MAT 218 FALL 2008 **REVIEW SESSION**

GRE practice exam.

- 1. The minimal distance between any point on the sphere $(x-2)^2 + (y-1)^2 + (z-1)^2 + (z-1)^2$ 3)² = 1 and any point on the sphere $(x + 3)^2 + (y - 2)^2 + (z - 4)^2 = 4$ is (A) 0 (B) 4 (C) $\sqrt{27}$ (D) $2(\sqrt{2} + 1)$ (E) $3(\sqrt{3} - 1)$ 2. Let C be the circle $x^2 + y^2 = 1$ oriented counterclockwise in the xy-plane. What
- is the value of

$$\int_C (2x-y)dx + (x+3y)dy?$$

(A) 0 (B) 1 (C) $\frac{\pi}{2}$ (D) π (E) 2π 3. Let F be a constant unit force that is parallel to the vector (-1, 0, 1) in the xyz-space. What is the work done on a particle that moves along the path given by (t, t^2, t^3) between time t = 0 and time t = 1?

(Mathematical rephrase: what is the path integral

$$\int_C F \cdot dx$$

where C is the path in the question?)

(A) $-\frac{1}{4}$ (B) $-\frac{1}{4\sqrt{2}}$ (C) 0 (D) $\sqrt{2}$ (E) $3\sqrt{2}$ 4. What is the minimum value of the expression x + 4z as a function defined on \mathbb{R}^3 , subject to the condition $x^2 + y^2 + z^2 \leq 2?$

(A) 0 (B)
$$-2$$
 (C) $-\sqrt{34}$ (D) $-\sqrt{35}$ (E) $-5\sqrt{2}$

Miscellaneous problems.

1. Suppose that ϕ is a smooth function on $\mathbb{R}^2 \setminus \{0\}$ and

$$\phi_{xx} + \phi_{yy} + \phi_x = 0$$

there. Suppose also that in polar coordinates

$$\begin{cases} r\phi_x(r,\theta) \to \cos\theta\\ r\phi_y(r,\theta) \to \sin\theta \end{cases}$$

uniformly as $r \to 0$. Let C_R be the circle $x^2 + y^2 = R^2$, oriented counterclosewise in the xy-plane. Show that the line integral

$$\int_{C_R} e^x (-\phi_y dx + \phi_x dy)$$

is independent of R and evaluate it.

2. Let g be a smooth real-valued function on $(0,\infty)$ and let F be a vector field on $\mathbb{R}^3 \setminus \{0\}$ defined by

$$F(x) = g(|x|)x.$$

Here |x| denotes the Euclidean norm of the vector x. Let C be a smooth closed curve in \mathbb{R}^3 that does not pass through the origin. What can you say about the line integral

$$\int_C F \cdot dx?$$

3. Compute the integral

$$\iint_R \cos\left(\frac{x-y}{x+y}\right) dxdy$$

where R is the region of the xy-plane defined by x ≥ 0, y ≥ 0 and x + y ≤ 2.
4. Let A be the region in the xyz-space defined by x² + y² + z² ≤ 4 and x² + y² ≥ 1. Let F be the vector field (y, -x, z) on R³. Compute the surface integral

$$\int_{\partial A} F \cdot \nu d\sigma,$$

where ν is the outward unit normal to the surface ∂A . Relate this to the volume of A.

(Sources: Berkeley Problem Book, MIT opencourseware, and other online sources.)