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FEEDBACK ON PROBLEM SET 4

1. Some common mistakes.

Folland 2.8.5: Some of you thought that the second directional derivative of a function f
in the direction u is given by

n∑
i=1

u2
i fii

but this is not true. (It doesn't agree with the given formula either.)
Folland 2.9.12: It seems that when you use Lagrange's multipliers, most of you don't know

how to check whether the point you obtained is a local maximum (or local
minimum or neither). Some of you tried to say that if a `critical point' is
not a local minimum then it must be a local maximum, but this is not true.
For this one (and the one in Folland 2.9.18) there is an easy way. Please
see solution below, and compare with the solution of Folland 2.9.6.

Folland 3.1.5: Some of you thought you need ∇G(x, y) 6= 0 to solve y as a function of x
near a point where G(x, y) = 0. This is not true. You just need ∂yG(x, y) 6=
0 to apply the implicit function theorem. (One easy way to remember this
is to always think about the unit circle in the plane: you can write y as a
function of x when (x, y) lies on the unit circle as long as the tangent to the
circle at that point is not vertical, i.e. as long as ∂y(x2 + y2− 1) = 2y 6= 0.)

2. Solution to selected exercises.

Folland 2.8.5: Just use

∂2
uf = ∇(∇f · u) · u

and compute.
Folland 2.9.12: The problem is to minimize

f(x, y, z) = x + y + z

subject to the condition that

g(x, y, z) := xyz − V = 0 and x, y, z > 0.

First notice that if

S := {(x, y, z) ∈ R3 : xyz − V = 0 and x, y, z > 0}

then S is a hypersurface (can you draw it?), and we are just minimizing f
on S. Next observe that while S is not compact, as the point (x, y, z) ∈ S
goes o� to in�nity, f(x, y, z) → ∞ as well. (Can you formulate this more
precisely?) Hence f cannot have an absolute maximum, and by continuity
of f we know an absolute minimum must exist in S. The absolute minimum
must be in the interior of S, and thus it must satisfy the Lagrange multiplier
equations. Hence at the absolute minimum of f over S, we must have
∇f = λ∇g for some λ ∈ R, i.e.

(1, 1, 1) = λ(yz, xz, xy).
1



2 MAT 218 FALL 2008 FEEDBACK ON PROBLEM SET 4

It follows that x = y = z at the absolute minimum of f over S, but there
is just one point on S that satis�es this, namely (V 1/3, V 1/3, V 1/3). Hence
the absolute minimum of f over S is given by

f(V 1/3, V 1/3, V 1/3) = 3V 1/3.

Folland 2.9.18: Suppose c > 0,

f(x1, x2, . . . , xn) = x1x2 . . . xn,

and

g(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn.

The problem is to maximize f(x) subject to the conditions that

g(x) = c and x1, x2, . . . , xn ≥ 0.

First notice that if

S := {x ∈ Rn : g(x) = c and x1, x2, . . . , xn ≥ 0}
(note S is a hypersurface because∇g 6= 0 on S) then we are just maximizing
f on the set S, which is compact. Hence by continuity of f we know an
absolute maximum must exist in S. The absolute maximum must either
be on the boundary or in the interior, and in the latter case it must satisfy
the Lagrange multiplier equations. But it is easy to see that the absolute
maximum cannot occur on the boundary: simply notice that any point on
the boundary of S has one of its coordinates equal to 0, so f is 0 on the
boundary of S, while f > 0 in the interior of S. Hence at the absolute
maximum of f over S, we must have ∇f = λ∇g for some λ ∈ R, i.e.(

x1 . . . xn

x1
,
x1 . . . xn

x2
, . . . ,

x1 . . . xn

xn

)
= λ(1, 1, . . . , 1).

It follows that x1 = · · · = xn at the absolute maximum of f over S, but
there is just one such point in S, namely (c/n, . . . , c/n). Hence the absolute
maximum of f over S must be

f
( c

n
, . . . ,

c

n

)
=

( c

n

)n

.

Unravelling the notations, this proves the inequality between arithmetic
and geometric means:

x1 . . . xn ≤
(

x1 + · · ·+ xn

n

)n

for all non-negative numbers x1, . . . , xn, with equality if and only if x1 =
· · · = xn.

(Incidentally, it follows from this argument that the point (c/n, . . . , c/n)
is not a local minimum nor a saddle point.)

Spivak 2-41(c): The calculation here is quite involved. Let me put down the essential steps
so that those of you who are interested can check for themselves.

Suppose

f(x, y) = x(y log y − y)− y log x.

First, for each �xed 1
2 ≤ x ≤ 2,

∂yf(x, y) = x log y − log x,

so

f(x, y) is increasing in y if y > x
1
x

and

f(x, y) is decreasing in y if y < x
1
x .



MAT 218 FALL 2008 FEEDBACK ON PROBLEM SET 4 3

Now x
1
x may or may not lie in [1/3, 1] depending on the value of x. Hence

the minimum of f(x, y) over 1
3 ≤ y ≤ 1 is attained at(

x,
1
3

)
if

1
2
≤ x and x

1
x ≤ 1

3(
x, x

1
x

)
if

1
3
≤ x

1
x ≤ 1

(x, 1) if 1 ≤ x ≤ 2.

It follows that

min
1/3≤y≤1

f(x, y) =


f

(
x, 1

3

)
if 1

2 ≤ x and x
1
x ≤ 1

3

f
(
x, x

1
x

)
if 1

3 ≤ x
1
x ≤ 1

f (x, 1) if 1 ≤ x ≤ 2.

Then it remains to observe that the above function is decreasing in x when
1/2 ≤ x ≤ 2. Hence

max
1/2≤x≤2

(
min

1/3≤y≤1
f(x, y)

)
= f

(
1
2
,
1
3

)
.


