set F such that xk ∈ F for all k, and with none of the xk equal to a
we can assume a /∈ F . Then xk couldn't possibly converge to a, contrary
to our choice of {xk}. Hence we have exhibited in�nitely many elements of
S inside U . This completes the proof.
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�1.4, Q7: Let S′ be the set of accumulation points. We shall �rst show S ⊆ S ∪ S′.
If a is a boundary point of S, then there exists a sequence xk in S that
converges to a. If further that a is not in S, then none of these xk's could
be a, so we have exhibited a sequence in S, none of which is equal to a,
that converges to a. By problem 1.4.6, a ∈ S′. This proves ∂S \ S ⊆ S′, so
S ⊆ S ∪ S′.

We next show the reverse inclusion. It su�ces to show S′ ⊆ S. Suppose
a ∈ S′. Then by problem 1.4.6 again, there exists a sequence {xk} in S
that converges to a. Hence by theorem 1.14 in Folland, a ∈ S, and we are
done.

�1.7, Q5: Let S be an open set. Suppose it is disconnected. Then it can be written
as

S = A ∪B

for some non-empty sets A and B, such that

A ∩B = A ∩B = ∅.
We claim both A and B are open. Indeed

S \B = A \B = A,

so A is the complement of a closed set in an open set, and hence open.
Similarly B is open. Hence S is a union of two disjoint non-empty open
sets.

Suppose now S is the union of two non-empty disjoint open sets U and
V . We claim

U ∩ V = U ∩ V = ∅
so that S is disconnected. But the complement of U is a closed set contain-
ing V , so V , being the smallest closed set containing V , must be contained
in the complement of U . Hence U ∩ V = ∅, and similarly U ∩ V = ∅.


