MAT 218 FALL 2008
 REVIEW SESSION

GRE practice exam.

1. The minimal distance between any point on the sphere $(x-2)^{2}+(y-1)^{2}+(z-$ $3)^{2}=1$ and any point on the sphere $(x+3)^{2}+(y-2)^{2}+(z-4)^{2}=4$ is
(A) 0
(B) 4
(C) $\sqrt{27}$
$\begin{array}{ll}\text { (D) } 2(\sqrt{2}+1) & \text { (E) } 3(\sqrt{3}-1)\end{array}$
2. Let C be the circle $x^{2}+y^{2}=1$ oriented counterclockwise in the $x y$-plane. What is the value of

$$
\int_{C}(2 x-y) d x+(x+3 y) d y ?
$$

(A) 0
(B) 1
(C) $\frac{\pi}{2}$
(D) π
(E) 2π
3. Let F be a constant unit force that is parallel to the vector $(-1,0,1)$ in the $x y z$-space. What is the work done on a particle that moves along the path given by $\left(t, t^{2}, t^{3}\right)$ between time $t=0$ and time $t=1$?
(Mathematical rephrase: what is the path integral

$$
\int_{C} F \cdot d x
$$

where C is the path in the question?)
(A) $-\frac{1}{4}$
(B) $-\frac{1}{4 \sqrt{2}}$
(C) 0
(D) $\sqrt{2}$
(E) $3 \sqrt{2}$
4. What is the minimum value of the expression $x+4 z$ as a function defined on \mathbb{R}^{3}, subject to the condition $x^{2}+y^{2}+z^{2} \leq 2$?
(A) 0
(B) -2
(C) $-\sqrt{34}$
(D) $-\sqrt{35}$
(E) $-5 \sqrt{2}$

Miscellaneous problems.

1. Suppose that ϕ is a smooth function on $\mathbb{R}^{2} \backslash\{0\}$ and

$$
\phi_{x x}+\phi_{y y}+\phi_{x}=0
$$

there. Suppose also that in polar coordinates

$$
\left\{\begin{array}{l}
r \phi_{x}(r, \theta) \rightarrow \cos \theta \\
r \phi_{y}(r, \theta) \rightarrow \sin \theta
\end{array}\right.
$$

uniformly as $r \rightarrow 0$. Let C_{R} be the circle $x^{2}+y^{2}=R^{2}$, oriented counterclosewise in the $x y$-plane. Show that the line integral

$$
\int_{C_{R}} e^{x}\left(-\phi_{y} d x+\phi_{x} d y\right)
$$

is independent of R and evaluate it.
2. Let g be a smooth real-valued function on $(0, \infty)$ and let F be a vector field on $\mathbb{R}^{3} \backslash\{0\}$ defined by

$$
F(x)=g(|x|) x
$$

Here $|x|$ denotes the Euclidean norm of the vector x. Let C be a smooth closed curve in \mathbb{R}^{3} that does not pass through the origin. What can you say about the line integral

$$
\int_{C} F \cdot d x ?
$$

3. Compute the integral

$$
\iint_{R} \cos \left(\frac{x-y}{x+y}\right) d x d y
$$

where R is the region of the $x y$-plane defined by $x \geq 0, y \geq 0$ and $x+y \leq 2$.
4. Let A be the region in the $x y z$-space defined by $x^{2}+y^{2}+z^{2} \leq 4$ and $x^{2}+y^{2} \geq 1$. Let F be the vector field $(y,-x, z)$ on \mathbb{R}^{3}. Compute the surface integral

$$
\int_{\partial A} F \cdot \nu d \sigma,
$$

where ν is the outward unit normal to the surface ∂A. Relate this to the volume of A.
(Sources: Berkeley Problem Book, MIT opencourseware, and other online sources.)

