MAT 218 FALL 2008
 FEEDBACK ON PROBLEM SET 3

This week most of you did very well in the problem set. I'll just present the solution to two of the exercises.

1. Solution to selected exercises.

Folland 2.7.4: Here's a small trick: the Taylor series of $e^{-x^{2}}$ is alternating and convergent for each x. Hence for any real number x, $1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\frac{x^{10}}{5!} \leq e^{-x^{2}} \leq 1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\frac{x^{10}}{5!}+\frac{x^{12}}{6!}$.

Integrating, we get

$$
0.7467 \leq \int_{0}^{1} e^{-x^{2}} d x \leq 0.7469
$$

Hence the answer is 0.747 correct to 3 decimal places.
Spivak 2-18: Let $h(z)=\int_{a}^{z} g$. Then $f(x, y)=h(x+y)$. Hence

$$
\partial_{x} f(x, y)=h^{\prime}(x+y) \frac{\partial}{\partial x}(x+y)=g(x+y)
$$

Similarly

$$
\partial_{y} f(x, y)=g(x+y)
$$

