## MAT 218 FALL 2008 FEEDBACK ON PROBLEM SET 7

Many of you are seeing differential forms for the first time, and it takes a little time to get used to them. However, once you master the formalism, it is a very convenient tool. Therefore I think I will begin with some little tricks in dealing with differential forms - hopefully you'll see how many of the computations you made in the problem set can be simplified.

## 1. Comments.

## Part 2.

1. It is helpful to note that if $\omega$ is a 1 -form, then

$$
\omega \wedge \omega=0
$$

Therefore if one needs to compute say $d(f(x, y, z) d x \wedge d y)$, one knows right away that it is not necessary to compute the $x$ and $y$ derivatives of $f$, for $d x \wedge d x=0$ and $d y \wedge d y=0$.

Notice, however, that $\omega \wedge \omega$ is NOT zero for 2-forms. Indeed wedge products induce a symmetric bilinear pairing from 2 -forms into 4 -forms; in other words,

$$
\omega_{1} \wedge \omega_{2}=\omega_{2} \wedge \omega_{1}
$$

if $\omega_{1}, \omega_{2}$ are 2-forms. (But this is not true for 1-forms. Why?) Can you figure out for what values of $p$ is it true that $\omega \wedge \omega=0$ for all $p$-forms $\omega$ ?

Part (c) has been difficult for many of you. See solution below.
3. I know the computations here are rather tedious, but for the computation of the last two differential forms, there is a simple way of doing it: indeed we are just working with spherical coordinates in this exercise, and $t_{1}^{2}=$ $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ in such coordinates, so
$\omega_{2}=x_{1} d x_{1}+x_{2} d x_{2}+x_{3} d x_{3}=\frac{1}{2} d\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=\frac{1}{2} d\left(t_{1}^{2}\right)=t_{1} d t_{1}$.
Also, $\omega_{3}=d x_{1} \wedge d x_{2} \wedge d x_{3}$ is just the volume form in the rectilinear coordinates. Therefore in spherical coordinates this is equal to

$$
\omega_{3}=\operatorname{det} J d t_{1} \wedge d t_{2} \wedge d t_{3}=-t_{1}^{2} \sin t_{2} d t_{1} \wedge d t_{2} \wedge d t_{3}
$$

where $J$ is the Jacobian matrix of the change of coordinates $\left(t_{1}, t_{2}, t_{3}\right) \mapsto$ $\left(x_{1}, x_{2}, x_{3}\right)$, which many of you have computed in earlier parts of the problem. If you remember the change of variable formula for spherical coordinates, you also know right away that $\operatorname{det} J$ is $\pm t_{1}^{2} \sin t_{2}$, where the sign depends on whether the map $\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}\right)$ is orientationpreserving. In this case the minus sign should be chosen, because the map reverses orientation.

## Exercises from Spivak.

4-19. I think this is the most important exercise you have done so far - you saw how differential forms neatly organizes the concepts of gradient, curl and divergence into a unifying framework. It is good to keep the conclusions of this exercise in mind.

## 2. Solution to selected exercises.

## Part 2, Further problems.

$\mathbf{1 ( c ) : ~ M a n y ~ o f ~ y o u ~ k n e w ~ t h a t ~ i f ~ w e ~ p i c k ~} \phi_{0}=x_{1} d x_{3}+x_{1} x_{2} d x_{4}$ then $d \phi_{0}=\omega_{3}$. However, many of you simply wrote down a system of partial differential equations when you tried to find all $\phi$ on $\mathbb{R}^{4}$ for which $d \phi=\omega_{3}$. In fact the important point here is being able to solve the system you wrote down, so let me do so. Notice that if $\phi$ is another 1 -form for which $d \phi=\omega_{3}$, then $d\left(\phi-\phi_{0}\right)=0$ on $\mathbb{R}^{4}$, and since $\mathbb{R}^{4}$ is star-shaped (indeed simplyconnectedness will do), we can invoke Poincare's lemma and conclude that $\phi$ differ from $\phi_{0}$ by an exact 1-form. In other words, all $\phi$ for which $d \phi=\omega_{3}$ on $\mathbb{R}^{4}$ is of the form $x_{1} d x_{3}+x_{1} x_{2} d x_{4}+d f$, where $f$ is any smooth function on $\mathbb{R}^{4}$.
2: Many of you followed Spivak's solution, but I think it is interesting to see one using Stokes theorem too, so here it is (and it is remarkably neat). To see that $\omega$ is not exact on $\mathbb{R}^{2} \backslash\{(0,0)\}$, just notice that if there were a function $f$ on $\mathbb{R}^{2} \backslash\{(0,0)\}$ for which $d f=\omega$ there, then

$$
\int_{C} \omega=\int_{C} d f=\int_{\partial C} f=0
$$

where $C$ is the unit circle in $\mathbb{R}^{2}$. But

$$
\int_{C} \omega=\int_{0}^{2 \pi} d \theta=2 \pi \neq 0
$$

so this leads to contradiction.
Notice that it is NOT correct in this case to identify $C$ as the boundary of the unit disk $D$ and say that $\int_{C} d f=\int_{D} d(d f)=\int_{D} 0=0$ by Stokes theorem; this is because $f$ is not smooth (or even defined) at the origin, which is contained in $D$. Actually if this argument had worked, then the integral of any closed (not necessarily exact) 1-forms on the unit circle would be zero, but this is not true.
(A little aside: if you get to study topology in the future, this is basically saying that you can detect a hole in your space (namely the origin in the plane in this case) by integrating a differential form over your space. This is the most intuitive model for cohomology (called DeRham cohomology), and comes up a lot in the study of geometry and topology.)

