
MAT 218 FALL 2008

FEEDBACK ON PROBLEM SET 8

Most of you did well this week. I will discuss some useful little tricks in estimating
integrals, and outline some alternative solutions to the problems.

1. Comments.

Exercises from Folland.

4.7.2. When we integrate radial functions on R3, one does not need the full
force of the spherical coordinates system: one just needs to notice that
if F (x, y, z) = f(r) is a radial function, then∫

R3
F (x, y, z)dxdydz =

∫ ∞

0

f(r)4πr2dr

because the sphere of radius r has area 4πr2. Of course this would also
follow if you use the spherical coordinate system (namely, writing dxdydz as
r2 sinφdrdθdφ), but the above formula is more strict forward (and easier to
prove than the spherical coordinates formula). More generally, the following
is true: if dσ denotes the surface measure of the unit sphere in Rn, then∫

Rn

f(x)dx =
∫ ∞

0

∫
θ∈Sn−1

f(r, θ)rn−1drdσ(θ).

Some of you have complicated arguments estimating the integrals. But
if we just want to prove that a certain integral diverges, sometimes a very
weak lower bound su�ces: for instance, the only reason that∫

R3

dV

1 + x2 + y2 + z2

diverges is that it is too big at in�nity. Hence to show that it diverges, it
su�ces to say that the integrand is comparable to r−2 when r > 1 (meaning
that (1 + x2 + y2 + z2)−1/r−2 is bounded above and below by an absolute
constant in this region) and that the latter is not integrable at in�nity.

By the same token, ∫
x2+y2<1

x2dA

(x2 + y2)2

diverges: when |y| < |x|, x2 is comparable to r2, so

x2

(x2 + y2)2
' r2

r4
=

1
r2

,

and the latter is not integrable in the sector |y| < |x| near the origin.
5.2.3. Some of you assumed at the outset that the curve C encloses a sector of

the form

{(r cos θ, r sin θ) : r1 < r < r2, θ1 < θ < θ2}

but there is no reason assuming that this is true. The correct argument is
as follows. If S is the region enclosed by a positively oriented simple closed
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curve C, then∫
C

y3dx + (3x− x3)dy =
∫

S

3(1− x2 − y2)dxdy.

But the latter is an integral of a function on a region in the plane, and this
integral is maximized when

S = {(x, y) ∈ R2 : f(x, y) ≥ 0}.
Hence the original integral is maximized when C is the boundary of the
unit disk in R2, i.e. when C is the unit circle in R2.

By the way, why is the fact that C is positively oriented important here?
(Hint: the integral doesn't have a maximum if we allow negatively oriented
curves!) Also, why is it important for C to be simple?

2. Solution to selected exercises.

Part 2, Further problems.

1: Many of you knew how to use Green's theorem to argue that if γ is any
simple closed curve on the plane, and F(x1, x2) = (x1, x2), then∫

γ

F · dx =
∫

γ

x1dx1 + x2dx2 =
∫

D

d(x1dx1 + x2dx2) = 0

where D is the region that γ encloses.
Here's a di�erent argument that uses another version of Stoke's theorem:

Notice that if F(x1, x2) = (x1, x2), then

F · dx = x1dx1 + x2dx2 = df

where

f(x1, x2) =
1
2
(x2

1 + x2
2).

Hence the integral of this along any (piecewise smooth) closed curve (not
necessarily simple) in the plane is zero: indeed if γ : [0, 1] → R2 is any
smooth closed curve in the plane, then∫

γ

F · dx =
∫

γ

df = f(γ(1))− f(γ(0)) = 0.

Notice that in this argument we need not use the fact that the curve is the
boundary of a region in the plane, but we need to use the additional fact
that the 1-form F · dx is exact (and not only closed).


